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Abstract

Many IoT botnets that exploit vulnerabilities of IoT devices have emerged recently. After taking over control of IoT
devices, the botnets generate tremendous traffic to attack target nodes. It is also a threat to the smart health area since
they have used IoT devices more and more. To detect the malicious IoT botnets, many researchers have proposed
botnet detection systems; however, these are not easily applicable to resource-constrained IoT devices. Moreover,
since the botnet’s early stage makes marginal differences in terms of traffic, it is hard to detect when they first attack
the victim nodes. However, we observe that the IoT botnets generate distinguishable power consumption patterns.
Thus, we aim to classify whether the IoT device is affected by malign behaviors through power consumption patterns
so that we can protect the healthcare ecosystem from the malicious IoT botnets.

We propose a CNN-based deep learning model that consists of a data processing module as well as an 8-layer
CNN. Prior to applying the CNN model, we segment and normalize the collected power consumption data to help
our CNN model to achieve higher accuracy. The 8-layer CNN classifies the processed data into four classes including
a botnet class, which is our primary target. To demonstrate the performance, we run self-evaluation, cross-device-
evaluation, leave-one-device-out, and leave-one-botnet-out tests on three common types of IoT devices, which are
Security Camera, Router, and Voice Assistant devices. The self-tests achieve up to 96.5% classification accuracy
whereas the cross-evaluation tests perform about 90% accuracy. Leave-one-out tests also introduce higher than 90%
accuracy for botnet detection.
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1. Introduction

Internet of Things (IoT) has grown rapidly over the past several years. Recently, anything connected to the Internet
is considered an IoT device. According to [1], the number of IoT devices will reach about 30 billion by 2020. As the
market grows, a number of IoT devices have been applied to the medical environment [2]. Accordingly, the number of
attacks that exploit the vulnerabilities of IoT devices has increased as well, which could be critical in keeping patients’
data secure. However, since an IoT device is designed for a simple purpose with less processing power and memory
like a thermostat and a light bulb, manufacturers and researchers have struggled with satisfying its needs of security
[3, 4]. In the meantime, adversaries have taken advantage of its vulnerabilities.

In fall 2016, a botnet named Mirai exploited a number of vulnerable IoT devices to build a huge attack vector. After
the botnet accumulated the immense network, it generated 600GB of traffic per second only by using the infected IoT
bots like security cameras and routers [5]. Since then, many variants of Mirai have emerged to target the vulnerabilities
of IoT devices. Many researchers have also proposed to detect those botnets. Despite such efforts, the problem is that
detecting these IoT botnets when they first get into a victim node is not easy. This situation eventually causes a huge
volume of botnet attacks, which could lead to a serious issue in a medical field because IoT devices have also been
used in a hospital. First of all, a router is now one of the most common devices in any building system. It should be
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secure against any malicious attack to keep patients’ personal information. A security camera is also considered an
important device in a hospital. For some hospitals, they monitor patients at risk for any type of self-injury such as
falls. Moreover, in the near future, a voice assistant could assist patients to get help easily from nurses or doctors. In
other words, all the IoT devices we address in this paper are needed to be more secure against botnet attacks. This
motivates us to propose a method that can detect malicious behaviors at the very beginning stage at IoT devices.

To tackle this situation, many researchers have proposed IoT Botnet Detection System (BDS) or Network Intrusion
Detection System (IDS) [5, 6, 7, 8, 9]. Some systems have applied Machine Learning (ML) techniques to detect
unknown botnet attacks [10, 11, 12]. Other researchers have also proposed malware detection systems based on
power measurement on mobile systems [13, 14]. However, it is hard to detect when they first get into the victim nodes
during the propagation period. This situation inspires us to examine the characteristics of Mirai and its variants and
detect them at an IoT device at the very early stage. We figure out that when the well-known IoT botnets attack, the
power usage of the target device is distinguishably changed even though the traffic is marginal. Therefore, we aim to
classify IoT device behaviors including the botnet attacks based on power consumption data. Furthermore, since our
model is designed to measure power consumption outside an IoT device, it is also able to detect the malicious botnets
even when the IoT device is being compromised, which is the first attempt to the best of our knowledge.

In this paper, we build our model to learn the characteristics of the well-known IoT botnets and detect malicious
behaviors via power consumption data. Our proposed method consists of a data processing module as well as an 8-
layer Convolutional Neural Network (CNN) model. During the data processing, we first segment power consumption
data with a sliding window and normalize it before we feed it into the CNN. By modeling the 8-layer CNN, our
method is able to sense subtle differences in power consumption patterns when the IoT botnets attack.

We evaluate our classifier on three common types of IoT devices, which are Security Camera, Router, and Voice
Assistant devices. To evaluate the performance, we perform self-evaluation tests on our datasets and achieve up
to 96.5% classification accuracy whereas we reach about 90% accuracy on a cross-evaluation test. Leave-one-out
tests confirm the robustness of our system. In these tests, the two-class classification results are around 90%, and
F1-Measure values are around 85%. As a result, we achieve the following contributions:

• We exploit power consumption data to monitor and diagnose malicious botnet behaviors on IoT devices.

• We model a deep learning-based method to sense subtle differences of power consumption data.

• We evaluate our model on IoT devices achieving up to 96.5% accuracy of detecting the IoT botnets.

The rest of the paper is organized as follows: Section 2 provides motivation and a threat model. In Section 3, we
introduce our datasets. In Sections 4 and 5, we propose our model that includes data processing and an 8-layer CNN
model. The performance evaluation is presented in Section 6. Section 7 gives some discussions and future works.
Section 8 addresses related work. Finally, we conclude the paper in Section 9.

2. Motivation and Threat Model

In this section, we introduce some background knowledge and our motivation as well as a threat model.

2.1. Mirai and its Variants
In fall 2016, a popular security website was hit by a Distributed Denial of Service (DDoS) attack that broke all

previous records in this field. The website received 600GB of traffic per second only by IoT bots. This famous attack
is called Mirai. Since then, a number of variants of Mirai against IoT devices have emerged. Interestingly, many
attackers have used IoT devices for their attacks despite decreased processing power and memory. This is because
they are more vulnerable, and the number of IoT devices has rapidly increased.

Mirai uses an insecure connection like telnet to get into a victim device with well-known account/password com-
binations. In fact, this kind of scanning occurs every day, and the amount of scanning traffic is not significant; thus, it
is hard to perceive the attack at the beginning stage. However, after an incubation period, a huge number of IoT bots
receive commands from the Control and Command server (C&C server) and attack target nodes simultaneously. By
then, it is too late to defend against the attack. Although many researchers have proposed IoT botnet detection sys-
tems, most focus on analyzing botnet traffic patterns. However, since this kind of approach requires more computing



(a) Intrusion Case (Scanning) (b) Intrusion Case (Loading) (c) Extrusion Case (Scanning again)

Figure 1: Target Procedures of Our Classifier

The blue rectangle areas represent the target procedures that we need to detect

resources and is commonly deployed at core network servers, it is not applicable to resource-constrained IoT devices.
Therefore, we need to detect IoT botnet behaviors on IoT devices.

As shown in Figure 1, Mirai and its variants have common procedures when they try to access into IoT devices.
Those cases are the target scenarios that we want to detect. First, a victim node is scanned and invaded by the attacking
bot as illustrated in Figure 1a. Even though IoT devices are being scanned every day, we figure out that the botnet
power consumption patterns are distinguishable from scanning or manual access. In Figure 1b, after the attacking bot
logs in successfully, the botnet loader accesses the victim device with the obtained credential information from the
scanning procedure and performs post-processing jobs. For example, in Mirai, once the loader gets access, it kills
suspicious processes, finds a writeable directory, checks its architecture type, and uploads the architecture-specific
Mirai binary to keep scanning other devices. Table 1 summarizes the post-processing jobs of Mirai and its variant
botnets. Lastly, Figure 1c describes a third case in which an infected bot runs the Mirai binary to start scanning as the
original attacking bot does.

2.2. Threat Model
In our threat model, we consider that an adversary is capable of conducting large-scale IoT attacks, such as Mirai

and its variants, to compromise IoT devices and launch DDoS attacks. We do not assume specific types of IoT devices
the adversary targets. There are two possible ways that the adversary can attack. 1) Vulnerabilities of the device that
would measure power consumption: Since our model could be deployed at another type of IoT device like Smart
Plug, attackers could first try to compromise our device. 2) Complicated post-processing jobs. Adversaries might

Table 1: Summary of Mirai and its Variants

IoT Botnet Reported Day Target Devices Intrusion
Method Post-processing Jobs

Mirai Sep. 2016 IP Cameras Brute Force
Attack

Upload a binary
through Internet

Hajime Oct. 2016 Any device Brute Force
Attack

Upload a binary
through Internet

BrickerBot Apr. 2017 Any device Brute Force
Attack

Corrupting a device
using Linux commands

IoT Reaper Oct. 2017 Routers, IP Cameras,
Network Storage Exploit known vulnerabilities

Masuta Jan. 2018 Routers Brute Force
Attack

Upload a binary
through Internet

Sora May 2018 Routers, CCTV-DVRs Brute Force
Attack

Upload a binary
through Internet



perform complicated jobs that have different power patterns. For instance, downloading multiple binaries, connecting
to multiple servers or rebooting the device can generate longer and more complicated power traces. To address the
adversary models above, we assume that the device that would monitor power consumption does not allow inbound
traffic of remote access. Our model could be directly connected to an IoT device by a power socket to measure power
consumption data. For the second case, since we use segmented datasets and feed them to a CNN model, those
segmented data from the different patterns can also be trained as botnet instances. As long as power signal data is
noticeable enough to label, our system is able to learn and detect even more complicated patterns.

3. Data Collection

In this section, we demonstrate an experimental setup and show our data collection procedure and the datasets we
collect.

(a) Hardware Deployment (b) Overview of Logical Deployment

Figure 2: Experimental Setup

3.1. Experimental Setup
To build our environment, we first configure a local network with two identical Raspberry Pi 3 devices as IoT

devices. Raspberry Pi 3 is one of the most popular devices for IoT prototyping; thus, we believe that building different
types of IoT service on the Raspberry Pi 3 provides characteristics of heterogeneous IoT devices. As shown in
Figure 2a, the two devices are connected to a local access point, which is not connected to the Internet. We generate
malicious traffic only within the local network. Among the two devices, one represents an attacking node, which
runs the Mirai binary. The other one acts like a victim node to run each IoT service application. There are two
extra hardware modules, a microphone and a camera, attached to the victim node for the Voice Assistant and Camera
service, respectively. For the Router service, we do not need any hardware module. Lastly, we use an off-the-shelf
power monitor device connected to the victim node to measure its power consumption. For the Mirai binary, we
download the Mirai open source from Github and build it on the attacking bot.

After configuring the local network, we modify the scanner and loader modules of the Mirai botnet on the attacking
bot; we manually assign the destination IP to our victim’s address. Since we keep the existing procedures and only
change the target address right before it scans, we assure that the behaviors of Mirai do not change. In fact, in view of
the victim node, it is the same as the Mirai botnet tries to get into it using a brute force attack as shown in Figures 1a
and 1b.

For the victim node, we choose three common types of IoT services as follows: Security Camera, Router, and
Voice Assistant. As we observe in Table 1, IoT cameras and routers have been major targets of the IoT botnets.
Besides those two types, we also include a Voice Assistant as a third type of our IoT devices. It can be a potential
target of IoT Botnets in the future since it has become one of the most popular IoT services. We describe how we
prepare each IoT service in the following subsections.



3.1.1. Security Camera
The majority of target devices in the Mirai botnet is an IoT security camera. Since it tends to connect to public

networks directly, it is more vulnerable than other types of devices. Furthermore, after the Mirai botnet emerged,
many variants of Mirai have exploited the vulnerabilities of IoT cameras as described in Table 1. Therefore, in
our experiments, we set up web camera modules on the victim node. We download a popular camera open-source,
MotionEye. This open-source includes a motion detection module as well as a basic camera streaming module. Once
it detects an object’s motion, it captures live photos and stores them into a local file system. Figure 3a illustrates one
power reading sample from the IoT camera service.

(a) Camera streaming with Motion Detection (b) Operation of Voice Assistant (c) Device Rebooting

Figure 3: Power Consumption Patterns of IoT services

3.1.2. Router
Another common type of target device is a router. Although it is not considered a standard type of IoT device,

it is reachable from anywhere through remote access protocols, i.e., ssh, telnet. As shown in Table 1, attackers have
exploited vulnerabilities of old routers as their bots. Therefore, we build a router environment on the victim node by
enabling existing Linux daemons, which are hostapd [15] and dnsmasq [16]. While it is connected to the Internet, it
provides the functionalities of a WiFi access point.

In terms of traffic patterns, according to the authors in [17], the dominant traffic of the Internet comes from HTTP
followed by FTP and DNS. By then, we generate HTTP, FTP, and DNS traffic following the common ratio of Internet
traffic. By doing this, we simulate the router behaviors while Mirai botnet attacks the victim node. We do not describe
any figures about power consumption patterns since the traffic varies.

3.1.3. Voice Assistant
Thus far, voice assistant devices have not been compromised by malicious IoT botnets. However, it has been

more common for the last several years, and a number of manufacturers have released their products. As long as
it is connected to the Internet, it can always be jeopardized by botnet attacks. Due to this, we also include a Voice
Assistant to our test types.

We also use one common open-source for the voice assistant service, Google AIY project, which is installed on
the victim node. To initiate the service, a user needs to say “Okay, google”. Its power consumption mainly comes
from voice-processing computing followed by HTTP traffic. Figure 3b demonstrates one sample power consumption
pattern when it is processing voice operations. In this figure, we notice that there is no significant power consumption
pattern between voice operation and termination. This is when voice responses play, which might be played locally.

3.2. Datasets
In this section, we describe how we collect our datasets and explain the datasets we collect. We collect a huge

amount of power consumption data from the selected IoT services, which we will train and test later in Section 6.



Table 2: Summary of Our Datasets

Class Description Number
of Instances

Total number
of Instances

IoT Service

Camera Streaming Service 1,000 2,000Motion Detection 1,000

Router
HTTP Traffic 1,800

2,000FTP Traffic 100
DNS 100

Voice
Assistant

When operating
Voice Operations 2,000 2,000

Reboot When system
is Rebooting 2,000 2,000

Idle When IoT service
is not Running 2,000 2,000

Botnet
When system

is Idle 1,000 2,000
When IoT service

is Running 1,000

3.2.1. Methodology
In order to collect power consumption data from the IoT devices, we use Monsoon power monitor [18], as shown

in Figure 2a. This allows us to measure power consumption data with 5kHz sampling rate. In our experiments, it is
connected to one of the Raspberry Pi devices so that it measures power consumption when the IoT device is being
compromised or running specific applications. However, note that it cannot be widely deployed because it is expensive
and has a large form factor; thus, we discuss our future plan to implement a power monitoring module in Section 7.

With the power monitor hardware, we need adequate datasets for the better performance of our CNN model. First
of all, we collect 2,000 power consumption instances while the Security Camera, Router, or Voice Assistant service is
running. Those data make up our first class, an IoT service. The second class is Reboot. After we manually reboot the
victim device, we measure power consumption data until the device becomes stable. The third class is an Idle class,
which is collected when the victim device is not running any service. Lastly, we collect a Mirai class under the two
cases: 1) The victim device is being attacked when it is Idle. 2) The victim device is being attacked when it is running
one of the three IoT services. In the Botnet class, one instance represents one single attack by the Mirai botnet. We
also collect Botnet instances from Sora and Masuta botnets and compare the results in Figure 11. For the four classes,
the length of each instance is 1.5 seconds. Thus, the dataset for each class has 3,000 seconds of power consumption
data, which consists of 15 million data points each. We will discuss the length of each instance in Section 4.1.

3.2.2. Collected Datasets
Table 2 summarizes our datasets. In detail, for the camera service dataset, we collect half of the data when it

is streaming videos, which mostly consists of HTTP traffic. Another half of the data is collected when the motion
detection service is running. In this case, many file system accesses occur and impact power consumption patterns as
shown in Figure 3a. Next, our router dataset consists of 90% HTTP, 5% FTP, and 5% DNS traffic based on the real-
world statistics [17]. We also perform voice operations to measure power consumption data from the Voice Assistant
service. We use a common questionary [19], which consists of one-hundred trivial questions. With the questionary,
we initiate voice transactions and collect the responses over again. The length of the queries and responses varies, and
they generate different power traces; thus, the collected dataset mimics real-world usage. Overall, we have three IoT
service datasets. We also collect the same number of instances for the Idle class and the Reboot class. We choose the
Reboot class because it fluctuates excessively while the device is rebooting as shown in Figure 3c, which makes our
CNN more durable. For the Mirai class, we first collect a dataset and apply a threshold-based segmentation method
to extract Mirai instances, which we will describe in Section 4.1.

Consequently, we collect 8,000 instances from the four classes, which are IoT service, Reboot, Idle, and Botnet
classes, before we feed them into the CNN. Since our datasets are collected on different days, and especially the
router dataset includes wide-area traffic, our results show its tolerance against sudden communication patterns. All
those instances and labels for the CNN training will be open to the public for download.



Figure 4: Data Flow of Our Proposed Model

4. Data Processing

In this section, we explain data processing and discuss its impact on our design before we feed data into the CNN
model. The data flow of our model is illustrated in Figure 4. It consists of two main modules: 1) Data Processing.
This module segments and normalizes the collected sensing data before it feeds them into the CNN model. 2) CNN
model. The processed data is fed into the CNN-based classifier, which we will describe in the next section. Our CNN
model classifies those input data as either a benign behavior or a malicious attempt.

4.1. Segmentation

Figure 5: Distribution of Mirai and its Variants

We segment power sensing readings to help our CNN model train
well. In Figure 5, we plot the time distribution of Mirai and its vari-
ants when they successfully get into victim devices and perform the
post-processing tasks as we explained in Section 2. When they get in
and perform the post-processing jobs, it usually lasts 1.4 seconds and
90% of the attacks are less than 1.5 seconds. Like the Mirai botnet,
its variants have similar distribution patterns since they use similar
modules. Thus, we use a sliding window of 1.5 seconds to capture
the power readings. Since the sampling rate of the power monitor we
use is 5kHz, there are 7,500 data points within a single sliding win-
dow, which represents 1.5 seconds of power consumption data. Re-
call that the length of the instance could vary. However, since we
use segmented datasets and feed them to a CNN model, those vari-
ous segmented data are also trained as botnet instances. Thus, as long
as power signal data is noticeable enough to label, our model is able to
learn and detect even more complicated patterns.

In Figure 6a, we observe that the power consumption data is divided into two parts when Mirai attacks. One
comes from telnet negotiations, which is the majority part within one sliding window, and the other part is due to
post-processing jobs. After segmenting the power readings into each instance of 7,500 data points, we need to label
them correspondingly. We use a threshold-based method to extract Mirai instances and label them. As shown in
Figure 6b, we compute valley points with minimum-distance of 150 data points from a segmented window. Since
the size of the sliding window is 7,500, there could be 50 valley points at the most within one sliding window; there
are 45 valley points on average from our dataset. In the Mirai attacks, the number of valley points that are above
1, 700mW is around 42. It confirms that most of Mirai attack instances lay around 1.4 seconds as shown in Figure
5. However, when we segment data using the sliding window method, it is less likely to have an intact Mirai instance
within one sliding window in a real-time scenario. In Figure 7, there are two possible shapes of incomplete power
consumption patterns for the Mirai attacks. As shown in Figures 7a and 7b, sometimes you only observe a part of
the Mirai instances; however, it is still noticeable that it is a part of the Mirai attack case like the one in Figure 6a.
Therefore, we use the sliding window with 0.5 seconds overlap. If the number of minimum-distance valley points



(a) Sample Mirai Attack Instance (b) Threshold-based Labeling

Figure 6: Data Segmentation on Mirai Attack Power Traces

(a) Truncated Instance at the back side (b) Truncated Instance at the front side

Figure 7: Various Mirai Instances after Segmentation

within one sliding window is more than 35, which is longer than 1.2 seconds, we label it as a Mirai instance. By doing
this, we successfully collect all the Mirai instances. For all other normal behaviors, we just segment them with the 1.5
seconds sliding window and label them as they are.

4.2. Normalization
Before we feed the segmented data into our CNN, we take a normalization that makes our dataset have mean value

zero and standard deviation one. It simply means that we limit the range of our input data. Considering that the range
of our power consumption dataset distributes variously depending on services, the range of the features that the CNN
learns are also widely spread, which is bad for our CNN to train data well and fast.

More specifically, we use Stochastic Gradient Descent with Momentum (SGDM) to update weights and biases in
our CNN. During the training, we locate an optimal parameter vector that minimizes the cost function. In other words,
the CNN updates the weights and biases at each layer so that our model reaches the optimal point. Eq. (1) shows how
our CNN updates the parameter vector. The learning rate affects the step size of gradient descent in an optimization
problem. Without normalization, our CNN either overshoots an optimal point or stops at a local minimum point,
which would eventually lead to poor performance. This is because the optimal learning rate is likely to be different
for each dataset. However, when we normalize the datasets first, our model performs much better. We will discuss its
impact in Section 6.

✓l+1 = ✓l � ↵rE(✓l) + �(✓l+1 � ✓l), (1)

where ✓ is the parameter vector, l is the iteration index, ↵ is the learning rate, E(✓) is the loss function, and � is the
momentum term.



Figure 8: CNN Design of Our model

5. 8-Layer CNN Design

In this section, we design an 8-layer CNN for classification of malicious behaviors. We choose a CNN to learn
power patterns because it takes a number of features to learn power patterns, which makes our model tolerant of
various cases. Recurrent Neural Network (RNN) could help streaming data but is mostly popular in natural language
applications. Instead, CNN is more widely used in sensor streaming applications. Furthermore, other shallow learning
techniques such as SVN or random forests have fewer parameters so that it is simpler than deep learning approaches
and could be overfitted. Our evaluation results demonstrate the effectiveness and robustness of the CNN approach.

Note that, in our system, each instance is a one-dimensional consecutive subsequence of power consumption data.
Thus, our CNN model takes one-dimensional input data. We tune the hyper-parameters of the 8-layer CNN to emulate
power consumption in various situations as discussed in Section 6. We describe the design factors of each layer in the
following subsections. For Rectified Linear Unit (ReLU), Fully Connected and Softmax layer, we do not have any
special requirements; hence, we adopt a widely used design choice in CNNs [20, 21].

5.1. Input Layer
The Input layer takes segmented and normalized data as described in the previous section. Then, it prepares

one-dimensional input for the convolution layer. Recall that each input instance represents 1.5 seconds of power
consumption data, which consists of 7,500 sequential data points. Thus, the input size of our CNN model is (1 x
7500 x 1). Consequently, the final goal of our CNN is to classify whether each instance contains malicious power
consumption patterns generated by IoT botnets or not.

5.2. Convolution Layer
Our CNN has only one Convolution layer. Considering the tradeoff between computing resource and performance,

one convolution layer works well for our datasets without consuming many resources. The proposed CNN uses ten
one-dimensional (1 x 512) kernels, and the stride size is 128. For image classifications, it is common to take small
kernel size to extract features since every single pixel could be considered important. In our design, however, we do
not operate any downsampling, and the sampling rate is pretty high. Thus, small kernel size is not helpful to learn
features. Instead, we choose bigger kernel size so that it helps to learn time-related features. Furthermore, the stride
size means the gap between two neighboring convolution operations; hence, we also choose bigger stride size. In our
study, the 512 kernel size represents about 0.1 seconds of power consumption data since the sampling rate is 5kHz.
Therefore, the convolution layer computes the dot product between the 0.1 seconds of power consumption data and
the kernel. When we use smaller size of kernel or stride, it learns our dataset very slowly, and the results are not good
enough. It is because less than 0.1 seconds of data do not contain much meaningful information in terms of power
changes. We will discuss the impact of the kernel and stride size in Section 6.



5.3. Batch Normalization Layer
We put the Batch Normalization layer before we apply feature maps to an activation function in the ReLU layer.

Although we have already normalized our dataset during the data processing before, the batch normalization layer
is still able to improve the performance of our design. The limitation of the normalization as preprocessing is that
internal covariate shift could slow down our training while a CNN is going through the layers [22]. However, this layer
normalizes a dataset at each mini-batch; thus, the effect of normalization still remains during the training procedures,
which also helps avoid overfitting. Eq. (2) represents the normalized activation. Using this function, the batch layer
normalizes the input xi over a mini-batch. The output of the batch normalization is shown as Eq. (3).

x̂i =
xi � µBp
�B

2 + ✏
, (2)

where µB and �B are the mean and variance of the mini-batch [22].

yi = x̂i + ⇢, (3)

where  is the scale factor, ⇢ is the offset, and x̂i is the normalized activation in Eq. (2) [22].

5.4. Max Pooling Layer
The purpose of the Pooling layer is to avoid overfitting by downsampling the extracted features. Since the size of

our dataset after the convolution layer is still huge, we need to reduce the number of features to classify them properly.
Our model uses max pooling method with a (1x4) filter, and the stride size is four. By reducing the size of our dataset,
we decrease training time and also avoid overfitting since we drop out three-quarter of data features. This is why we
do not use a dropout layer to reduce overfitting separately.

5.5. Output Layer
The Output layer has four classes, which are IoT service, Reboot, Idle, and Botnet classes, to represent the be-

haviors of each IoT device. As a matter of fact, we only need two classes to detect malicious behaviors; one for
normal behaviors, and the other one for malicious behaviors, which would be enough for a classifier to make a right
decision against IoT botnets. However, instead of modeling two-classes CNN, we propose four-classes CNN to show
its potential uses and validate the performance of our model. Our evaluation results demonstrate that it achieves pretty
high accuracy for the four-classes classification. We will discuss it in detail later in Section 6.

6. Evaluation

In this section, we perform several evaluations to demonstrate the performance of our model. With the datasets on
the three devices as described in Table 2, we perform data processing and classification in MATLAB on a MacBook
laptop with 1.6GHz dual-core and 8GB RAM. Most of our tests are performed under the intrusion attacks as described
in Figures 1a and 1b, which we explain the results in Section 6.1. For the extrusion cases as shown in Figure 1c, we
discuss the results in Section 6.2. Mostly we focus on classification accuracy, but we also measure testing time and
other metrics and discuss them in Section 6.3. The impact of design factors are considered in Section 6.4.

6.1. Intrusion Detection Accuracy
We conduct three different tests for intrusion detection. All of them have four classes that we need to categorize

correctly.



(a) Camera (b) Router (c) Voice Assistant

Figure 9: Confusion Matrix of the Self Evaluation Tests

6.1.1. Self-Evaluation Test
We run 5-fold cross-validation for each type of IoT device. For each test, we use the datasets as described in

Table 2. For example, in the Camera self-test, we use 2,000 instances of Camera service for the first class and 2,000
instances attacked by Mirai for the Botnet class in addition to the same number of Reboot and Idle instances. With
the given dataset, we randomly partition each class into five subsets; then, we train on four subsets and test on the
remaining one. We repeat this procedure five times so that each subset is used for validation. In terms of accuracy,
which we define as the portion of correctly classified instances among all the testing instances, each of the tests on
the three devices performs well. Since, in this test, the CNN trains and tests on the same datasets, it is supposed
to achieve the best performance among all the tests for intrusion detection. As expected, the overall accuracy of the
classification results for each device is 90.6%, 95.0%, and 96.5% for the Camera, Router, and Voice Assistant devices,
respectively. Considering that our systems targets to detect IoT botnets, we can simplify our four-class classifier to
two-class classifier that determines whether it is a Botnet class or not. Then, this two-class classification accuracy
become 97.7%, 92.1%, and 96.0%.

In Figure 9, we plot confusion matrices for the three device types. Figure 9a shows the classification results on the
camera dataset. The overall accuracy is 90.6% whearas the accuracy of the Mirai class is about 99%, which means our
model classifies whether the camera is attacked by the Mirai botnet very well. We also compare the accuracy of the
Mirai class with the overall classes for all the tests in Figure 10. In general, the results for the Mirai class outperform
the other classes. Moreover, only the Reboot and Camera classes exhibit little lower accuracy, which is about 84%
and 85%, respectively. This is because those two classes generate more fluctuating power signals than the other two
classes as shown in Figures 3a and 3c. In Figure 9b, all the classes achieve higher than 90% accuracy. About 10%
of the Mirai instances are misclassified as the Router class. This is because the randomness of Router traffic might
impact the classification performance as we mentioned in Section 3.1.2. We observe the same phenomenon during the
leave-one-out tests in Section 6.1.4. For the Voice Assistant self-test, we achieve the best performance: the accuracy
of all the cases is higher than 95% as shown in Figure 9c.

In order to demonstrate the validity of our classifier against different IoT botnets, several other self-evaluation tests
are performed with variants of Mirai, which are Sora and Masuta botnets. They emerged after Mirai had occurred
and used similar approaches as we illustrated in Table 1. Accordingly, we also observe that they have similar time
distribution with the Mirai botnet as illustrated in Figure 5. We only conduct self-tests on the Security Camera device
to see the robustness of our detection design against other IoT botnets. Doing so demonstrates that our system is not
overfitted to a specific botnet. Despite Sora and Masuta’s slightly different post-processing jobs and the length of its
instances, the accuracy of the tests is still quite good, achieving 95.3% and 93.6%, respectively. These results are
shown in Figure 11.



Figure 10: Accuracy of the Mirai and Overall Classes

Figure 11: Comparisons between Mirai and its Variants

6.1.2. Cross-Evaluation Test
In this section, we perform another self-tests. Instead of training and testing on each device dataset, we first

merge data from the three device datasets into one bigger dataset as an IoT service class, which is our first class in
this test. This master class covers all kinds of power consumption patterns generated by network traffic, filesystem
access, voice processing, etc. For the Mirai class, we also combine all the instances compromised by the Mirai botnet
while the victim node is running different types of IoT applications. For the Reboot and Idle classes, we use the same
datasets.

In the cross-evaluation test, both the accuracy of the overall classes and of the Mirai class are about 90% as shown
in Figure 10. It is a little bit lower than the self-evaluation tests but still durable against the Mirai botnet. Considering
that our model could be potentially integrated into a random IoT device, if we train all the power consumption data
from many types of IoT devices, our design will still perform well in terms of classification accuracy.

6.1.3. Leave-One-Botnet-Out Test
The basic procedure of a leave-one-out test is that test and training datasets are different. Thus, it demonstrates

that our system is independent of various environments since it can tell how well our system detects unknown data.
First of all, we conduct leave-one-botnet-out tests. It is important to show the robustness against other new botnets
that have different power consumption patterns. We train the datasets from two botnets and test on the other botnet’s
dataset.

Table 3 shows the two-class (Botnet and Non-Botnet) classification results. In most cases, the accuracy of the
classification is above 90%. This infers that our model is still able to distinguish unknown power patterns well based
on the trained datasets. When we leave the Masuta dataset out, the result is worse than the other two tests. This is
because the trained datasets from the Mirai and Sora datasets are more similar to each other than the Masuta dataset.
Even in this case, the accuracy is around 90% whereas the leave-Mirai-out and leave-Sora-out tests achieve about
94%. Table 3 also exhibits the four-class classification accuracy. Even though results are about 10% worse than
two-class classifications, they are still around 80%. This is durable considering the fact that we classify untrained
four-class datasets.

Table 3: Classification Accuracy of the Leave-One-Botnet-Out tests

Leave-Mirai-Out Leave-Masuta-Out Leave-Sora-Out
Two-Class Classification

Accuracy 94.3% 89.5% 94.5%

Four-Class Classification
Accuracy 84.3% 79.6% 83.6%
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Figure 12: Confusion Matrix of the Leave-One-Device-Out Tests

6.1.4. Leave-One-Device-Out Test
We also run leave-one-device-out tests; we train the datasets from two devices and apply the result to diagnose

the dataset of the remaining subject. This scenario happens rarely in real situations. However, if a new type of IoT
device or a new service generates untrained power consumption patterns, then we need to validate the performance of
our model in these cases. The evaluation results show the robustness of our design; it also shows that our classifier is
not overfitted to a specific type of IoT device. Therefore, we verify that our model can still detect untrained malicious
botnet behaviors properly.

According to the results of the leave-one-out tests, as shown in Table 4, the two-class classification still performs
well, which results are 96%, 88%, and 89% for each test. For example, when we train the datasets from the Camera
and Voice Assistant devices for testing on Router dataset, we achieve 87.9% accuracy overall. Although the results are
not as good as the self-tests or cross-evaluation, it is justifiable since they train on different instances from the dataset
we classify.

Table 4: Classification Accuracy of the Leave-One-Device-Out tests

Leave-Camera-Out Leave-Router-Out Leave-Voice Assistant-Out
Two-Class Classification

Accuracy 96.2% 87.9% 89.1%

Four-Class Classification
Accuracy 74.4% 77.3% 82.4%

As shown in Table 4, when we compute the four-class classification accuracy, the results are around 80%, which
is not as good as two-class classifications. However, even in these tests, we achieve higher than 95% accuracy on the
Mirai class for the Camera and Router devices as illustrated in Figures 12a and 12b. In Figure 12c, when we leave
out the Voice Assistant instances during the testing procedures, we get about 75% accuracy for the Mirai class. We
see a misclassification of 19% as the IoT service, which is power consumption instances generated by the Camera
and Router devices in this case. This is because the Router instances might impact the accuracy since the self-test on
the router achieves 90% accuracy on the Mirai class as you see in Figure 9b. This is the lowest accuracy among the
self-evaluations.

Another thing we observe is that none of the Camera instances are classified as the IoT service, which consists of
Router and Voice Assistant instances, as shown in Figure 12a. Instead, most of the Camera instances are classified as
the Reboot class. This is consistent with the fact that 15% of Camera instances are misclassified as the Reboot class
in the self-test as shown in Figure 9a. We have already discussed in Section 6.1.1 that the traffic from the Camera
services is distinct from the power consumption data of the other devices. In Figure 12c, we also see that about half
of the Voice Assistant traffic is misclassified as the Idle class. This is also consistent with the finding that the power
consumption patterns between Voice Operation procedures look like an idle status as described in Figure 3b.



Figure 13: Power Consumption Patterns of Extrusion Figure 14: Accuracy of Extrusion Detection

Overall, we still achieve good performance in terms of detecting botnet behaviors. The total accuracy of the
leave-one-out tests is reasonably good considering that we test on untrained datasets. Moreover, the leave-one-out
tests reveal the high potential of our model to observe the characteristics of IoT applications as well as to detect IoT
botnets.

6.1.5. Comparison with State-of-the-Art
There are no previous botnet detection systems to target emerging IoT botnets by measuring power consumption.

However, there were some pioneered works that target malicious behaviors by analyzing power consumption. Thus,
we choose one of the most influential pioneered work, MODELZ [14], and compare it with our system.

Table 5: The results of the two-class classification accuracy compared with MODELZ

Self-Evaluation
(Camera)

Self-Evaluation
(Router)

Self-Evaluation
(Voice Assistant)

Cross
Evaluation

Leave
- Camera

-Out

Leave
- Router

-Out

Leave
- Voice Assistant

-Out
MODELZ 74% 63% 65% 61% 59% 61% 51%
Our Model 97% 92% 96% 90% 96% 88% 89%

We implement their method on our datasets to compare with our method. In [14], they first apply a moving
average filter to remove high-frequency noises of power consumption data, then calculate the �2-distance between the
power reading and templates to find the most similar one. Table 5 displays the classification accuracy of our method
and MODELZ. The results show that our method outperforms their method. Our deep learning-based system brings
accuracy improvement up to 30%. This is because our CNN design has much more parameters; thus, it is sophisticated
enough to learn power consumption patterns. MODELZ, however, performs poorly since it depends on only a few
number of predefined power signatures, which are their templates, to characterize power consumption data.

6.2. Extrusion Detection Accuracy
We evaluate the performance of our botnet detection model after an IoT device has already been compromised by

botnets, as illustrated in Figure 1c. Even if the device is compromised, our botnet detection design can still prevent
IoT devices from rapid propagation. Figure 13 shows how power consumption patterns look when the infected device
starts scanning. Specifically, it scans randomly generated IP addresses every second, making the power consumption
patterns very spiky.

With the extrusion dataset for the Mirai class, we run three other tests —Self-Evaluation on the Router device,
Cross-Evaluation, and Leave-Router-Out test —and compare the results with the intrusion cases. As shown in Figure
14, the accuracy for the extrusion cases is always higher than the results in the intrusion cases. Because the extrusion
power data is easily distinguishable from the other classes, we achieve 100% accuracy for the Mirai class for all the
three tests. This observation supports that our model is able to detect IoT botnets even when an IoT device is being
compromised. Moreover, it infers that our botnet detection method can prevent IoT devices from rapid propagation at
an individual device level.



6.3. Other Performance Metrics
In addition to Accuracy, we also provide Precision, Recall, and F1-Measure metrics to validate the performance of

our model. Precision tells the exactness of the system, where low Precision means a large number of False Positives.
Recall infers the completeness of the classification results, with low Recall represents more False Negatives. Lastly,
F1-Measure considers the balance between Precision and Recall as described in Eq. (4).

Figure 15: Comparisons of Different Metrics

Our self-evaluation and cross-evaluation tests introduce decent
results for the above metrics, as illustrated in Figure 15. Overall,
most of the metrics are higher than 90% accuracy. For the-leave-
one-subject-out tests, they have lower Precision results than Recall,
which infers that our model tends to have more False Positives. In
other words, our model classifies IoT botnets conservatively. In
terms of F1-Measure, most of the tests, including the leave-one-
out tests, have higher than 85% F1-Measure values. This shows
the robustness of our botnet detection model.

F1-Measure = 2 ⇤ Precision ⇤Recall

Precision+Recall
(4)

6.4. Impact of Design Factors
In this section, we discuss some design factors that impact the

performance of our model.

6.4.1. Sampling Rate
For our evaluation, we use an off-the-shelf power monitor that offers a high sampling rate. Obviously, this device

introduces accurate results, but it is very expensive, making it difficult to be widely deployed. Thus, we evaluate
the performance of our model with lower sampling rates on the Camera self-test. If our model does not require high
frequency in power monitoring, then we will build hardware with a cheaper sensor in the future.

Specifically, to extract lower sampled data, we take every nth element from given power consumption data. For
instance, we take power consumption data at every five elements to get 1kHz sampled data. After that, we feed
them to our model. By doing so, we provide the evaluation results for four different sampling rates. The results are
illustrated in Table 6. As the sampling rate decreases, we get the lower accuracy for both the overall classes and Mirai
class. However, even with the 512Hz sampling rate, the accuracy is still above 95% for the Mirai class whereas the
128Hz sampling rate does not introduce good accuracy for all the classes. We also observe that the low sampling
rate reduces training and testing time of classification. This infers that our model performs best, achieving both good
accuracy and fast training time with the 512Hz sampling rate. Therefore, we will take the 512Hz sampling rate when
we build hardware for future work.

Table 6: Impact of Sampling Rate

Sampling Rate 5kHz 1kHz 512Hz 128Hz
Overall Classes

Accuracy 90.9% 90.8% 90.4% 81%

Mirai Class
Accuracy 99% 98.1% 95.3% 85%

6.4.2. Normalization
Figure 16 shows the impact of normalization as data processing. To test this, we perform cross-evaluation tests

as described in Section 6.1.2. As it is shown, the accuracy is below 80% without normalization, whereas our model
achieves almost 90% accuracy. We also compute some other common metrics including Precision, Recall and F1-
Measure, these metrics are increased by conducting normalization from 2.7% up to 9.4%. Thus, these results justify
our explanations in Section 4.2.



6.4.3. Input Size
The amount of input is important for CNNs to train datasets. If it is not enough, CNNs cannot fully learn features

from the datasets. However, a larger amount of input also makes training time much longer; thus we need to consider
both performance and time consumption.

Figure 16: Impact of Normalization Figure 17: Impact of Input Size

We run self-evaluation tests with the Router datasets. In Figure 17, we observe that our system cannot converge
to a global optimal point with 500 instances for each class. However, when we have more than 1,000 instances for
each class, the accuracy is higher than 90%, and the accuracy increases as the number of input increases. Considering
that the training time is less sensitive because our data is trained off-line, we could have more data until the accuracy
converges. In our experiments, we use 2,000 instances for each class because it is the minimum size to get stable and
produce more accurate results.

6.4.4. Kernel Size
As explained in Section 5.2, the size of the kernel and stride is important to our botnet detection design. To

demonstrate this, we perform self-evaluation tests using the Voice Assistant datasets. Figure 18 illustrates the impact
of them. As the kernel size increases, we keep the ratio of the stride as one-quarter of the kernel size. It allows us to
learn features faster so that our classifier reduces its training time. Since our sampling rate is 5kHz, we do not need
smaller kernel size, which might result in a huge volume of redundant convolution operations.

(a) Accuracy (b) Time

Figure 18: Impact of Kernel Size

As you observe in Figure 18a, we achieve much higher accuracy as the kernel size goes up. Moreover, we measure
the training time and testing time from the self-tests as shown in Figure 18b. Both of them also decrease exponentially



as the kernel size increases. Since both the accuracy and training time begin to converge when the kernel size is larger
than 512, we take 512 as our kernel size. Accordingly, the evaluation results validate that the kernel size of our CNN
model is appropriate.

7. Discussion

In this section, we address the potential usage of the botnet detection model and discuss our future works.
Our model focuses on learning power consumption patterns to detect malicious behaviors. However, because our

model requires measuring power consumption data, it does not apply to be integrated into the existing IoT devices
such as a router, camera, or voice assistant. Instead, it is potentially deployed outside a primary IoT device in a
secondary device. One possible solution is for our model to be integrated into a smart plug device. Specifically, the
smart plug is an IoT device that monitors the power consumption of a connected device; thus, it will be much easier
for it to adapt our model. By doing this, we can significantly reduce the introduction cost of our model.

One assumption we have in this paper is that different power consumption due to various WiFi-signal condition
is negligible. Although it may influence power consumption, we do not vary our experimental setups but focus
on characteristics of the IoT botnets. Moreover, even though most current off-the-shelf Smart Plug devices monitor a
single device, there have been some Smart Plug devices that can monitor multiple devices at the same time. We believe
that the deep learning classifier can also learn mixed power consumption data monitored by one power monitor, but
we leave it for our future work.

We propose a botnet detection method via power consumption modeling. By conducting offline training and
testing, we demonstrate the potential of our model. Then, our next step is to make an online classifier. We plan to
build our server to learn power consumption data for offline training. For online testing on IoT devices, it does not
require much testing time as we observed in the evaluation section. Therefore, we will design a deep learning classifier
on resource-constrained IoT devices. Moreover, we also need to design a small form factor sensor module instead of
using expensive power monitor hardware. By fully implementing our model and achieving still good performance,
we will support that our system is still durable against real-world botnet attacks.

8. Related Work

In this section, we summarize the related work concerning about IoT botnets.
Network Intrusion Detection Systems (IDS) has been scrutinized in the literature for many years [23, 24, 25, 26,

27, 28, 29, 6, 7, 30, 31, 32, 33, 34]. In general, these methods can be classified as either signature-based or anomaly-
based systems. The signature-based methods can detect well-known attacks, but those are still vulnerable to unknown
patterns. The anomaly-based methods usually rely on ML techniques to detect unusual traffic. Those approaches
commonly take advantage of a specific protocol like SMTP or DNS to detect anomaly traffic. Among them, the
authors in [6] and [7] had discussed the possibility of huge botnets by IoT devices before Mirai emerged.

After Mirai occurred in 2016, many researchers have either reviewed the IoT botnets thoroughly [35, 36, 37, 5, 38]
or proposed a system to defend them [8, 39, 40, 41, 10, 11, 12]. In [8], the authors propose a system to expel the Mirai
botnet while its propagation, but they require a user to get involved to do that. Some researchers also conduct a
thorough survey on the IoT security concerns including botnet detection [42, 43, 9, 44], which have already covered
a huge number of papers. This infers that detecting IoT botnets has been actively investigated. Some of them have
applied ML or Neural Networks [10, 11, 12, 40]. However, none of them can detect the early propagation stage of
IoT botnets at a device level.

Another type of botnet detection approach is to measure power consumption data [13, 14]. As observed in our
evaluation, they also exploit the fact that power signals could change noticeably by malicious behaviors. The authors
in [14] pioneered to exploit power consumption data for malware detection, achieving good classification results.
However, this work was conducted on old mobile platforms several years ago, and we show the performance com-
parison in Section 6.1.5. In [13], they review power consumption-based malware detection systems in the mobile
environment. Even though power-based methods have also been investigated, those research efforts usually target
malware in mobile devices. Moreover, since we design a deep learning-based detection model, our model has more
modeling capacity against various botnets. To the best of our knowledge, none of the existing work covers the power



characteristics of the emerging IoT botnets to detect them. Therefore, our deep learning-based model is proposed to
diagnose IoT botnets at an IoT device through power consumption modeling.

9. Conclusion

In this paper, we aim to model IoT botnet detection for heterogeneous devices with a deep learning-based method.
By exploiting power consumption data, our system achieves high accuracy for botnet detection. Moreover, we detect
the IoT botnets even when an IoT device is being compromised so that we slow down the propagation of the ma-
licious botnets earlier. To meet our requirements, we first process power consumption data with segmentation and
normalization techniques. Then, we classify whether the device is attacked by the malicious botnets or not using an
8-layer CNN. Our CNN model has a number of parameters to learn power patterns, which makes our model tolerant
to various cases. As a result, we achieve up to 98.6% botnet detection accuracy on the self-tests and about 90% on
the cross-evaluation test. Even in the most leave-one-out tests, our model detects the botnet with higher than 95%.
Moreover, we achieve higher than 90% accuracy during the self-tests and the cross-evaluation test and get about 85%
F1-Measure during the leave-one-out tests for the overall four classes, — IoT service, Reboot, Idle, and Botnet. For
the two-class classifications, the results of the leave-one-out tests are 96%, 88%, and 89% for the Leave-Camera-Out,
Leave-Router-Out, and Leave-Voice-Assistant-Out tests, respectively. These results validate that our model is durable
against untrained malicious behaviors as well as observe the characteristics of IoT services.
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