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Abstract—With the widespread usage of mobile devices, the
authentication mechanisms are urgently needed to identify users
for information leakage prevention. In this paper, we present CA-
GANet, a CNN-based continuous authentication on smartphones
using a conditional Wasserstein generative adversarial network
(CWGAN) for data augmentation, which utilizes smartphone
sensors of the accelerometer, gyroscope and magnetometer to
sense phone movements incurred by user operation behaviors.
Specifically, based on the preprocessed real data, CAGANet
employs CWGAN to generate additional sensor data for data
augmentation that are used to train the designed CNN. With the
augmented data, CAGANet utilizes the trained CNN to extract
deep features and then performs PCA to select appropriate
representative features for different classifiers. With the CNN-
extracted features, CAGANet trains four one-class classifiers
of OC-SVM, LOF, IF and EE in the enrollment phase and
authenticates the current user as a legitimate user or an im-
postor based on the trained classifiers in the authentication
phase. To evaluate the performance of CAGANet, we conduct
extensive experiments in terms of the efficiency of CWGAN,
the effectiveness of CWGAN augmentation and the designed
CNN, the accuracy on unseen users, and comparison with
traditional augmentation approaches and with representative
authentication methods, respectively. The experimental results
show that CAGANet with the IF classifier can achieve the lowest
EER of 3.64% on 2-second sampling data.

Index Terms—Continuous authentication, conditional Wasser-
stein GAN, CNN, deep feature, equal error rate (EER).

I. INTRODUCTION

W ITH the rapid development of mobile communication
technologies (e.g., the mobile Internet, the Internet

of Things, and smart interconnection), mobile devices (e.g.,
smartphones, smartwatches, and tablets) have been widely
developed and popularized, and have deeply affected people’s
life and work. For instances, people prefer to use mobile
devices to place orders and make payments in daily life, store
photos and chat messages for personal life, and send classified
documents and emails for work communication. However,
more and more sensitive information stored on mobile devices
suffers from information leakage. Thus, there is an increasing
and urgent need for security mechanisms to identify the mobile
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device users for protecting their personal and privacy data on
devices [1], [2]. The existing authentication mechanisms can
be broadly categorized into knowledge-based authentication,
physiological biometrics-based authentication, and behavioral
biometrics-based authentication. Specifically, the knowledge-
based authentication schemes (e.g., passwords, PINs, and
graphical patterns) mainly require users to input predefined
knowledge, which are vulnerable to various attacks, such as
smudge attack [3] and shoulder surfing attack [4]. The phys-
iological biometrics-based mechanisms, such as fingerprints
(Touch ID) [5], face patterns (Face ID) [6], and voice [7],
mainly require user direct participation based on the unique
physicological features, which suffer from capturing attack [8],
replaying attack [9], and spoofing attack [10]. The behavioral
biometrics-based approaches (e.g., touch gestures [11], gait
[12], and GPS patterns [13]) can non-intrusively identify
users while using the mobile devices based on the invariant
behavioral features, which use built-in sensors (e.g., the ac-
celerometer, gyroscope, and magnetometer) to sample users’
invariant behavioral data for user authentication. However,
one-time authentication mechanisms (e.g., knowledge-based
mechanisms and physiological biometrics-based mechanisms)
share a common problem that they authenticate the user only
at the initial logging-in session and do not re-authenticate
the user until the user logs out. This could pose a critical
security weakness for mobile devices that attackers can easily
access to everything on unattended mobile devices without
logging out [14]. To address this problem, mobile devices
must continuously monitor and authenticate the users after
the initial logging-in session. The behavioral biometrics-based
authentication shows a promising solution that can continu-
ously identify the users without their cooperation during their
operation on the devices.

The behavioral biometrics-based continuous authentication
has been widely studied in recent years, aiming at identifying
invariant features of human behaviors during different activi-
ties [32]. However, they are currently facing two challenges:
limited training data and inefficient feature representation.
Data collection commonly costs extensive efforts from or-
ganizers and participants including time and energy but the
continuous authentication systems usually require sufficient
data to train a classifier or a deep-learning based extractor.
The authentication accuracy significantly lies on the feature
representation ability and the systems require efficient feature
extractors to learn more discriminative features to ensure
high accuracy. To overcome these challenges, the state-of-
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Fig. 1: Architecture of CAGANet

the-art authentication methods have been proposed. For lim-
ited training data, the data augmentation approach has been
utilized in continuous authentication for creating additional
training data [29], [30], [31], [32], [33], [34], such as per-
mutation, sampling, scaling, cropping, jittering, flipping, and
rotation. However, most of these augmentation approaches are
primitively designed for image data augmentation, such as
palmprint recognition [16] and finger-vein recognition [17].
For inefficient feature representation, deep learning approaches
have been exploited into continuous authentication to extract
deep features [35], [36], [37], [38], [39], [40], [41], such as
DNN, CNN, and RNN. However, most of these works focus
on physiological biometrics-based features, such as respiratory
biometrics [37] and fingertip-touch [39].

Different from the existing works, this paper aims to pro-
vide a conditional Wasserstein generative adversarial network
(CWGAN) for sensor data augmentation and specially design
a convolutional neural network (CNN) based on a basic unit
and a basic unit for spatial down sampling for discriminative
deep feature extraction in a continuous authentication system.
In this paper, we present CAGANet, a CNN-based continuous
authentication system using a CWGAN for data augmentation
that leverages the accelerometer, gyroscope and magnetometer
on smartphones to monitor users’ behavioral patterns. CA-
GANet is composed of two phases of the enrollment phase and
the continuous authentication phase. In the enrollment phase,
CAGANet learns the profile of a legitimate user where the de-
signed CNN is trained by exploiting the CWGAN-augmented
training data and the one-class classifiers are trained by CNN-
extracted deep features. In the continuous authentication phase,
the current user is continuously authenticated as a legitimate
user or an impostor by utilizing the trained CNN and trained
classifiers on the testing data. If it is classified as a legitimate
user, CAGANet will allow the user to continue using the
smartphone; Otherwise, it requires the user to provide the
legitimate identification to continue access the smartphone.

The main contributions of this work are summarized as
follows.

• We present CAGANet, a CNN-based continuous authen-
tication system using a CWGAN for data augmentation
that leverages the accelerometer, gyroscope and mag-

netometer on smartphones. CAGANet consists of five
modules: data collection, data augmentation, deep feature
extraction, classifiers, and authentication.

• We utilize CWGAN to generate additional sensor data
for CNN training, and specially design a CNN based
on a basic unit and a basic unit for spatial down sam-
pling to extract representative deep features. Extensive
experiments are conducted to demonstrate how CWGAN
can generate high-quality sensor data and illustrate how
the designed CNN can learn discriminative features,
respectively.

• We evaluate the authentication performance of CAGANet
on four one-class classifiers of OC-SVM, LOF, IF and
EE, and the experimental results demonstrate that CA-
GANet outperforms other representative approaches and
achieves the lowest EER of 3.64% with the IF classifier.

The rest of this paper is organized as follows. Section
II presents the overview of CAGANet. In Section III, we
introduce the data collection and the data preprocessing for
CWGAN training and testing. Section IV details CWGAN
augmentation for deep feature extraction. In Section V, we
provide the CNN-based feature extraction method composed
of feature learning and feature selection. We elaborate the
authentication with four classifiers in Section VI. In Section
VII, we describe the experimental setting and excessively
evaluate the performance of CAGANet. We review the state-
of-the-art on data augmentation and deep learning in Section
VIII and Section IX concludes this work.

II. CAGANET OVERVIEW

We present the architecture of CAGANet, a CNN-based
continuous authentication system using a conditional Wasser-
stein generative adversarial network (CWGAN) for data aug-
mentation. CAGANet employs smartphone built-in sensors,
including the accelerometer, gyroscope, and magnetometer, to
sense phone movements incurred by user operation behaviors.

As illustrated in Fig. 1, CAGANet architecture consists of
two phases: 1) the enrollment phase, where CAGANet learns
a profile of a legitimate user by utilizing the training data to
train CWGAN and CNN, and 2) the continuous authentication
phase, where the system authenticates users by exploiting
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the trained CNN and the trained four one-class classifiers on
the testing data. Moreover, CAGANet is composed of five
modules, including the data collection, data augmentation,
deep feature extraction, classifiers, and authentication. The
data collection module utilizes the three sensors to capture
users’ every subtle operation behaviors on their phones and
sample the corresponding behavioral data instantaneously. The
data augmentation module first segments and normalizes the
the sampled data, and then uses CWGAN to augment them.
Note that data augmentation module only performs on training
data in the enrollment phase to generate additional sensor
data for CNN training. The deep feature extraction module
learns the CNN-based features and then selects representative
features by PCA. With the selected deep features, the classifier
module trains the four one-class classifiers and generates the
legitimate user’s profile from the training data. Based on the
trained CNN and trained classifiers, the authentication module
classifies the current user as a legitimate user or an impostor
with the testing data. CAGANet will allow the continuous
smartphone usage if it is a legitimate user; otherwise, it
requires the user’s identification, such as initial login inputs.

III. DATA COLLECTION AND PREPROCESSING

In this section, we first describe how CAGANet collects
the dataset and then preprocesses the collected data for both
CWGAN and CNN training.

A. Data Collection

We select three smartphone built-in sensors of the ac-
celerometer, gyroscope, and magnetometer, to sense a user’s
behavioral motion on the phone. The accelerometer and gy-
roscope are motion sensors, which capture a user’s coarse-
grained and fined-grained motion patterns, respectively, while
the magnetometer is a position sensor, which determines the
phone’s physical position in the real frame of reference.

A user’s operation on a smartphone triggers the data col-
lection module starting to collect the raw sensor data from
the accelerometer, gyroscope, and magnetometer, respectively,
for a time period t with a sampling rate f . To collect data
for CAGANet training, we developed a data collection tool
for Android phones to record the real-time behavioral data
while the participants operate on the phones. We recruited
100 participants (53 male and 47 female) to conduct three
designed tasks on the phones with developed tools: 1) docu-
ment reading, 2) text production, and 3) navigation on a map
to locate a destination. These tasks lasting 5 to 15 minutes
were randomly assigned once the participants logged into the
developed tool, and each participant was expected to perform
24 sessions (8 reading sessions, 8 writing sessions, and 8 map
navigation sessions) with totally 2 to 6 hours of behavior traits.

In the enrollment phase, we select the sensor readings
of the accelerometer, gyroscope, and magnetometer from 88
participants (44 male and 44 female) with the sampling rate
f = 100Hz and select 100 minutes of the data for each user
with a t = 2 or 5-second window size for training. In the
authentication phase, for a time period t, n (n = t× f) sam-
ples can be collected, and each synchronized sample can be

denoted as (xa, ya, za, xg, yg, zg, xm, ym, zm)T ∈ R9, where
x, y, z represent the three axes of a sensor, and a, g,m indicate
the accelerometer, gyroscope, and magnetometer, respectively.

In the experiments, we divide the 88 participants’ data into
two groups, where the data of 68 participants are used for
CWGAN augmentation and classifier training in the enroll-
ment phase and the data of the rest 20 are used as the input
of trained CNN and trained classifiers for CWGANet testing
in the authentication phase.

B. Data Preprocessing

For a time period t, CAGANet can collect n samples
of time domain data for the accelerometer, gyroscope, and
magnetometer, which can be represented by a d × n matrix:

Di =


xi1a yi1a zi1a xi1g yi1g zi1g xi1m yi1m zi1m
xi2a yi2a zi2a xi2g yi2g zi2g xi2m yi2m zi2m

...
...

...
...

. . .
...

...
...

...
xina yina zina xing ying zing xinm yinm zinm


T

,

where d = 9 and n = t × f . Then, all the dataset can be
expressed as: Denroll = [D1, D2, · · · , Dnum]T , where num
indicates the number of time periods.

For CWGAN training, we normalize each element denroll in
Denroll into (−1, 1) by d′enroll =

denroll−min(Denroll)
max(Denroll)−min(Denroll)

and dcwgan =
d′enroll−0.5

0.5 , and obtain the normalized data
Dcwgan, which are used for CWGAN augmentation.

For CNN training, with the augmented data, we normalize
each user’s data including x, y, z- axes into (−1, 1) in Denroll,
and obtain the normalized data Dcnn.

IV. CWGAN AUGMENTATION

Generative adversarial networks (GANs) proposed by I.
Goodfellow et al. typically consist of two adversarial net-
works: a generator and a discriminator. The generator produces
realistic-like data to confuse the discriminator, while the
discriminator tries to distinguish whether a sample comes from
the real or realistic-like data [15]. GANs have been exploited
into biometric recognition tasks for data augmentation, such as
palmprint recognition [16], and finger-vein recognition [17];
however, most of the existing GAN-based approaches focus on
image augmentation. In this section, we design a conditional
Wasserstein GAN (CWGAN) for smartphone sensor data
augmentation. We first present the CWGAN architecture, and
then detail CWGAN training procedures.

A. CWGAN

Given real sensor data xr with distribution pr and gener-
ated data xg with distribution pg , the generator G produces
realistic-like xg to confuse the discriminator D, while the
discriminator D intends to distinguish whether a sample comes
from xr or xg . The generator and discriminator are both
parameterized as convolutional neural networks (CNN). The
adversarial training procedure can be formulated as a minimax
problem, as shown in Eq. (1):

min
θG

max
θD

L(pr, pg) =

Exr∼pr [logD(xr)] + Exg∼pg [logD(xg)],
(1)
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TABLE I: Generator structure

Layer Output #Kernel KSize Stride Padding
Sensor (ND + CN) ×1× 1 - - -
ConvTranspose2d
(BN+ReLU) 64× 11× 3 64 (11,3) (1,1) (0,0)
ConvTranspose2d
(BN+ReLU) 128× 24× 3 128 (4,3) (2,1) (0,1)
ConvTranspose2d
(BN+ReLU) 256× 49× 3 256 (3,3) (2,1) (0,1)
ConvTranspose2d
(BN+ReLU) 512× 99× 3 512 (3,3) (2,1) (0,1)
ConvTranspose2d 3× 200× 3 3 (4,3) (2,1) (0,1)
Tanh - - - - -

where θG and θD indicate the parameters of the generator and
discriminator, respectively. pg is implicitly defined by xg =
G(xz), where xz is initially sampled from a Gaussian noise
distribution.

Based on Eq. (1), we apply Kantorovich-Rubinstein du-
ality of Earth-Mover distance in Wasserstein GANs [18],
and enforce Lipschitz constraint with gradient penalty instead
of weight clipping to directly constrain the gradient norm
[19]. Then, the CWGAN used for data augmentation can be
expressed by Eq. (2):

min
θG

max
θD

L(pr, pg, yr) =

Exr∼pr,yr∼py [D(xr|yr)]− Exg∼pg,yr∼py [D(xg|yg)]
− λEx̂∼p̂,yr∼py [(||∇x̂|yrD(x̂|yr)||2 − 1)2],

(2)

where λ is a hyperparameter that controls the trade-off be-
tween original objective and gradient penalty, x̂ indicate the
data points sampled from the straight line between real distri-
butions pr and pg with x̂ = αxr + (1−α)xg(α ∈ [0, 1]), and
yr denotes a label fed into both discriminator D and generator
G. In G we concatenate pz with py while in D concatenate
both pr and pg with py to construct a hidden representation
controlling the categories of generated data [20].

B. CWGAN Architecture

We design the architecture of the CWGAN including a
generator structure and a discriminator structure, as shown in
Tables I and II, respectively. As shown in Table I, the generator
consists of five 2D transposed convolution layers and one
Tanh active function layer. We apply the batch normalization
(BN) and Rectified Linear Unit (ReLU) after each of the
first four operations. In Table I, ‘ND’ indicates the noise
dimension (noise dim) and ‘CN’ represents class number for
training (class num), respectively. As shown in Table II, the
discriminator comprises five 2D convolution layers, and two
linear layers. We apply a leaky version of a Rectified Linear
Unit (LeakyReLU) on the five 2D convolution layers, and the
following one linear layer.

Based on the normalized data Dcwgan, we randomly sepa-
rate the 88 participants’ data into two groups, one group with
Ufa (Ufa = 68 in experiments) participants’ data and the
other with Uft = 88 − Ufa. The Ufa participants’ data are
first augmented by CWGAN and then used for the designed
CNN training and validation while the Uft participants’ data
are just extracted features by the trained CNN for classifier
training. We label the Ufa participants by one-hot encoding

TABLE II: Discriminator structure

Layer Output #Kernel KSize Stride Padding
Sensor (3 + CN)× 200× 3 - - - -
Conv2d
(LeakyReLU) 32× 200× 3 32 (3,3) (1,1) (1,1)
Conv2d
(LeakyReLU) 64× 100× 3 64 (3,3) (2,1) (1,1)
Conv2d
(LeakyReLU) 128× 50× 3 128 (3,3) (2,1) (1,1)
Conv2d
(LeakyReLU) 256× 25× 3 256 (3,3) (2,1) (1,1)
Conv2d
(LeakyReLU) 512× 12× 3 512 (3,3) (2,1) (0,1)
Linear
(LeakyReLU) 1024 - - - -
Linear 1 - - - -

TABLE III: CNN Architecture

Layer Output #Kernel KSize Stride Parameter
Sensor 3× 200× 3 - - -
Conv2d (BN+ReLU) 24× 100× 3 24 (3,3) (2,1) 696

Stage 2 48× 50× 3 48 - (2,1) 3912
48× 50× 3 48 - (1,1)

Stage 3 96× 25× 3 96 - (2,1) 13584
96× 25× 3 96 - (1,1)

Stage 4 192× 13× 3 192 - (2,1) 50208
192× 13× 3 192 - (1,1)

Conv2d (BN+ReLU) 1024× 13× 3 1024 (1,1) (1,1) 198656
AvgPool 1024× 1× 1 - (13,3) - -
FC 1× CN - - - 61500

and obtain a label set l[batchsize, Ufa] for them. In genera-
tor G, Gaussian noise xz[batchsize, 100] with the standard
uniform distribution is concatenated with l[batchsize, Ufa]
to generate an original input xg[batchsize, 100+Ufa]. The
output of G is (batchsize, 3×200×3), where the first ‘3’
indicates the three sensors, ‘200’ represents 2-second data, and
the last ‘3’ denotes the three axes of a sensor. In discriminator
D, the input is the output of G (batchsize, 3× 200× 3),
and the output 512 × 12 × 3 is concatenated with label
l[batchsize, Ufa]. The output of D is the probability that
the generated sample belongs to the real sample.

For CWGAN training, we train the generator once for every
20 times of the discriminator training, for total 50 times,
with optimizer RMSprop, and learning rate 0.00005. The
batchsize is set as 128 and the hyperparameter λ for
gradient penalty is set to 10.

V. DEEP FEATURE EXTRACTION

In this section, we provide a CNN-based deep feature
extraction method that is composed of feature learning and
feature selection. Before describing the method, we elaborate
the design of the CNN for feature learning.

A. CNN Design

Inspired by ShuffleNet V2 [21], we design the architecture
of a CNN, as presented in Table III. The proposed CNN
mainly consists of a 2D convolutional layer (Conv2d), a stack
of ShuffleNet V2 units grouped into three stages (Stage 2,
Stage 3, and Stage 4), another Conv2d layer, and a full
connection layer (FC). We adopt BN and ReLU right after
each Conv2d, and an average pooling (AvgPool) after the
second Conv2d layer. In addition, Stages 2, 3, and 4 have
the same building block structure which is comprised of a
basic unit for spatial down sampling followed by a basic unit.
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Specifically, the basic unit begins with splitting the channels
C into two identical branches, where one branch remains as
identity with C/2 channels. The other branch is a bottlenet unit
with depthwise convolution (DWConv) (1× 1 Conv followed
by 3 × 3 DWConv followed by 1 × 1 Conv, with BN and
ReLU) [22]. Then, the two branches are concatenated with C
channels and divided into gb subgroups, on which the channel
shuffle operation is applied by reshaping the output channel
dimension into (gb, n), transposing and flattening it back as
the basic unit outputs, where C = gb × n. The basic unit for
spatial down sampling starts with two identical (C-channel)
branches, where one consists of 3× 3 DWConv with stride 2
followed by 1×1 Conv with BN and ReLU, and the other one
is composed of a bottlenet unit with DWConv (stride = 2).
Then, the two branches are concatenated with 2C channels and
divided into gd subgroups, and the channel shuffle operation
is applied as the unit output.

B. Feature Learning

We utilize the designed CNN to learn and extract discrim-
inative deep features on the normalized CWGAN-augmented
data Dcnn. As demonstrated in Table III, there are 1800 (3
sensors ×2 seconds ×100Hz× 3 axes) samples in 2 seconds.
In the first Conv2d layer, there are 24 filters with the size of
3× 3 and stride = 2. In Stage 2, we apply the basic unit for
spatial down sampling with 48 filters (2C), stride = 2 and
gd = 2, and then the basic unit with 48 filters, stride = 1 and
gb = 2. In Stage 3, we exploit the same structure with 96 filters
and use 192 filters in Stage 4. In the second Conv2d layer,
there are 1024 filters with the size of 1×1. The AvgPool layer
with the size of 13× 3 is used to decrease the channel output
dimensions and extract features. The FC layer is exploited to
classify the inputs into a finite number of classes. The total
CNN architecture contains 328556 parameters. The designed
CNN learns 1024 deep features (AvgPool layer) for the sensors
of the accelerometer, gyroscope and magnetometer.

C. Feature Selection

With the CNN-learned deep features, we utilize the prin-
cipal component analysis (PCA) to select the deep features
with high discriminability for classifiers. As illustrated in the
CAGANet architecture (Fig. 1), we exploit four classifiers
to conduct the classification with the selected deep features.
According to the experiment in VII-B, PCA selects 15 deep
features for one-class support vector machine, 15 for local
outlier factor, 50 for isolation forest, and 150 for elliptic
envelope, respectively.

VI. AUTHENTICATION WITH FOUR CLASSIFIERS

With the CNN-learned and selected deep features, we utilize
four one-class classifiers for training and testing: a) One-class
support vector machine (OC-SVM), b) local outlier factor
(LOF), c) isolation forest (IF), and d) elliptic envelope (EE).
Note that we exploit the four one-class classifiers to show
the generality of the CNN-learned features. Specifically, OC-
SVM exploits a kernel function to map data into a high-
dimensional space and considers the origin as the only sample

from other classes, where the kernel function is a radial
basis function. LOF measures the local deviation of the data
point to its neighbors, which decides whether a data point
is an outlier using the local density estimated by k-nearest
neighbors based on a given distance metric. A data point can
be regarded as an outlier if its local density is substantially
lower than its neighbors [24]. IF detects abnormal data points
by subsampling the dataset to construct iTrees and further
integrate multiple iTrees into a forest to detect abnormal data.
A data point can be viewed as an abnormal one if these random
trees collectively produce shorter path lengths for it [25]. EE
models the data as a high dimensional Gaussian distribution
with possible covariances between feature dimensions and
attempts to find an boundary ellipse that contains most of the
data using FAST-Minimum covariance determinate to estimate
the size and shape of the ellipse. A data point is classified as
anomalous one if it is outside of the ellipse [26].

In the enrollment phase, the classifiers are trained by the
selected deep features and CAGANet generates the legitimate
user’s profile from the training data. In the continuous authen-
tication phase, the trained classifiers classify the selected test-
ing deep features. Based on the trained classifiers and testing
data, CAGANet authenticates the current user as a legitimate
user or an impostor. If the user is classified as an impostor,
CAGANet will require initial login inputs; Otherwise, it will
allow the continuous usage of the smartphone and meanwhile
continuously authenticates the user.

VII. EVALUATION

In this section, we evaluate the performance of CAGANet
based on the collected 88 users’ dataset, where the randomly-
selected 68 users are used for training and the rest 20 users
(unseen users) are used for testing. To evaluate the authen-
tication performance of CAGANet, we first introduce the
experimental settings, and then conduct extensive experiments.
Specifically, for the evaluation experiments, we first determine
the optimal deep feature numbers for different classifiers and
find the best parameter combinations for them. Then, we
evaluate the quality of CWGAN-generated sensor data. Next,
we investigate the authentication accuracy of CAGANet on
CWGAN augmentation and the designed CNN, respectively,
and then explore the accuracy on unseen users. Finally, we
compare CAGANet with traditional augmentation approaches
and with representative authentication methods, respectively.

A. Experimental Settings

1) CNN and classifier training: We randomly selected 68
users’ data out of 88 to train the designed CNN. Based on the
trained CNN, we choose the rest 20 users’ data (deep features
extracted by the trained CNN) to train the four classifiers of
OC-SVM, LOF, IF, and EE.

For CNN training, 80% randomly-selected 68 users’ data
are used for training and the rest 20% for validation, with a
batch size of 256. For each batch-size training data, we feed
them to the designed CNN, calculate the loss utilizing cross
entropy based on the output, then perform back-propagation,
and finally update parameters for the learning rate. With an
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initial value of 0.001, we use Stochastic Gradient Descent
optimizer to update the learning rate by reducing 50% if the
validation loss of current epoch is higher than the previous one
until the maximum 300 epochs or the validation loss remains
for 10 continuing epochs.

For classifier training, we randomly select one user from
the 20 users as the legitimate user and the rest 19 users as im-
postors. We utilize ten-fold cross-validation on each legitimate
user. That is, the positive samples from the legitimate user are
equally divided into 10 subsets, where 9 subsets are used as
training sets and the rest one is used as a testing set. Then, the
negative samples from all the impostors with the same size to
positives are selected and then divided into 10 subsets, where
one of them is used as the testing set. The above procedures
are repeated 10 times until each subset of positive or negative
samples are tested once. Finally, we repeat the ten-fold cross-
validation 20 times until each of the 20 users are selected as
a legitimate user once.

2) Evaluation metrics: We utilize two evaluation metrics
of the accuracy and equal error rate (EER) to evaluate the
effectiveness of CAGANet. We start with four basic metrics:
True positive (TP) indicates that operation behaviors from
legitimate users are correctly identified; True negative (TN)
indicates that operation behaviors not from legitimate users are
correctly declined; False positive (FP) indicates that operation
behaviors not from legitimate users are incorrectly identified
as legitimate; False negative (FN) indicates that operation
behaviors from legitimate users are incorrectly rejected. Based
on the four basic metrics, the accuracy is the percentage
ratio of the total number of correct authentication against
the total number of authentication, defined as: Accuracy =

TP+TN
TP+TN+FP+FN . EER is the point that the true acceptance
rate (FAR) equals to the true rejection rate (FRR), where
FAR = FP

FP+TN and FRR = FN
FN+TP . A lower EER

indicates higher authentication accuracy [27].

B. Feature Number and Classifier Parameter

To determine the optimal deep feature numbers selected
by PCA for the four classifiers of the OC-SVM, LOF, IF
and EE, we conduct experiments to investigate the impact of
feature numbers on the classifiers. We compute the accuracy
of CAGANet with different classifiers as the feature number
increase from 5 to 200 over 2 seconds and 5 seconds, re-
spectively. We tabulate the accuracy for different classifiers
with varying feature numbers over 2 seconds and 5 seconds
in Table IV. As shown in Table IV, for all the classifiers,
the accuracy gradually increases with the growth of selected
features until an optimal number and then slightly decreases
for both 2 seconds and 5 seconds. Specifically, for OC-
SVM and LOF classifiers, 15 deep features selected by PCA
reach the highest accuracy of 97.42% (96.89%) and 97.98%
(97.00%), respectively, over 2 seconds (5 seconds). For IF
classifier, 50 deep features achieve the best accuracy of 97.24%
(97.27%) over 2 seconds (5 seconds) while 150 deep features
reach 95.91% (95.65%) for EE classifier. In particular, 2-
second sampling data show a slightly better accuracy than
5-second data.

0 20 40 60 80 100 120

-3000

-2500

-2000

-1500

-1000

-500

0

500

Iteration

 Discriminator Loss
 Generator Loss

Fig. 2: Discriminator and generator loss

In addition, based on the optimal feature numbers for the
classifiers, we use the grid search to find the best parameter
combinations for classifiers of the OC-SVM, LOF, IF and
EE. As listed in Table V, for OC-SVM classifier, we find
that the radial basis function works best with µ = 0.01 and
γ = 0.015625 over both 2 and 5 seconds. For LOF, we utilize
Manhattan distance as the Minkowski metric with the optimal
parameters of n_neighbors = 20 and p = 1 on 2 seconds,
and n_neighbors = 10 and p = 2 on 5 seconds. For
IF, the optimal parameter of n_estimators is 100 on 2
seconds and 60 on 5 seconds. For EE, the robust location
and covariance are directly computed with the FastMCD algo-
rithm without additional treatment and the optimal parameters
of contamination = 0.1 and assume_centered =
False on 2 seconds, and 0.1 and True on 5 seconds.

For 2-second or 5-second sampling data, the feature number
for each classifier is the same, and the accuracy and optimal
parameters are almost the same (2-second data show slightly
better). Considering the time cost and memory occupancy,
the following experiments are all based on 2-second sampling
data.

C. Efficiency of CWGAN

We evaluate the efficiency of the designed CWGAN frame-
work for sensor data augmentation. The quality of the
CWGAN-generated sensor data can be evaluated by two
indicators of discriminator loss and maximum mean discrep-
ancy (MMD), where the CWGAN-generated sensor data are
considered to have high qualities if their distributions are
approximate to real distributions. Discriminator loss indicates
the Earth-Mover distance between the real sensor data xr and
the generated data xg when the network converges. That is, the
CWGAN-generated data are high qualities if the discriminator
loss is approximate to 0 [20]. MMD measures the distance
between xr and xg . That is, the CWGAN-generated data are
high qualities if the distance is close to 0 [28].

In the experiment, the critic value is set to 20 to ensure the
discriminator is fully optimized, RMSProp optimizer is used
with learning rate equal to 0.00005 and the hyperparameter
λ is set to 10. The CWGAN is trained for 50 epochs with
the batch size 128. The discriminator and generator loss, and
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TABLE IV: Accuracy (%) for different classifiers with varying feature numbers over 2 seconds (5 seconds)

Classifier \ Number 5 15 25 35 50 100 150 200
OC-SVM 95.45 (93.89) 97.42 (96.89) 94.73 (96.39) 91.71 (94.79) 79.87 (91.86) 68.70 (79.24) 31.23 (68.47) 59.95 (59.26)
LOF 95.32 (92.48) 97.98 (97.00) 97.05 (96.77) 95.95 (96.39) 94.45 (94.78) 90.08 (89.56) 86.73 (86.66) 84.79 (85.05)
IF 89.82 (87.58) 95.37 (94.80) 96.48 (96.49) 97.08 (96.92) 97.24 (97.27) 96.66 (96.52) 95.42 (94.96) 93.49 (92.85)
EE 78.42 (73.20) 83.36 (76.16) 88.70 (86.30) 91.95 (90.10) 93.79 (93.05) 95.00 (94.68) 95.91 (95.65) 92.63 (91.50)

TABLE V: Optimal Parameter Combinations on 2 seconds (5 sec-
onds)

Classifier # Feature Optimal Parameter Combination
OC-SVM 15 µ = 0.01 (0.01), γ = 0.015625 (0.015625)
LOF 15 n_neighbors = 20 (10), p = 1 (2)
IF 50 n_estimators = 100 (60)

EE 150 contamination = 0.1 (0.1),
assume_centered = False (True)
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Fig. 3: MMD

MMD are illustrated in Figs. 2 and 3, respectively. Specifically,
as shown in Fig. 2, the discriminator loss converges to a
small value along with the increase of the training epoch. In
particular, it converges to 0 when the training epoch comes to
100. The generator loss sharply decreases and then gradually
converges to a small value, which indicates that it generates
sensor data with high similarity to real data. As depicted in Fig.
3, the MMD has a generally similar converged tendency with
the discriminator loss, which implies that adversarial-training
reduces the distance between the two mapping distributions.

D. Effectiveness of CWGAN Augmentation

We investigate the authentication accuracy of CAGANet to
evaluate the effectiveness of the proposed CWGAN augmen-
tation approach on the four classifiers of the OC-SVM, LOF,
IF and EE over different dataset sizes.

Fig. 4 illustrates box plots of EERs of CAGANet over differ-
ent dataset sizes for the four classifiers. For the four classifiers,
based on the dataset sizes varying from 40 to 400, we plot
boxes of EERs with no augmentation (blue box plot) and with
CWGAN augmentation approach (red box plot), as shown in
Fig. 4(a) for OC-SVM classifier, Fig. 4(b) for LOF classifier,
Fig. 4(c) for IF classifier, and Fig. 4(d) for EE classifier,
respectively. As illustrated in Fig. 4, for all the four classifiers,
the EERs with CWGAN augmentation approach significantly
decrease comparing with that without data augmentation over
all dataset sizes. That is, CWGAN augmentation approach can

effectively improve the authentication accuracy of CAGANet.
Moreover, with the increase of the dataset size, the EER
gradually decreases and the decrement of the EER reduces
(i.e. accuracy increment tends to saturate). This is because the
CNN training reaches saturation when the training data come
to sufficiency.

In addition, we tabulate the mean EER without or with
CWGAN augmentation over different dataset sizes for the
four classifiers in Table VI, where ‘|’ separates the mean
EERs without and with CWGAN augmentation approach for
different dataset sizes. As depicted in Table VI, the OC-SVM
classifier generates the highest mean EERs of 19.93% without
CWGAN and 10.56% with CWGAN when dataset size is
400. Even the worst condition (OC-SVM classifier), CWGAN
augmentation approach reduces by 47% in mean EER, which
indicates that CWGAN augmentation exhibits certain improve-
ment in the authentication accuracy of CAGANet. On the other
hand, the IF classifier performs the best with 5.05% mean EER
on no augmentation and 3.64% with CWGAN, achieving a
reduction of 28% in mean EER when dataset size comes to
200. Moreover, the best mean EERs of LOF and EE classifiers
reach 8.69% and 6.69% on no augmentation, and 6.87% and
5.81% with CWGAN, respectively, where the dataset size is
400.

E. Effectiveness of CNN

In this section, we evaluate the effectiveness of CNN in
terms of the efficiency of CNN architecture and that of CNN-
learned features, respectively.

1) Efficiency of CNN Architecture: To assess the perfor-
mance of the proposed CNN architecture, we compare the
specific CNN with existing popular CNN structures, such as
VGG [42], DenseNet [43], and GoogLeNet [44]. In order to
adapt these CNN structures to our input of (3, 200, 3), we
make some modifications to VGG, DenseNet, and GooLeNet,
respectively. a) VGG Net-D (16 layers): kernel size = 3, stride
= (2, 1), padding = 1 for all the MaxPool layers; FC-1000 is
changed to FC-68 and the outputs of the last FC-4096 are used
as features. b) DenseNet-121: output size = (3 × 3), stride
= (2, 1), padding = 1 for the first convolution layer; stride
= (2, 1) for the max pool layer; average pool = (3, 3), stride
= (2, 1), padding = 1 for transition layers; global average pool
= 7×3 in the classification layer and is used as feature output;
1000D fully-connected is changed to 68D fully-connected. c)
GooLeNet: kernel size = (3×3), stride = (2, 1), padding = 1
in the first convolution layer; stride = (2, 1) for all the max
pool layers; kernel size = (7 × 3) in the avg pool layer and
the outputs of this layer are used as features; output size = 68
in the linear layer.

Based on the three existing CNN structures (e.g. VGG,
DenseNet and GoogLeNet) and the designed CNN, we com-
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Fig. 4: EER with CWGAN Augmentation over different dataset sizes for different classifiers. (a) OC-SVM. (b) LOF. (c) IF. (d) EE.

TABLE VI: Mean EER (%) without | with CWGAN Augmentation over Different Dataset Sizes for the Four Classifiers

Classifier \ Dataset size 40 60 80 100 200 400
OC-SVM 54.47 | 28.56 46.52 | 19.43 36.50 | 20.66 28.21 | 16.87 25.17 | 12.46 19.93 | 10.56
LOF 17.23 | 11.90 15.69 | 9.31 11.62 | 9.69 10.09 | 8.78 9.55 | 8.44 8.69 | 6.87
IF 18.25 | 6.64 10.87 | 5.15 7.34 | 6.12 5.62 | 4.81 5.05 | 3.64 4.20 | 3.74
EE 12.02 | 8.73 9.56 | 7.32 8.61 | 7.97 7.58 | 7.22 7.24 | 6.05 6.69 | 5.81

pute the mean EER and parameter amount with dataset size
400 over the four classifiers in Table VII. As shown in Table
VII, the designed CNN in this work generally outperforms
DenseNet and GoogLeNet in both the mean EER and param-
eter amount. Although VGG shows the best mean EERs, it has
250 times of parameter amount over the designed CNN, which
occupy much more storage space on smart devices. Therefore,
in view of the accuracy and parameter amount, the designed
CNN is the best network structure for CAGANet.

2) Efficiency of CNN-learned Features: We study the au-
thentication accuracy of CAGANet to evaluate the validity
of the CNN-learned features for the four classifiers of the
OC-SVM, LOF, IF and EE, respectively. We compare the
accuracy of CAGANet on designed features and on CNN-

learned features with the same data size 400.

With the CWGAN-augmented data, the 16 designed features
tabulated in Table VIII are extracted from time and frequency
domains for one sensor, where the magnitude is calculated as
the square root on the sum of the squares of the three axes for
one sensor data. There are 48 designed features (16 features ×
3 sensors) for the three sensors of the accelerometer, gyroscope
and magnetometer. Then, from the 48 designed features, we
utilize Fisher score to select discriminative features whose
sum of Fisher scores accounted for 90% of the sum of
that for all features, and use grid search to find optimal
classifier parameters. We calculate the accuracy of CAGANet
on selected discriminative features for the four classifiers,
respectively.
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TABLE VII: Mean EER (%) and Parameter on Different Network Structures for the Classifiers

Network OC-SVM LOF IF EE Parameter Times
VGG Net-D 3.19 4.11 2.67 5.78 75,827,332 (75M) 250
DenseNet-121 19.76 11.3 9.38 8.84 7,015,876 (7M) 23
GoogLeNet 14.05 7.165 3.72 6.26 6,333,028 (6M) 20
Designed CNN 10.56 6.87 3.74 5.81 328,556 (0.3M) 1

TABLE VIII: Designed features.

Feature Explanation
Mean Mean value of the magnitudes of sensor readings
Median Median value of the magnitudes of sensor readings
SD Standard deviation of the magnitudes of sensor readings
Maximum Maximum value of the magnitudes of sensor readings
Minimum Minimum value of the magnitudes of sensor readings
Range Difference between the maximum and minimum values
Kurtosis Width of peak of the magnitudes of sensor readings
Skewness Orientation of peak of the magnitudes of sensor readings
Quartiles 25%, 50%, 75% quartiles of magnitudes of sensor readings
Energy Intensity of the magnitudes of sensor readings
Entropy Dispersion of spectral distribution of the magnitudes
P1 Amplitude of the 1st highest peak of the magnitudes
P2F Frequency of the 2nd highest peak of the magnitudes
P2 Amplitude of the 2nd highest peak of the magnitudes
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Fig. 5: Accuracy Comparison on Classifiers with Different Features

Based on the designed features and on CNN-learned fea-
tures, the accuracy of CAGANet on the four classifiers is
plotted in Fig. 5 and tabulated in Table IX. As illustrated in
Fig. 5, the proposed CAGANet (red box plot) significantly
outperforms the one based on designed features (blue box plot)
over the four classifiers. In particular, the CAGANet on CNN-
learned features with the IF classifier shows the best accuracy.
Moreover, as depicted in Table IX, the proposed CAGANet
with the IF classifier achieves 95.00% accuracy and receives
19.98% improvement comparing to that on designed fea-
tures. Although the EE classifier with CNN-learnined features
reaches 92.94% accuracy, it obtains the highest improvement
of 29.92% compared to that with designed features.

F. Accuracy on Unseen Users

We explore the authentication accuracy of CAGANet on
unseen users to evaluate the performance of pre-trained CNN
on unseen users. To conduct the evaluation, we randomly
select m users for CNN training and choose some users from
the rest (88 − m) for classifier training and testing. We set
m = 28 and unseen users as 20, 30, 40, 50, 60, respectively.

Fig. 6 depicts the box plots of the EER of CAGANet on
different number of unseen users for the classifiers of the OC-
SVM, LOF, IF and EE, respectively. As illustrated in Fig. 6,
EERs slightly fluctuate with the increase of the unseen users,
but they are low and stable overall for the four classifiers,
which indicate the high efficiency and strong robustness of
the designed CNN. Moreover, Table X describes the mean
EER with SD for CAGANet on different number of unseen
users for the four classifiers. As listed in Table X, the mean
EERs are all below 4.48% (40 unseen users for EE classifier)
and the SDs are all less than 4.15% (60 unseen users for OC-
SVM classifier). Specifically, when select 28 users to train the
designed CNN and the rest 60 unseen users to train and test
classifiers, LOF, IF and EE classifiers achieve the lowest mean
EERs of 3.83%, 1.70% and 3.26%, respectively. However,
with 40 unseen users, OC-SVM classifier reaches the best
accuracy of 3.39% mean EER. Among the four classifiers,
IF classifier shows the best accuracy of 1.70% mean EER.

G. Comparison with Traditional Augmentation Approaches

To illustrate the superiority of the proposed CWGAN aug-
mentation approach, we compare the authentication accuracy
of CAGANet with three traditional augmentation approaches
of permutation, scaling and flipping over the four classifiers.
Specifically, permutation randomly perturbs the temporal lo-
cation of within-window events that relates to the act of
arranging all the elements of a dataset into some sequence
or order. Scaling introduces window-wise multiplicative noise
(a scaling factor θ ∈ (0.9, 1.1)) to the training data that
increases robustness against noise. Flipping symmetrically
flips the training data by blocks in rows.

To conduct the experiment, we use 68 users with dataset
size 200 per user to train the designed CNN and exploit
the trained CNN to extract features from the rest 20 users.
For each classifier, we calculate the mean EER of CAGANet
with different augmentation approaches: no augmentation,
CWGAN augmentation, permutation augmentation, scaling
augmentation, and flipping augmentation. We tabulate the
mean EERs with SD of CAGANet on on augmentation and
on augmentation approaches of CWGAN, permutation, scaling
and flipping, respectively, in Table XI. As illustrated in Table
XI, CWGAN augmentation greatly improves the accuracy
of CAGANet and shows the best accuracy with the mean
EERs of 12.46%, 8.44% and 3.64% over classifiers of OC-
SVM, LOF and IF, respectively. Even though CAGANet with
permutation augmentation over EE classifier shows a lower
EER (5.92%), the proposed CAGANet performs a slightly
higher EER (6.05%), but exhibits a lower SD of 3.66%
comparing with the 3.96% SD. In addition, we can conclude
that CWGAN augmentation approach outperforms data aug-
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TABLE IX: Accuracy (%) with SD on Different Features for the Four Classifiers

Feature \ Classifier OC-SVM LOF IF EE
Designed features 81.89 (6.92) 80.19 (9.48) 75.02 (8.72) 63.02 (10.06)
CNN-Learned features 88.83 (7.47) 91.21 (5.72) 95.00 (2.03) 92.94 (2.81)
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Fig. 6: EER on different number of unseen users for different classifiers. (a) OC-SVM. (b) LOF. (c) IF. (d) EE.

TABLE X: Mean EER (%) with SD on Different Number of Unseen Users for the Four Classifiers

Classifier \ Unseen Users 20 30 40 50 60
OC-SVM 3.68 (3.40) 4.29 (3.52) 3.39 (3.17) 4.01 (2.86) 3.83 (4.15)
LOF 3.88 (3.34) 3.89 (2.64) 4.06 (3.12) 4.11 (2.74) 3.83 (3.37)
IF 2.22 (2.15) 2.34 (1.94) 1.87 (1.80) 2.22 (1.64) 1.70 (1.77)
EE 4.30 (3.32) 4.27 (2.65) 4.48 (3.25) 4.46 (2.70) 3.26 (2.65)

mentation approaches of permutation, scaling, and flipping on
sensor data.

H. Comparison with representative Authentication methods

To demonstrate the difference between CAGANet and the
state-of-the-art approaches, we first qualitatively analyze the
difference between CAGANet and data augmentation-based
authentication methods, and then compare it with continuous
authentication approaches on our dataset.

First, we compare CAGANet to six data augmentation-
based authentication methods of MSMDGAN+CNN [29],

PHY-Layer Auth [30], EchoPrint [31], SensorAuth [32], Sen-
sorCA [33] and HMOG [34], as listed in Table XII. As
illustrated in Table XII, we show the data source, data aug-
mentation approaches, and results for all the methods with
data augmentation. On the one hand, for image augmentation,
MSMDGAN+CNN utilizes a multi-scale and multi-direction
generative adversarial network for a single palm-vein image
augmentation and reaches an accuracy of 95.40% on dataset
A collected at different sessions [29]. Multiuser physical layer
authentication (PHY-Layer Auth) exploits three different data
augmentation algorithms of the averaging data augmentation
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(ADA), exponential ADA, and stochastic weight ADA for
channel impulse response to achieve an authentication rate
of 93.70% after nine epochs when authenticating 41 mobile
nodes [30]. EchoPrint uses the projection matrix rotation
imitating different camera poses to augment new face images
and obtains 81.78% balanced accuracy (BAC) with vision
features [31]. On the other hand, for sensor data augmentation,
SensorAuth explores five data augmentation approaches of per-
mutation, sampling, scaling, cropping, and jittering to create
additional acccelerometer and gyroscope data and achieves
an EER of 6.29% with dataset size 200 by combining the
five approaches [32]. SensorCA applies matrix rotation on
accelerometer, gyroscope and magnetometer data to reach
an EER of 3.70% on the SVM-RBF classifier [33]. HMOG
augments HMOG features with tap characteristics (e.g. tap du-
ration and contact size) to obtain 7.16% EER for walking and
10.05% EER for sitting [34]. Different from aforementioned
image and sensor data augmentation approaches, CAGANet
utilizes CWGAN to augment sensor data of accelerometer,
gyroscope and magnetometer for the designed CNN training
and achieves the lowest EER of 3.64% on the IF classifier
with dataset size 200.

Then, we compare CAGANet with six continuous authenti-
cation approaches of SensorAuth [32], SensorCA [33], HMOG
[34], MSAuth [45], HMMAuth [46] and Multi-Motion [47]
on our dataset, as tabulated in Table XIII. As demonstrated in
Table XIII, we list sensors, classifiers and the corresponding
results of FAR and FRR for all the related approaches.
Based on our dataset, the authentication performance of the
six continuous authentication approaches can be compared
on an equal basis. Specifically, CAGANet utilizes the IF
classifier on the sensor data of the accelerometer, gyroscope
and magnetometer to reach an average FAR of 2.94% and
a FRR of 6.67% (with data size 200), which show the
best performance among the other continuous authentication
approaches. Although Multi-Motion applies the descriptive
and intensive classifier on sensor data of the accelerometer,
gyroscope, magnetometer and orientation, it reaches an aver-
age FAR of 5.13% and a FRR 6.74%, with margins of 2.19%
and 0.07% for the FAR and FRR, respectively, compared
with CAGANet. Note that the table just provides preliminary
comparative results and each approach has its own advantages
and disadvantages under different conditions.

Based on Tables XII and XIII, we are among the first to
use a CWGAN for data augmentation and utilize a designed
CNN to extract deep features in CAGANet, and CAGANet
achieves the best results of 2.94% FAR, 6.67% FRR and
3.64% EER, comparing with SensorAuth [32], SensorCA [33],
HMOG [34].

VIII. RELATED WORK

In this section, we review the state-of-the-art on the data
augmentation in authentication systems and the deep learning
in authentication systems, respectively.

A. Data Augmentation in Authentication Systems
In [29], the authors proposed a single-sample-per-person

palm-vein identification approach, where only a single sample

per class was enrolled in the gallery set for training, consisting
of a multi-scale and multi-direction generative adversarial
network for data augmentation and a convolutional neural
network for palm-vein identification. The authors in [30] pro-
posed a data augmented multiuser PHY-layer authentication
scheme to enhance the security of mobile-edge computing sys-
tem, an emergent architecture in the Internet of Things (IoT),
where three data augmentation algorithms were proposed
to speed up the establishment of the authentication model
and improved the authentication success rate. In [31], the
authors designed a data augmentation scheme for generating
“synthesized” training samples for a two-factor authentication
system using acoustics and vision on smartphones, which re-
duced false negatives significantly with limited training sample
size, thus saving the user efforts in new profile registration.
The authors in [32] presented a smartphone-based continuous
authentication of users based on their behavioral patterns, by
leveraging the accelerometer and gyroscope ubiquitously built
into smartphones, where they utilized five data augmentation
approaches of permutation, sampling, scaling, cropping and
jittering to create additional data by applying them on training
data. In [33], the authors proposed a sensor-based continu-
ous authentication system for continuously monitoring users’
behavior patterns, where they exploited a data augmentation
approach of rotation to create additional data by applying it
on the collected raw data improving the robustness of the
proposed system. The authors in [34] proposed behavioral
biometric features for continuous authentication of smartphone
users by augmenting HMOG (hand movement, orientation, and
grasp) features with tap characteristics, which considerably
improved authentication performance.

Different from these representative data augmentation ap-
proaches in recognition systems, we utilize a CWGAN com-
posed of a generator and a discriminator to generate additional
smartphone sensor data as the data augmentation approach in
the proposed continuous authentication system. In addition,
CAGANet is an early work for GAN-based sensor data
augmentation, since most of the augmentation approaches
(e.g. permutation, sampling, scaling, cropping, jittering, and
rotation) are commonly used for image augmentation.

B. Deep Learning in Authentication Systems

The authors in [35] presented a multi-device continuous
authentication architecture, deployed in the MEC and cloud in-
frastructures, that utilized machine learning and deep learning
techniques to authenticate users according to their behaviour.
In [36], the authors proposed a deep-learning-based active
authentication approach that exploited sensors in consumer-
grade smartphones to authenticate a user, which was based
on deep learning to identify user distinct behavior from the
embedded sensors with and without the user’s interaction with
the smartphone. The authors in [37] proposed a continuous
user verification system, using the widely deployed WiFi
infrastructure to capture the unique physiological character-
istics rooted in user’s respiratory motions, by developing a
deep neural network (DNN) model leveraging the extracted
respiration features. In [38], the authors presented a continual
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TABLE XI: Mean EER (%) with SD on Different Augmentation Approaches for the Four Classifiers

Approach \ Classifier OC-SVM LOF IF EE
No Augmentation 25.17 (16.72) 9.55 (6.08) 5.05 (3.49) 7.24 (4.17)
CWGAN 12.46 (9.64) 8.44 (6.18) 3.64 (2.71) 6.05 (3.66)
Permutation 21.02 (14.82) 8.45 (6.20) 4.37 (3.17) 5.92 (3.96)
Scaling 29.66 (17.24) 9.76 (6.21) 5.33 (4.07) 7.32 (4.37)
Flipping 28.00 (17.40) 9.27 (6.20) 3.85 (2.85) 6.11 (4.08)

TABLE XII: Qualitative Comparison to Data Augmentation-based Authentication Methods

Method Data Source Data Augmentation Approach Result
MSMDGAN+CNN [29] Palm-vein image Multi-scale and multi-direction GAN Accuracy: 95.40% (dataset A)
PHY-Layer Auth [30] Channel impulse response Averaging DA, Exponential ADA, Stochastic weight ADA Accuracy: 93.70% (41 nodes)
EchoPrint [31] Face image Rotation BAC: 81.78% (vision features)
SensorAuth [32] Acc., Gyr. Permutation, sampling, scaling, cropping, jittering EER: 6.29% (dataset size 200)
SensorCA [33] Acc., Gyr., Mag. Rotation EER: 3.70% (SVM-RBF)
HMOG [34] Acc., Gyr., Mag., Touch HMOG with tap characteristics EER: 7.16% (walk), 10.05% (sit)
CAGANet Acc., Gyr., Mag. CWGAN EER: 3.64% (IF, 200)

TABLE XIII: Comparison with Continuous Authentication Approaches on Our Dataset

Approach Sensor Classifier Result
FAR (SD) % FRR (SD) %

SensorAuth [32] Acc., Gyr. OC-SVM 7.65 (4.59) 9.01 (5.05)
SensorCA [33] Acc., Gyr., Mag. SVM-RBF 3.16 (1.57) 7.35 (2.52)
HMOG [34] Acc., Gyr., Mag. Scaled Manhattan 12.93 (6.57) 15.67 (7.24)
MSAuth [45] Acc., Mag., Ori. SVM 8.07 (4.54) 9.97 (4.93)
HMMAuth [46] Acc., Gyr. HMM 10.12 (5.97) 12.58 (6.28)
Multi-Motion [47] Acc., Gyr., Mag., Ori. Descriptive and intensive 5.13 (3.01) 6.74 (3.58)
CAGANet Acc., Gyr., Mag. IF 2.94 (3.38) 6.67 (2.89)

learning framework for behavioral-based user authentication,
combining deep learning models with online learning models
to achieve learning on the fly, thereby preventing a severe drop
in the accuracy between sessions (over time). The authors
in [39] utilized a CNN-based feature learning to extract the
intrinsic fingertip-touch characteristics for modeling users’
movements in legitimate authentications to defend against
all presentation attacks. In [40], the authors used a Siamese
convolutional neural network to learn the signatures of the
motion patterns from users and achieved a competitive veri-
fication accuracy up to 97.8%. The authors in [41] presented
an in-situ authentication framework that leveraged the unique
motion patterns when users entering passwords as behavioural
biometrics, which used a deep recurrent neural network to
capture the subtle motion signatures during password input,
and employed a novel loss function to learn deep feature
representations that were robust to noise, unseen passwords,
and malicious imposters even with limited training data.

Although these deep features have been used in these
excellent recognition systems, we differ in that we specially
design a CNN based on a basic unit and a basic unit for spatial
down sampling to extract discriminative deep features in a
continuous authentication system. We compare the designed
CNN with three popular CNN structures of VGG, DenseNet,
and GoogLeNet to show that the proposed CNN outperforms
the three based on the accuracy and parameter amount.

IX. CONCLUSION

In this paper, we propose a CNN-based continuous authen-
tication system CAGANet using a conditional Wasserstein
GAN, leveraging the accelerometer, gyroscope and magne-
tometer on smartphones. CAGANet utilizes a conditional
Wasserstein GAN for sensor data augmentation and specially

designs a CNN for discriminative deep feature extraction.
When a user performs operations on the smartphone, CA-
GANet can collect accelerometer, gyroscope and magnetome-
ter data, preprocess and augment them, then use the designed
CNN to extract features and PCA to select discriminative
features, and finally utilize classifiers of OC-SVM, LOF,
IF and EE to conduct user authentication. We evaluate the
performance of CAGANet with extensive experiments and
the experimental results show that CAGANet can authenticate
users efficiently with higher accuracy comparing with the
existing works.
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[34] Z. Sitová et al., “HMOG: New Behavioral Biometric Features for
Continuous Authentication of Smartphone Users,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 5, pp. 877-892, 2016.
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