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DeFFusion: CNN-based Continuous Authentication Using
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Smartphones have become crucial and important in our daily life, but the security and privacy issues have
been the major concerns of smartphone users. In this paper, we present DeFFusion, a CNN-based continuous
authentication system using Deep Feature Fusion for smartphone users, by leveraging the accelerometer and
gyroscope ubiquitously built into smartphones. With the collected data, DeFFusion first converts the time
domain data into frequency domain data using the fast Fourier transform and then inputs both of them into
a designed CNN, respectively. With the CNN-extracted features, DeFFusion conducts the feature selection
utilizing factor analysis and exploits balanced feature concatenation to fuse these deep features. Based on the
one-class SVM classifier, DeFFusion authenticates the current users as a legitimate user or an impostor. We
evaluate the authentication performance of DeFFusion in terms of impact of training data size and time window
size, accuracy comparison on different features over different classifiers and on different classifiers with the
same CNN-extracted features, accuracy on unseen users, time efficiency, and comparison with representative
authentication methods. The experimental results demonstrate that DeFFusion performs the best accuracy, by
achieving the mean equal error rate of 1.00% in 5-second time window size.

CCS Concepts: • Security and privacy → Biometrics; • Human-centered computing → Collaborative
and social computing devices; • Computing methodologies→ Neural networks.
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1 INTRODUCTION
Driven by new mobile and communication technologies, such as the mobile Internet, the Internet
of Things, artificial intelligence, and economic and social developments, mobile smart devices have
been developing rapidly. They have transformed from communication-only devices to diversified
social entertainment tools, and have been bringing great convenience to people’s daily life, work,
and commercial activities [1, 2]. For example, people can perform daily leisure and work activities,
such as e-book reading, online video watching, and electronic document processing through
smart tablets, and conduct entertainment and business activities, such as online shopping, mobile
payments, and e-banking services (payment and transfer) through smartphones. As mobile devices
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continue to infiltrate all aspects of people’s daily life and work, more and more private information
and confidential data are stored on smartphones by users, such as personal emails and photos, social
network accounts, electronic bank accounts, and even confidential trade information. Therefore,
there is an increasing need for security mechanisms to authenticate the smart device users for
protecting users’ personal and privacy data on smart devices [3, 4]. The existing smart devices are
preliminary equipped with one-time security mechanisms, which are typically the only defense
available on smart devices and can be broadly categorized into traditional security mechanisms and
physiological biometrics-based security mechanisms [5]. However, traditional security mechanisms,
such as easy-to-remember PINs and quick-to-draw graphical patterns, are susceptible to guessing
[6] and eye glimpsing [7]. Physiological biometrics-based security mechanisms, such as fingerprints
(touch ID) [8] and face recognition (face ID) [9], are prone to smudge [10] and video capture attacks
[11]. Moreover, one-time security mechanisms only perform at the time of user initial logging-in,
which raises security concerns that attackers can easily get access to everything on smart devices
bypassing the unlocking [12].
To address these security deficiencies, the continuous authentication mechanisms have been

investigated by researchers. The continuous authentication mechanisms are able to frequently
authenticate smart device users via behavioral biometrics-based approaches. These approaches
utilize user behavioral patterns, such as touch gestures [13], gait [14], and GPS patterns [15]. To
extract more robust and distinctive behavioral features, comparing with traditional approaches, the
deep learning models especially the convolutional neural networks (CNNs) have illustrated broad
superiority [16, 17], on behavioral biometrics, such as voice [18], signature [19, 20], gait [14, 21],
and keystroke [22]. They can automatically learn high-level representative features from input
data and extract discriminative features as the outputs [23–25]. In particular, the authors use two
deep CNN architectures for iris recognition, one with eight convolutional layers and the other with
five convolutional and two inception layers [26]. However, most of these approaches consisting of
many layers and channels require much computational budget. Thus, it is challenging to design a
light-weight and effective CNN for discriminative feature extraction. In addition, feature fusion
strategy can combine dissimilar sensor features to generate a fused feature vector, which greatly
improves the authentication accuracy [27–29]. Biometric feature fusion can generally be divided
into sensor-level fusion [30], feature-level fusion [27, 29], score-level fusion [31], and decision-level
fusion [32]. Especially, the authors use serial and parallel feature fusion strategies to combine
two different types of features for high authentication accuracy [29]. Nevertheless, most of these
feature fusion strategies directly combine two or more modalities of features for the authentication
accuracy improvement. Hence, it is also challenging to explore an efficient feature fusion strategy
for multi-model deep features.

To overcome these challenges, we specially design a light-weight CNN based on the basic block
(a bottlenet unit with depthwise convolution) and down block (a basic block for spatial down
sampling) to learn and extract discriminative deep features, and exploit a balanced feature con-
catenation to fuse the selected deep features in a continuous authentication system. In this paper,
we present DeFFusion, a CNN-based continuous authentication system using Deep Feature Fusion,
which leverages the accelerometer and gyroscope on smartphones to capture users’ behavioral
patterns. Specifically, DeFFusion consists of five modules: data collection, data preprocessing, deep
feature extraction, classification, and authentication. The operation of DeFFusion is composed of
two phases of the enrollment phase and the continuous authentication phase. In the enrollment
phase, DeFFusion exploits the collected sensor data from the accelerometer and gyroscope to train
the designed CNN, extract CNN-based features, then fuse the deep features by the balanced feature
concatenation, and finally train the one-class SVM classifier, thereby learning a profile of the legiti-
mate user. In the continuous authentication phase, with the trained CNN and classifier, DeFFusion

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: September 2021.



DeFFusion: CNN-based Continuous Authentication Using Deep Feature Fusion 1:3

Fig. 1. Architecture of DeFFusion

classifies the current user as the legitimate user or an impostor based on the accelerometer and
gyroscope data, thereby ensuring only the owner can access the smartphone. We consider a scenario
that an attacker tries to access an unattended smartphone right after the owner logs in the system,
but has no knowledge of the initial login information.

The main contributions of this work are summarized as follows.
• We propose DeFFusion, a CNN-based continuous authentication system using deep feature
fusion for smartphone users, by leveraging the accelerometer and gyroscope on smartphones.
DeFFusion consists of five modules: data collection, data preprocessing, deep feature extrac-
tion, classification, and authentication.

• We specially design a CNN based on the basic block and down block to learn and extract
discriminative deep features for the time and frequency domain data. We utilize the balanced
feature concatenation to fuse the CNN-extracted features selected by the factor analysis.

• We evaluate the authentication performance of DeFFusion and the experimental results
indicate that DeFFusion reaches the mean EER of 1.00% in 5-second time window size,
showing the best accuracy comparing with representative schemes.

The rest of this work is organized as follows: Section 2 presents the overview of DeFFusion. In
Section 3, we introduce data collection and data preprocessing for deep feature extraction. Section 4
details the CNN-based feature extraction approach consisting of the deep feature learning, selection
and fusion. We elaborate the authentication with one-class SVM classifier in Section 5. In Section
6, we describe the details of experimental settings and extensively evaluate the performance of
DeFFusion. We review the recognition systems on deep learning and biometric fusion in Section 7
and conclude this work in Section 8.

2 DEFFUSION OVERVIEW
In this section, we present the overview of the CNN-based continuous authentication system
using deep feature fusion, DeFFusion. From the architecture of DeFFusion illustrated in Fig. 1,
DeFFusion is composed of two phases: the enrollment phase and the continuous authentication
phase. Specifically, in the enrollment phase, DeFFusion learns the profile of a legitimate user by
utilizing the training data to train the CNN and the classifier, and then authenticates users by
exploiting the trained CNN and trained classifier on the testing data in the continuous authentication
phase.
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DeFFusion is composed of five modules: data collection, data preprocessing, deep feature ex-
traction, classification, and authentication. More specifically, the data collection module employs
the smartphone built-in sensors of the accelerometer and gyroscope to capture users’ every subtle
operation behaviors on their phones and sample the corresponding behavioral data on smartphones
instantaneously. The data preprocessing module converts the collected time domain data into
the frequency domain data by using the fast Fourier transform and then applies StandardScaler
on the time and frequency domain data. The deep feature extraction module is composed of the
deep feature learning, feature selection, and feature fusion. Moreover, the deep feature extraction
module learns discriminative features based on the designed convolutional neural network (CNN),
then selects representative features by factor analysis for the preprocessing time domain data and
frequency domain data, respectively, and finally fuses the corresponding deep features through a
balanced feature concatenation. With the fused deep features, the classification module trains the
one-class SVM (OC-SVM) classifier to generate the legitimate user’s profile from the training data.
Based on the trained OC-SVM and testing data, the authentication module classifies the current
user as a legitimate user or an imposter. Finally, DeFFusion will allow the continuous usage of the
smartphone if it is a legitimate user and meanwhile continuously authenticate the user; otherwise,
it requires the initial login inputs. Our work is different from the others in that: 1) specially design
a light-weight CNN to learn and extract discriminative deep features, and 2) exploit a balanced
feature concatenation to fuse the selected deep features.

3 DATA COLLECTION AND PREPROCESSING
In this section, we present the data collection and data preprocessing modules of DeFFusion,
respectively.

3.1 Data Collection
We select two motion sensors - the accelerometer and gyroscope built-in smartphones to capture a
user’s coarse-grained motion patterns, such as arm movements and gaits, and fine-grained motion
patterns, such as touch gestures on screens, respectively. Note that we consider a general scenario
where users’ operation on smartphones can be captured by the two sensors in this work [33].

Once a user operates the smartphone, the data collection module starts to collect the raw sensor
data from the accelerometer and gyroscope, respectively, for a time period 𝑡 with a sampling rate
𝑓𝑠 . For a time period 𝑡 , 𝑛 (𝑛 = 𝑡 × 𝑓𝑠 ) samples of raw accelerometer and gyroscope sensor data can
be collected. Each synchronized sample can be denoted as (𝑥𝑎, 𝑦𝑎, 𝑧𝑎, 𝑥𝑔, 𝑦𝑔, 𝑧𝑔)𝑇 ∈ R6, where 𝑥 , 𝑦, 𝑧
indicate the three axes of a sensor, and 𝑎, 𝑔 represent the accelerometer and gyroscope, respectively.

3.2 Data Preprocessing
For a time period 𝑡 , DeFFusion can collect 𝑛 samples of time domain data for the accelerometer and
gyroscope. The time domain data can be represented by a 𝑑 × 𝑛 matrix Tt = (xa, ya, za, xg, yg, zg)𝑇 ,
where 𝑑 = 6, 𝑛 = 𝑡 × 𝑓𝑠 , and xa = (𝑥𝑎,1, 𝑥𝑎,2, ..., 𝑥𝑎,𝑛) for 𝑥-axis samples of the accelerometer, by
using a row vector to denote one-axis samples of a sensor. For the frequency domain data, we apply
the fast Fourier transform to Tt and then sequentially stack the real part and imaginary part of each
element in Tt to construct a 𝑑 × 2𝑛 matrix Ft = (xar, xai, yar, yai, zar, zai, xgr, xgi, ygr, ygi, zgr, zgi)𝑇 ,
where 𝑟 and 𝑖 indicate the real part and imaginary part, respectively.

In order to obtain more standard data, we apply StandardScaler on each row (e.g. xa) of the time
domain data Tt, and each row (e.g. xar) of the frequency domain data Ft.

The preprocessed time domain data Tt and frequency domain data Ft are obtained and then used
as the inputs of a convolutional neural network, respectively.
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Fig. 2. Architecture of CNN

4 DEEP FEATURE EXTRACTION
In this section, we present a CNN-based deep feature extraction approach that consists of the deep
feature learning, deep feature selection, and deep feature fusion.

4.1 Deep Feature Learning
We first elaborate the architecture of the designed CNN, and then detail the CNN-based feature
learning for the preprocessed time domain data and frequency domain data, respectively.

4.1.1 CNN Architecture. We design an architecture of a convolutional neural network inspired
by ShuffleNet [34, 35] as illustrated in Fig. 2 and Table 1. With the designed CNN architecture,
the features in the time domain involving a number of temporal dynamics patterns and that in
the frequency domain including spatial patterns in neighboring frequencies can be extracted,
respectively. As shown in Fig. 2, the CNN architecture comprises the Convolution Layer 1, Stage 2
with the Down Block 1 and the Basic Block 1, Stage 3 with Down Block 2, Basic Block 2 and Basic
Block 3, Convolution Layer 2, Full Connection Layer 1, and Full Connection Layer 2. Then, we
detail the structures of the Basic Block and Down Block, respectively.
Basic Block structure is based on the bottlenet unit with depthwise convolution (DWConv)

[36, 37], as illustrated in Fig. 3. Specifically, with the inputs, Basic Block starts with splitting the
channels 𝐶 into two identical branches. One branch remains as identity with 𝐶/2 channels. The
other branch involves three convolutions with the same input and output channels, where the
first 1 × 1 convolution (1 × 1 Conv) as the expansion layer increases the channel dimensions, the
efficient 3 × 3 depthwise convolution (3 × 3 DWConv) applies a single filter for each input channel
(input depth), and the last 1 × 1 convolution (1 × 1 Conv) combines the outputs of the DWConv
to decrease the channel dimensions for matching that of the first branch. Batch normalization
(BN) and rectified linear unit (ReLU) nonlinearity are applied to this branch except the DWConv
(with BN only). Then, the outputs of the two branches are concatenated and then divided into
𝑔 subgroups. Finally, the channel shuffle operation is applied by reshaping the output channel
dimension into (𝑔, 𝑛), transposing and flattening it back as the basic block outputs, where𝐶 = 𝑔 ×𝑛.

Down Block structure is based on a basic block for spatial down sampling [34, 35], as demonstrated
in Fig. 4. Specifically, with the inputs, Down Block begins in two branches, each with𝐶/2 channels.
One branch is composed of the 1× 6 DWConv with stride of 2 and BN, and 1× 1 Conv with BN and
ReLU. The other branch consists of 1 × 1 Conv, 1 × 6 DWConv with stride of 2, and 1 × 1 Conv. BN
and ReLU nonlinearity are applied to this branch without ReLU on DWConv. Then, the two-branch
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Fig. 3. Basic Block Fig. 4. Down Block

Table 1. CNN Body Architecture for Time (Frequency) Domain Data

Layer Output #Kernel KSize Stride Padding
Sensor 1 × 20 × 150(300) - - -
Conv 1 24 × 20 × 150(300) 24 (3,3) (1,1) (1,1)

Stage 2 32 × 20 × 73(148) 32 (1,6) (1,2) (0,0)
32 × 20 × 73(148) 32 (3,3) (1,1) (1,1)

Stage 3
32 × 20 × 34(72) 32 (1,6) (1,2) (0,0)
32 × 20 × 34(72) 32 (3,3) (1,1) (1,1)
32 × 20 × 34(72) 32 (3,3) (1,1) (1,1)

Conv 2 64 × 6 × 34(72) 64 (1,1) (1,1) (0,0)
AvgPool 64 × 6 × 6(6) - - - -
FC 1 1 × 3072(3072) - - - -
FC 2 1 × 512(512) - - - -

outputs are concatenated with 𝐶 channels. Finally, we apply the channel shuffle operation on the
concatenated outputs as the down block outputs.

4.1.2 CNN-based Feature Learning. Based on the designed CNN, we provide a deep feature extrac-
tion approach to learn discriminative features for the time domain data Tt and frequency domain
data Ft, respectively.

As demonstrated in Table 1, the input of the CNN can be the time domain data Tt or frequency
domain data Ft. The time domain data Tt in 5 seconds have 3000 (5 × 100 × 6) samples, which are
reshaped as 20 × 150. In the first convolutional layer (Conv 1), there are 24 filters with the size of
3 × 3. In Stage 2, we apply the down block (Down Block 1) involving 𝐶 = 32 filters with the size of
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Fig. 5. EER for DeFFusion on different number of features in different time periods (2 seconds or 5 seconds)

1 × 6, and with 𝑔 = 2, and then basic block (Basic Block 1) including 𝐶 = 32 filters with the size of
3 × 3. In Stage 3, we apply the down block (Down Block 2) including 32 filters with the size of 1 × 6,
and with 𝑔 = 2, and then two basic blocks (Basic Block 2 and Basic Block 3) both containing 32
filters with the size of 3 × 3. In the fourth convolutional layer (Conv 2), there are 64 filters with the
size of 1 × 1. The average pooling layer (AvgPool) with parameters (1, 5) is exploited to decrease
the channel output dimensions and extract features. Finally, we use two fully convolution layers
(FC 1 and FC 2) to classify the inputs into a finite number of classes. For the frequency domain data
Ft in 5 seconds, there are 6000 (2 × 5 × 100 × 6) samples, which are reshaped as 20 × 300. Since
the CNN architecture for the frequency domain is the same as that of the time domain, we list
the different parameters in parentheses in Table 1. The AvgPool has the parameters of (1, 12) for
frequency domain. Note that the symbol “-” in the table indicates no corresponding parameter
value. We set the CNN-learned feature number as 95 for both time and frequency domain.

4.2 Deep Feature Selection
Based on the CNN-learned deep features, we exploit the Factor Analysis (FA) to select discriminative
features for the time domain data and frequency domain data, respectively.

We conduct experiments to investigate the optimal feature numbers for the time domain data and
frequency domain data, respectively, thereby DeFFusion achieving the best accuracy. We compute
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Table 2. Feature Number Reaching the Lowest EERs in Time and Frequency Domain over Different Time
Periods

Time Period Time domain Frequency domain # Feature
2s 35 20 55
5s 30 15 45

Table 3. Balanced Feature Number for DeFFusion in Different Time Periods

Time Period Time domain Frequency domain
2s 29 21
5s 28 22

the EERs of DeFFusion as feature numbers increase from 5 to 95 with a stride 5, for the time domain
data and frequency domain data, respectively. Fig. 5 depicts the box plots of EERs for DeFFusion
on different number of features over 2 and 5 seconds. As illustrated in Fig. 5, the EERs generally
first decrease with the increase of the selected features until an optimal number, and then slightly
increase until a sharply drop at 95. In addition, we list the feature numbers reaching the lowest
EERs in the time and frequency domain over different time periods in Table 2. As listed in Table
2, with 2s-sampling data, 35 time-domain features and 20 frequency-domain features reach their
lowest EERs, respectively, with the total feature number of 55. In 5-second time period, 30 features
for time domain and 15 for frequency domain achieve their lowest EERs, respectively, with 45
features in total.
Considering the feature numbers reaching the lowest EERs and the time period, we select 50

deep features in total for the time domain and frequency domain data by using the factor analysis.

4.3 Deep Feature Fusion
To improve the performance of the DeFFusion authentication, we apply the balanced feature
concatenation fusion after feature selection. The time domain feature can be represented by a
vector 𝐷𝑒𝐹𝑡 [𝑚], where𝑚 indicates the number of the deep features, and the frequency domain
feature can be denoted by 𝐷𝑒𝐹𝑓 [𝑛]. Therefore, the balanced feature concatenation fusion 𝐷𝑒𝐹𝐹

can be expressed as Eq. (1):

𝐷𝑒𝐹𝐹 = [𝐷𝑒𝐹𝑡 [𝑚], 𝐷𝑒𝐹𝑓 [𝑛]] . (1)

Here,𝑚 and 𝑛 balance the deep feature fusion thereby achieving the best accuracy.
Given𝑚 + 𝑛 = 50 from the deep feature selection, we balance the𝑚 for the time domain features

and 𝑛 for the frequency domain features. We calculate the EERs of DeFFusion with different
combinations (𝑚,𝑛) of time and frequency features over 2 and 5 seconds varying from (0,50) to
(50,0) with stride (1,-1), respectively, as demonstrated in Fig. (6). As shown in Fig. (6), the EERs
generally first decrease and then increase with the variation of the time and frequency combinations
for 2 and 5 time periods, respectively. In addition, we tabulate the balanced feature numbers reaching
the lowest EERs in the time and frequency domain over different time periods in Table 3. As shown
in Table 3, the balanced feature number (29, 21) for 2s time period and (28, 22) for 5s time period
reach their lowest EERs, respectively.
Considering the balanced feature numbers and the time periods, we concatenate 𝐷𝑒𝐹𝑡 [28]

time-domain features and 𝐷𝑒𝐹𝑓 [22] frequency-domain features as the fused deep feature.
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Fig. 6. EER for DeFFusion on combination of time and frequency features in different time periods (2 seconds
or 5 seconds)
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Fig. 7. Accuracy on different training dataset sizes
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Fig. 8. Accuracy on different time window sizes

5 AUTHENTICATIONWITH OC-SVM
With the fused deep features by balanced feature concatenation, DeFFusion utilizes the one-class
support vector machine (OC-SVM) classifier to authenticate users. The OC-SVM maps data points
into a high-dimensional feature space with a kernel function and finds the surface of a minimal
hyper-sphere which contains the objective data points as many as possible [38, 39]. The distance
between data points and hyper-sphere is the classification score [40, 41]. In the enrollment phase,
the OC-SVM is trained by fused training deep features with the radial basis function kernel, and
thus DeFFusion learns the legitimate user’s profile from the training data. In the continuous
authentication phase, the trained OC-SVM classifies the fused testing deep features. Based on the
trained OC-SVM and testing data, DeFFusion classifies the current user as a legitimate user or
an impostor. If the user is classified as an impostor, DeFFusion will require initial login inputs;
Otherwise, it will allow the continuous usage of the smartphone and meanwhile continuously
authenticate the user.
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Table 4. Mean, Median and SD of EER (%) on Different Training Dataset Sizes.

Statistics 100 200 300 400 500 600 700 800 900 1000
Mean 2.13 2.34 1.87 2.45 2.20 1.89 2.08 2.03 2.01 1.86
Median 1.25 1.75 1.75 2.43 2.20 1.71 1.75 1.72 1.78 1.60
SD 2.35 2.19 1.46 1.75 1.42 1.27 1.46 1.44 1.29 1.29

6 PERFORMANCE EVALUATION
In this section, we evaluate the performance of DeFFusion. We begin with the experimental settings
including dataset collection, CNN and classifier training, and evaluation metrics. Then, we explore
the impact of training data size and time window size on classification accuracy. Next, we compare
the authentication accuracy on different features over different classifiers and on different classifiers
based on the same CNN-extracted features, respectively. Finally, we evaluate the accuracy on unseen
users and time efficiency of DeFFusion, and compare DeFFusion with representative authentication
methods.

6.1 Experimental Settings
In this section, we report the collected dataset, then describe the training process of the CNN and
classifier, and present the metrics for measuring the performance, sequentially.

6.1.1 Dataset. We collect user motion data (accelerometer and gyroscope data) while the users
start operating on the phone after login. We developed a data collection tool for Android phones
to record the real-time behavioral data invoked by users’ interaction with the phones. Data were
collected by 100 participants (53 male, and 47 female) using the phones equipped with the developed
tool. The participants were asked to conduct three designed tasks: (1) document reading; (2) text
production; (3) navigation on a map to locate a destination. When the participants logged into the
developed tool, a reading, writing, or map navigation session were randomly assigned, each of
which lasted 5 to 15 minutes. Based on the assignments, they were expected to perform 24 sessions
(8 reading sessions, 8 writing sessions, and 8 map navigation sessions) with totally 2 to 6 hours of
behavior traits.
We select sensor readings of the accelerometer and gyroscope from 95 participants with the

sampling rate 𝑓𝑠 = 100 𝐻𝑧 in CSV files on the phones and choose the first 100 minutes of the data
for each user with 5-second window sizes as the experimental dataset.

6.1.2 CNN and Classifier Training. For CNN training, we select training data with batch size of
256 from all the training data until all are selected. For each batch-size training data, we pass
them through the designed CNN, calculate the loss using cross entropy from the CNN output,
perform back-propagation and update parameters for the learning rate. We utilize Stochastic
Gradient Descent (SGD) optimizer to update the learning rate by 𝐿𝑅𝑛𝑒𝑤 = 𝐿𝑅𝑖𝑛𝑖 × 𝛾𝑒𝑝𝑜𝑐ℎ/𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 ,
where 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 = 30, 𝛾 = 0.1, and 𝐿𝑅𝑛𝑒𝑤 and 𝐿𝑅𝑖𝑛𝑖 indicate the updated and initial learning rates,
respectively [42]. The learning rate is initially set as 0.001, and then is gradually reduced by 90%
for each 50 epochs. The CNN is trained up to 150 epochs for each batch data.
For OC-SVM training, we exploit the ten-fold cross-validation on training data. We randomly

select one participant from 95 as the legitimate user and the rest 94 as impostors. Then, the positive
samples from the legitimate user are equally divided into 10 subsets, 9 of which are used as the
training sets and the rest is used as the testing set. Next, the negative samples from all the impostors
with the same size to positives are selected and then divided into 10 subsets, one of which is used as
the testing set. The above procedures are repeated 10 times until each subset of positive or negative
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Table 5. Mean, Median and SD of EER (%) on Different Time Window Sizes.

Statistics 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s
Mean 2.74 1.85 1.68 1.64 1.29 1.35 1.11 1.23 1.08 1.11
Median 2.53 1.67 1.55 1.47 1.00 1.23 0.95 1.18 0.93 1.00
SD 1.68 1.18 1.08 1.05 1.03 0.87 0.87 0.77 0.84 0.79

samples are tested exactly once. Finally, the ten-fold cross validation training process is repeated
20 times to mitigate the randomness.

6.1.3 Evaluation Metrics. We exploit three representative metrics to evaluate the effectiveness of
DeFFusion: false acceptance rate (FAR), false rejection rate (FRR), and equal error rate (EER). We
begin with four basic metrics which are used to define the representative metrics: True positive
(TP) indicates that operation behaviors from legitimate users are correctly identified; True negative
(TN) indicates that operation behaviors not from legitimate users are correctly declined; False
positive (FP) indicates that operation behaviors not from legitimate users are incorrectly identified
as legitimate; False negative (FN) indicates that operation behaviors from legitimate users are
incorrectly rejected. Then, the FAR is the probability that an impostor is falsely classified as a
legitimate user, defined as 𝐹𝐴𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁 [43–45]. The FRR is the probability that a legitimate user
is incorrectly identified as an impostor, defined as 𝐹𝑅𝑅 = 𝐹𝑁

𝐹𝑁+𝑇𝑃 [33, 46]. The EER is the point
where the FAR equals to the FRR [47–49].

6.2 Impact of Training Dataset Size and Time Window Size
In this section, we evaluate the varying training dataset size and time window size on the authenti-
cation accuracy of DeFFusion, respectively.

6.2.1 Impact of Training Dataset Size. The training dataset size impacts the profile of the legitimate
user. To investigate the impact of the training dataset sizes, we evaluate DeFFusion authentication
accuracy with dataset sizes varying from 100 to 1000 in a step of 100. We demonstrate the box
plots of the EER of DeFFusion on different window sizes in Fig. 7. As illustrated in Fig. 7, the mean,
median and standard deviation (SD) of EERs slightly fluctuate with the increase of the training
dataset size. However, they show a general trend that training with a longer dataset size achieves
higher accuracy. Moreover, we tabulate the mean, median and SD of the EER on different training
dataset sizes in Table 4. The training dataset size of 1000 reaches the lowest mean EER of 1.86%
with a lower 1.29% SD. For the CNN and OC-SVM training, we select 1000 as the training dataset
size.

6.2.2 Impact of Time Window Size. The time window size has a significant impact on the classifier
training. We evaluate the impact of the time window size on DeFFusion authentication accuracy,
with sizes ranging from 1 second to 10 seconds. For each time window size, based on the 95
participants, we utilize the ten-fold cross-validation to train the OC-SVM classifier to obtain the
authentication accuracy of DeFFusion. Fig. 8 describes the box plots of the EER of DeFFusion on
different window sizes. As demonstrated in Fig. 8, the mean EER (blue solid square) gradually
decreases as the time window size increases, which indicates that the more data are trained, the
higher accuracy can be achieved. Moreover, the median EER gradually decreases as the time window
size increases until the 5 seconds, and then demonstrates slight fluctuations from the 6 to 10 seconds.
In addition, Table 5 lists the mean, median and SD of the EER on different time window sizes. As
depicted in Table 5, the SD has the same trend to the mean EER, which implies the mean EER
tends to be stable as the window size increases. Specifically, DeFFusion achieves 1.29% mean, 1.00%
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median and 1.03% SD of the EER, respectively, on the time window size of 5 seconds. Based on the
statistics in Table 5, we select the time window size of 5 seconds in the following experiments.

6.3 Accuracy Comparison on Different Features
To evaluate the efficiency of the CNN-extracted features, we compare the authentication accuracy
of DeFFusion to comparative schemes exploiting the designed features on representative classifiers,
such as OC-SVM [50], k-Nearest Neighbors (kNN) [51], Random Forest (RF) [52], and Decision
Tree (DT) [53].

We first introduce the representative classifiers used in comparative schemes:
• OC-SVM is an unsupervised learning algorithm, which projects data onto a high-dimensional

space through a kernel function and regards the origin as the only sample from other classes [25].
• kNN identifies the 𝑘 training observations that are nearest to the new observation, and selects

the label that the majority of the 𝑘 closest training observations have. It takes every new observation
and locates it in feature space with respect to all training observations [51].

• RF is a combination of tree-structured predictors such that each tree depends on the values of
a random vector sampled independently and with the same distribution for all trees in the forest
[52].

• DT is a tree-like structure, where leaves represent outcome labels and branches indicate
conjunctions of input features that resulted in those outcomes. It separates the data (parent node)
into two subsets (child nodes) by calculating the best feature split determined by a chosen split
criterion [53].

For the comparative schemes, we specially design 90 = 15 × 3 × 2 features (15 designed features
for each axis, 3 axes for each sensor, 2 sensors), where the 15 features for each axis are listed in
Table 6. As illustrated in Fig. 1, based on the same datasets, we just replace the CNN-extracted
features by the designed features, but the feature selection and fusion processes remain. With
the fused features, we utilize the representative classifiers of the OC-SVM, kNN, RF, and DT to
conduct the user authentication. Fig. 9 demonstrates the box plots of the EER, FAR and FRR for
DeFFusion, comparative schemes with classifiers OC-SVM, kNN, RF, and DT on the designed
features, respectively. As shown in Fig. 9, DeFFusion evidently performs the best in the EER, FAR
and FRR comparing to the comparative schemes. Moreover, Table 7 lists the EER, FAR and FRR with
SD on DeFFusion and representative schemes with different classifiers on designed features. As
listed in Table 7, DeFFusion achieves the best authentication accuracy with 1.00% EER, 1.42% FAR
and 0.75% FRR, which surpasses the representative schemes with margins of 8.00%, 7.54% and 8.29%
at least for the EER, FAR and FRR, respectively. Furthermore, the OC-SVM classifier with designed
features shows the best accuracy among the representative schemes, approximately reaching 9.00%
EER, 8.96% FAR and 9.04% FRR.

6.4 Accuracy Comparison on Different Classifiers
To evaluate the efficiency of the OC-SVM classifier, we compare the accuracy of DeFFusion with
other representative classifiers, such as kNN, RF, and DT. That is, based on the architecture of
DeFFusion (Fig. 1), we just replace the OC-SVM classifier with the classifiers of kNN, RF and DT,
respectively, but other modules remain. Based on the same datasets, we calculate the authentication
accuracy using classifiers of kNN, RF and DT, respectively. Fig. 10 demonstrates the box plots of EER,
FAR and FRR for DeFFusion with different classifiers on the same CNN-extracted features, and the
corresponding results for these classifiers are listed in Table 8. Since we use the fused deep features
extracted by CNN for the classifiers for comparison, we denote OC-SVM classifier by DeFFusion,
kNN by CNN-kNN, RF by CNN-RF, and DT by CNN-DT, respectively. As shown in Fig. 10 and
Table 8, all the classifiers obviously perform better when using CNN-extracted features (compared
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Table 6. Designed Features.

Feature Explanation
Mean Mean value of one-axis sensor readings
SD Standard deviation of one-axis sensor readings
Maximum Maximum value of one-axis sensor readings
Minimum Minimum value of one-axis sensor readings
Range Difference between the maximum and minimum values
Kurtosis Width of peak of one-axis sensor readings
Skewness Orientation of peak of one-axis sensor readings
Quartiles 25%, 50%, 75% quartiles of one-axis readings
Energy Intensity of one axis sensor readings
Entropy Dispersion of spectral distribution of one-axis readings
P1 Amplitude of the 1st highest peak of one-axis readings
P2F Frequency of the 2nd highest peak of one-axis readings
P2 Amplitude of the 2nd highest peak of one-axis readings
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Fig. 9. EER, FAR and FRR for DeFFusion on different features with different classifiers.
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Table 7. EER, FAR, and FRR (%) with SD on Different Features

Scheme EER (SD) FAR (SD) FRR (SD)
DeFFusion 1.00 (1.03) 1.42 (1.26) 0.75 (0.99)
OC-SVM 9.00 (3.22) 8.96 (3.21) 9.04 (3.24)
kNN 11.08 (3.19) 11.42 (3.38) 10.58 (3.22)
RF 10.54 (3.49) 10.54 (3.46) 10.50 (3.53)
DT 16.08 (4.72) 16.33 (4.81) 15.29 (4.86)
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Fig. 10. EER, FAR and FRR for DeFFusion on different classifiers.

with Fig. 9), where DT demonstrates the most improvements, with the margins of 12.43%, 12.00%
and 12.00% for the EER, FAR and FRR, respectively (compared with Table 7). Then, DeFFusion
outperforms the other three classifiers in the EER and FRR, with margins of 0.02% and 0.04% at
least, respectively. CNN-RF shows a slightly better FAR of 1.17%, but the corresponding SD of 1.31%
is slightly higher than that of 1.26% for DeFFusion.

6.5 Accuracy on Unseen Users
To evaluate the performance of OC-SVM classifier on unseen users, we calculate the DeFFusion
accuracy with different pre-trained classifiers. With the collected dataset consisting of 95 users, we
randomly select (95 −𝑚) users (unseen users) to train the OC-SVM classifier and the rest𝑚 users
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Table 8. EER, FAR, and FRR (%) with SD on Different Classifiers

Classifier EER (SD) FAR (SD) FRR (SD)
DeFFusion 1.00 (1.03) 1.42 (1.26) 0.75 (0.99)
CNN-kNN 1.29 (0.92) 1.71 (1.08) 0.79 (0.81)
CNN-RF 1.02 (1.29) 1.17 (1.31) 0.83 (1.30)
CNN-DT 3.65 (2.86) 4.33 (3.40) 3.29 (2.46)

Table 9. EER, FAR and FRR (%) with SD on Different Number of Unseen Users.

Unseen User 20 30 40 50 60 70
EER(SD) 4.23 (1.87) 2.40 (1.54) 2.38 (1.45) 2.15 (1.17) 1.83 (0.96) 1.92 (1.06)
FAR(SD) 4.00 (1.87) 2.71 (1.54) 2.92 (1.49) 2.92 (1.57) 3.25 (1.46) 3.31 (1.68)
FRR(SD) 4.25 (1.96) 2.46 (1.74) 1.83 (1.57) 1.04 (1.01) 0.63 (0.95) 0.33 (0.82)

are used to test it. For classifier training, we also exploit the ten-fold cross-validation on training
data of (95 −𝑚) users, where one of (95 −𝑚) users is randomly selected as the legitimate user and
the rest (95 −𝑚 − 1) are used as impostors. To generalize the DeFFusion accuracy, we assign the
number of unseen users as (95 −𝑚) = 20, 30, 40, 50, 60, 70, respectively. We present the box plots of
the EER, FAR, and FRR for DeFFusion on different number of unseen users in Fig. 11. As illustrated
in Fig. 11(a), the EER gradually decreases as the increase of the unseen user number until 60 and
then slightly increases on 70. The FAR in Fig. 11(b) gradually rises as the growth of the unseen
users from 30 and the FRR generally decreases as the unseen users grow in Fig. 11(c). In addition,
Table 9 lists the mean EER, FAR, FRR with SD on different number of unseen users. As depicted in
Table 9, when we select 60 unseen users to train the OC-SVM classifier and the rest 35 to test it,
DeFFusion achieves the best accuracy with 1.83% EER, 3.25% FAR, and 0.63% FRR. However, with
20 unseen users, DeFFusion receives the lowest accuracy with 4.23% EER, 4.00% FAR, and 4.25%
FRR, respectively.

6.6 Time Efficiency
To evaluate DeFFusion performance in the authentication phase, we compute the time cost for
the designed CNN on feature extraction and the OC-SVM classifier on classification, respectively.
We deployed DeFFusion on Samsung Galaxy S4 smartphones with the trained CNN and OC-
SVM classifier. Note that the CNN extractor and OC-SVM classifier are trained in the enrollment
phase. After setting up the DeFFusion parameters of 5-second window size and 1000 data size,
we measure the average time for DeFFusion conducting an authentication to be less than 20 ms,
where the designed CNN on feature extraction spends roughly 15.2 ms and the OC-SVM consumed
approximately 3 ms. Therefore, considering the window size of 5 seconds, the time for DeFFusion
executing a continuous authentication is roughly 5 seconds.

6.7 Comparison with Representative Authentication Methods
To compare DeFFusion with the state-of-the-art authentication methods: FinAuth [40], SCANet
[25], HMOG [54], and Multi-Motion [38], we analyze the difference between DeFFusion and these
representative methods from the aspects of sensor source, feature extraction methods, participants’
number in experiments, classifiers, and authentication performance in terms of the accuracy and
time, as illustrated in Table 10. FinAuth and SCANet utilize CNN-extracted features (without
feature fusion) to train local outlier factor (LOF) and OC-SVM classifiers, but both achieve lower
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Fig. 11. EER, FAR and FRR for DeFFusion on different number of unseen users.

Table 10. Comparison with Representative Authentication Methods.

Method Sensor Feature Participant Classifier Authentication
Accuracy Time

DeFFusion Acc., Gyr. CNN-extracted 95 OC-SVM 1.00% EER ∼5s
FinAuth Acc., Gyr., Mag. CNN-extracted 90 LOF 97.99% BAC ∼713ms
SCANet Acc., Gyr. CNN-extracted 100 OC-SVM 2.35% EER ∼3s
HMOG Acc., Gyr., Mag. HMOG 100 Scaled Manhattan 7.16% EER ∼60s
Multi-Motion Acc., Gyr., Mag., Ori. Descriptive and intensive 102 HMM 4.74% EER ∼8s

accuracy of 97.99% BAC and 2.35% EER, respectively. Moreover, HMOG and Multi-Motion exploit
the designed features of the hand movement, orientation, and grasp (HMOG), and descriptive and
intensive features to train scaled Manhattan and hidden Markov model (HMM) classifiers, and reach
lower accuracy (7.16% and 4.74%) and take longer authentication time (60s and 8s), respectively.
With the fused CNN-extracted features, DeFFusion achieves the best accuracy of 1.00% EER and
approximately 5s time delay.
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7 RELATEDWORK
In this section, we provide a literature review on deep learning in recognition systems and biometric
fusion in recognition systems, respectively.

7.1 Deep Learning in Recognition Systems
Deep learning involves stackingmultiple layers of learning algorithms to approximate highly nonlin-
ear functions, which enables deep learning algorithms to learn hierarchical representations/features
from data for recognition systems [55].
Deep learning approaches for the various biometric modalities can be broadly categorized

into physiological biometrics (e.g., fingerprint [8, 56], face [9, 57], palmprint [58], and iris [26])
and behavioral biometrics (e.g., voice [18], signature [19, 20], gait [14, 21], and keystroke [22]).
Specifically, for deep learning in physiological biometrics, the authors in [56] proposed an automated
latent fingerprint recognition algorithm that utilized a CNN for ridge flow estimation and minutiae
descriptor extraction, and extracted complementary templates to represent the latent. In [57], the
authors proposed amultitask, parts-based CNN for estimating attributes to enable continuousmobile
device authentication, where deep and wide variations of two CNNs were trained: BinaryCNNs
that were trained on a single attribute and MultiCNNs that were trained on multiple attributes.
The authors in [58] used a two-layer deep scattering CNN for palmprint recognition, where
scattering networks were similar to CNNs, except that they used predefined wavelet transform
filters rather than learning filters from data. In [26], the authors used two deep CNN architectures
for iris recognition, one with eight convolutional layers and another with five convolution and
two inception layers. Although deep learning is effective, these physiological biometrics-based
approaches require direct user participation in the process of the authentication. For deep learning
in behavioral biometrics, the authors in [18] proposed an integrated deep learning system that
provided a verification score given few reference utterances and a test utterance. In [19], the authors
proposed an online signature verification framework based on deep convolutional Siamese network,
which automatically extracted robust feature descriptions based on metric-based loss function.
The authors in [20] exploited RNNs for the sequential nature of online verification by training a
two-layer RNN with a length normalized path signature descriptor as input and triplet loss. In [21],
the authors proposed to use CNNs and multi-task learning model to identify human gait and to
predict multiple human attributes simultaneously. The authors in [22] exploited CNNs to derive
discriminative characteristics from the typing patterns of subjects entering personal identification
numbers based on CNNs. However, most of these behavioral biometrics-based approaches consisting
of many layers and channels require much computational budget.
Different from these representative deep-learning recognition systems, we specially design a

light-weight and effective CNN architecture to learn and extract motion sensor features for mobile
user authentication without their direct involvement.

7.2 Biometric Fusion in Recognition Systems
Multi-biometric recognition systems utilize the principle of fusion to combine information from
multiple sources in order to improve recognition accuracy whilst addressing some of the limitations
in single-biometric systems [28].
Biometric fusion strategies can generally be divided into sensor-level fusion [30], feature-level

fusion [27, 29], score-level fusion [31], and decision-level fusion [32]. Concretely, in [30], the
authors introduced a multimodal biometric system based on face and palmprint fusion with bit-
plane decomposition approach. The authors in [27] applied maxout units into the CNNs to generate
a compact representation for iris and periocular biometrics in images and then fused the two
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modalities of image features through a weighted concatenation for mobile recognition. In [29], the
authors used the serial fusion and parallel fusion to directly combine the designed features for user
authentication. Inspired by the feature-level fusion, we balance two types of CNN-extracted sensor
features by receiving the best accuracy to fuse the features of the accelerometer and gyroscope for
continuous authentication in our work. The authors in [31] utilized CNNs to extract pores from
raw fingerprint patches to aid automatic fingerprint identification, which were combined with
minutiae and ridge patterns extracted using conventional approaches and fused using a unique
matching scheme. In [32], the authors proposed a security analysis framework that combined
information-theoretic approach with computational security, and constructed a fingerprint-based
multibiometric cryptosystem using decision level fusion.

Although biometric fusion strategies have been used in these excellent recognition systems, we
differ in that we utilize a balanced feature concatenation to fuse the motion-sensor features in a
CNN-based continuous authentication system on smartphones.

8 CONCLUSION AND LIMITATION
In this paper, we propose DeFFusion, a CNN-based continuous authentication system using deep
feature fusion for smartphone users, by leveraging the accelerometer and gyroscope ubiquitously
built into smartphones. DeFFusion is composed of five modules: data collection, data preprocessing,
deep feature extraction, classification, and authentication. Based on the collected data, DeFFusion
first converts the time domain data into frequency domain data using the fast Fourier transform
and then inputs both of them into a designed CNN, respectively. With the CNN-extracted features,
DeFFusion conducts the feature selection utilizing factor analysis and exploits balanced feature
concatenation to fuse these deep features. Based on the one-class SVM classifier, DeFFusion au-
thenticates the current users as a legitimate user or an impostor. To validate the authentication
performance of DeFFusion, we conduct extensive experiments in terms of impact of training data
size and time window size, accuracy comparison on different features and different classifiers,
accuracy on unseen users and time efficiency, and comparison with representative authentication
methods. The experimental results show that DeFFusion performs the best accuracy on different
features (CNN-extracted features vs designed features) with different classifiers (OC-SVM, kNN,
RF, and DT) and on different classifiers (kNN, RF, and DT) with the same CNN-extracted features,
by achieving 1.00% EER, 1.42% FAR and 0.75% FRR, in 5-second time window size.
Although we take significant efforts to validate the effectiveness of DeFFusion, there are some

limitations in our studies and experiments. For example, different holding postures may incur
different patterns of motion sensor data, which undermine the usability and robustness of our ap-
proach. The dataset we collected was from limited subjects that my cause unbalanced demographic
characteristics, such as genders, regions, and ages.

ACKNOWLEDGMENTS
We thank the subjects for collecting the experimental data and appreciate the anonymous reviewers
for their valuable suggestions. This work was partially supported by the National Natural Science
Foundation of China under Grant 62072061 and by the Fundamental Research Funds for the Central
Universities under Grant 2021CDJQY-026.

REFERENCES
[1] Christian Montag, Alexander Markowetz, Konrad Blaszkiewicz, Ionut Andone, Bernd Lachmann, Rayna Sariyska, Boris

Trendafilov, Mark Eibes, Julia Kolb, Martin Reuter, et al. Facebook usage on smartphones and gray matter volume of
the nucleus accumbens. Behav. Brain Res., 329:221–228, 2017.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: September 2021.



DeFFusion: CNN-based Continuous Authentication Using Deep Feature Fusion 1:19

[2] Mingyang Zhang, Tong Li, Hancheng Cao, Yong Li, Sasu Tarkoma, and Pan Hui. “what apps did you use?”: Under-
standing the long-term evolution of mobile app usage. In The Web Conference (WWW’20), pages 66–76, 2020.

[3] Milad Taleby Ahvanooey, Qianmu Li, Mahdi Rabbani, and Ahmed Raza Rajput. A survey on smartphones security:
Software vulnerabilities, malware, and attacks. Int. J. Adv. Comput. Sci. Appl., 8(10), 2017.

[4] Youngho Kim, Tae Oh, and Jeongnyeo Kim. Analyzing user awareness of privacy data leak in mobile applications.
Mob. Inf. Syst, 2015:50–57, 2015.

[5] Vishal M Patel, Rama Chellappa, Deepak Chandra, and Brandon Barbello. Continuous user authentication on mobile
devices: Recent progress and remaining challenges. IEEE Signal Process. Mag., 33(4):49–61, 2016.

[6] Toan Van Nguyen, Napa Sae-Bae, and Nasir Memon. Draw-a-pin: Authentication using finger-drawn pin on touch
devices. Comput. Secur., 66:115–128, 2017.

[7] Weizhi Meng, Liqiu Zhu, Wenjuan Li, Jinguang Han, and Yan Li. Enhancing the security of fintech applications with
map-based graphical password authentication. Future Gener. Comput. Syst., 101:1018–1027, 2019.

[8] Xinchen Zhang, Yafeng Yin, Lei Xie, Hao Zhang, Zefan Ge, and Sanglu Lu. Touchid: User authentication on mobile
devices via inertial-touch gesture analysis. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 4(4), December 2020.

[9] Stepan Komkov and Aleksandr Petiushko. Advhat: Real-world adversarial attack on arcface face id system. In 2020
25th International Conference on Pattern Recognition (ICPR’20), pages 819–826, 2021.

[10] Adam J. Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and Jonathan M. Smith. Smudge attacks on smartphone
touch screens. In the 4th USENIX Conference on Offensive Technologies (WOOT’10), page 1–7, 2010.

[11] Upal Mahbub, Vishal M Patel, Deepak Chandra, Brandon Barbello, and Rama Chellappa. Partial face detection for
continuous authentication. In 2016 IEEE International Conference on Image Processing (ICIP’16), pages 2991–2995. IEEE,
2016.

[12] Niinuma Kawasaki, Unsang Park, and Anil K. Jain. Soft biometric traits for continuous user authentication. IEEE Trans.
Inf. Forens. Secur., 5(4):771–780, 2010.

[13] Ge Peng, Gang Zhou, David T. Nguyen, Xin Qi, Qing Yang, and Shuangquan Wang. Continuous authentication with
touch behavioral biometrics and voice on wearable glasses. IEEE Trans. Hum. Mach. Syst., 47(3):404–416, 2017.

[14] Muhammad Muaaz and René Mayrhofer. Smartphone-based gait recognition: From authentication to imitation. IEEE
Trans. Mob. Comput., 16(11):3209–3221, 2017.

[15] Yong Jin, Masahiko Tomoishi, and Satoshi Matsuura. An in-depth concealed file system with gps authentication
adaptable for multiple locations. In 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC’17),
volume 1, pages 608–613, 2017.

[16] Hailong Hu, Yantao Li, Zhangqian Zhu, and Gang Zhou. Cnnauth: Continuous authentication via two-stream
convolutional neural networks. In 2018 IEEE International Conference on Networking, Architecture and Storage (NAS’18),
pages 1–9. IEEE, 2018.

[17] Mohammed Abuhamad, Tamer Abuhmed, David Mohaisen, and Dae Hun Nyang. Autosen: Deep-learning-based
implicit continuous authentication using smartphone sensors. IEEE Internet Things J., 7(6):5008–5020, 2020.

[18] Georg Heigold, Ignacio Moreno, Samy Bengio, and Noam Shazeer. End-to-end text-dependent speaker verification. In
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’16), pages 5115–5119, 2016.

[19] Chandra Sekhar Vorugunti, Guru Devanur S., Prerana Mukherjee, and Viswanath Pulabaigari. Osvnet: Convolutional
siamese network for writer independent online signature verification. In 2019 International Conference on Document
Analysis and Recognition (ICDAR’19), pages 1470–1475, 2019.

[20] Songxuan Lai, Lianwen Jin, and Weixin Yang. Online signature verification using recurrent neural network and
length-normalized path signature descriptor. In 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR’17), volume 01, pages 400–405, 2017.

[21] Chao Yan, Bailing Zhang, and Frans Coenen. Multi-attributes gait identification by convolutional neural networks. In
2015 8th International Congress on Image and Signal Processing (CISP’15), pages 642–647, 2015.

[22] Emanuele Maiorana, Himanka Kalita, and Patrizio Campisi. Deepkey: Keystroke dynamics and cnn for biometric
recognition on mobile devices. In 2019 8th European Workshop on Visual Information Processing (EUVIP’19), pages
181–186, 2019.

[23] Mario Parreno Centeno, Aad van Moorsel, and Stefano Castruccio. Smartphone continuous authentication using deep
learning autoencoders. In 2017 15th Annual Conference on Privacy, Security and Trust (PST’17), pages 147–1478. IEEE,
2017.

[24] Chris Xiaoxuan Lu, Bowen Du, Peijun Zhao, Hongkai Wen, Yiran Shen, Andrew Markham, and Niki Trigoni. Deepauth:
in-situ authentication for smartwatches via deeply learned behavioural biometrics. In 2018 ACM International
Symposium on Wearable Computers (ISWC’18), pages 204–207, 2018.

[25] Yantao Li, Hailong Hu, Zhangqian Zhu, and Gang Zhou. Scanet: Sensor-based continuous authentication with
two-stream convolutional neural networks. ACM Trans. Sen. Netw., 16(3), July 2020.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: September 2021.



1:20 Y. Li et al.

[26] Abhishek Gangwar and Akanksha Joshi. Deepirisnet: Deep iris representation with applications in iris recognition
and cross-sensor iris recognition. In 2016 IEEE International Conference on Image Processing (ICIP’16), pages 2301–2305,
2016.

[27] Qi Zhang, Haiqing Li, Zhenan Sun, and Tieniu Tan. Deep feature fusion for iris and periocular biometrics on mobile
devices. IEEE Trans. Inf. Forens. Secur., 13(11):2897–2912, 2018.

[28] Maneet Singha, Richa Singha, and Arun Rossb. A comprehensive overview of biometric fusion. Inf. Fusion, 52:187–205,
2019.

[29] Yantao Li, Bin Zou, Shaojiang Deng, and Gang Zhou. Using feature fusion strategies in continuous authentication on
smartphones. IEEE Internet Comput., 24(2):49–56, 2020.

[30] Therry Z. Lee and David B. L. Bong. Face and palmprint multimodal biometric system based on bit-plane decomposition
approach. In 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW’16), pages 1–2, 2016.

[31] Hong-Ren Su, Kuang-Yu Chen, Wei JingWong, and Shang-Hong Lai. A deep learning approach towards pore extraction
for high-resolution fingerprint recognition. In 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP’17), pages 2057–2061, 2017.

[32] Cai Li, Jiankun Hu, Josef Pieprzyk, and Willy Susilo. A new biocryptosystem-oriented security analysis framework
and implementation of multibiometric cryptosystems based on decision level fusion. IEEE Trans. Inf. Forens. Secur.,
10(6):1193–1206, 2015.

[33] Mohammed Abuhamad, Ahmed Abusnaina, DaeHun Nyang, and David Mohaisen. Sensor-based continuous authenti-
cation of smartphones’ users using behavioral biometrics: A contemporary survey. IEEE Internet Things J., 8(1):65–84,
2021.

[34] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolutional neural
network for mobile devices. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’18), pages
6848–6856, 2018.

[35] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for efficient cnn
architecture design. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors, The 15th
European Conference on Computer Vision (ECCV’18), pages 122–138, Cham, 2018. Springer International Publishing.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’16), pages 770–778, 2016.

[37] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’18),
pages 4510–4520, 2018.

[38] Chao Shen, Yuanxun Li, Yufei Chen, Xiaohong Guan, and Roy A. Maxion. Performance analysis of multi-motion
sensor behavior for active smartphone authentication. IEEE Trans. Inf. Forens. Secur., 13(1):48–62, 2018.

[39] Chao Shen, Tianwen Yu, Sheng Yuan, Yunpeng Li, and Xiaohong Guan. Performance analysis of motion-sensor
behavior for user authentication on smartphones. Sensors, 16(3):345, 2016.

[40] Cong Wu, Kun He, Jing Chen, Ziming Zhao, and Ruiying Du. Liveness is not enough: Enhancing fingerprint
authentication with behavioral biometrics to defeat puppet attacks. In 29th USENIX Security Symposium (USENIX
Security’20), pages 2219–2236. USENIX Association, August 2020.

[41] Alexander Senf, Xue-wen Chen, and Anne Zhang. Comparison of one-class svm and two-class svm for fold recognition.
In International Conference on Neural Information Processing (ICONIP’06), pages 140–149. Springer, 2006.

[42] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In 19th International Conference on
Computational Statistics (COMPSTAT’10), pages 177–186. Springer, 2010.

[43] Pei-Yuan Wu, Chi-Chen Fang, Jien Morris Chang, and Sun-Yuan Kung. Cost-effective kernel ridge regression imple-
mentation for keystroke-based active authentication system. IEEE Trans. Cybernet., 47(11):3916–3927, 2016.

[44] Mohsen Ali Alawami, William Aiken, and Hyoungshick Kim. Lightlock: user identification system using light intensity
readings on smartphones. IEEE Sens. J., 20(5):2710–2721, 2019.

[45] Xiangmao Chang, Cheng Peng, Guoliang Xing, Tian Hao, and Gang Zhou. Isleep: A smartphone system for unobtrusive
sleep quality monitoring. ACM Trans. Sen. Netw., 16(3), July 2020.

[46] Lingjun Li, Xinxin Zhao, and Guoliang Xue. Unobservable re-authentication for smartphones. In 20th Annual Network
& Distributed System Security Symposium (NDSS’13), volume 56, pages 57–59, 2013.

[47] Arsalan Mosenia, Susmita Sur-Kolay, Anand Raghunathan, and Niraj K Jha. Caba: Continuous authentication based
on bioaura. IEEE Trans. Comput., 66(5):759–772, 2016.

[48] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Abdelzaher. Deepsense: A unified deep learning
framework for time-series mobile sensing data processing. In 26th International Conference on World Wide Web
(WWW’17), pages 351–360, 2017.

[49] Ivan Martinovic, Kasper Rasmussen, Marc Roeschlin, and Gene Tsudik. Authentication using pulse-response biometrics.
Commun. ACM, 60(2):108–115, 2017.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: September 2021.



DeFFusion: CNN-based Continuous Authentication Using Deep Feature Fusion 1:21

[50] Huan Feng, Kassem Fawaz, and Kang G Shin. Continuous authentication for voice assistants. In 23rd Annual
International Conference on Mobile Computing and Networking (MobiCom’17), pages 343–355, 2017.

[51] L. E. Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.
[52] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.
[53] Torgyn Shaikhina, Dave Lowe, Sunil Daga, David Briggs, Robert Higgins, and Natasha Khovanova. Decision tree and

random forest models for outcome prediction in antibody incompatible kidney transplantation. Biomed. Signal Process.,
52:456–462, 2019.

[54] Zdeňka Sitová, Jaroslav Šeděnka, Qing Yang, Ge Peng, Gang Zhou, Paolo Gasti, and Kiran S. Balagani. Hmog: New
behavioral biometric features for continuous authentication of smartphone users. IEEE Trans. Inf. Forens. Secur.,
11(5):877–892, 2016.

[55] Kalaivani Sundararajan and Damon L. Woodard. Deep learning for biometrics: A survey. ACM Comput. Surv., 51(3),
May 2018.

[56] Kai Cao and Anil K. Jain. Automated latent fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 20,
41(4):788–800, 2019.

[57] Pouya Samangouei and Rama Chellappa. Convolutional neural networks for attribute-based active authentication on
mobile devices. In 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS’16),
pages 1–8, 2016.

[58] Shrevin Minaee and Yao Wang. Palmprint recognition using deep scattering network. In 2017 IEEE International
Symposium on Circuits and Systems (ISCAS’17), pages 1–4, 2017.

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: September 2021.


	Abstract
	1 Introduction
	2 DeFFusion Overview
	3 Data Collection and Preprocessing
	3.1 Data Collection
	3.2 Data Preprocessing

	4 Deep Feature Extraction
	4.1 Deep Feature Learning
	4.2 Deep Feature Selection
	4.3 Deep Feature Fusion

	5 Authentication with OC-SVM
	6 Performance Evaluation
	6.1 Experimental Settings
	6.2 Impact of Training Dataset Size and Time Window Size
	6.3 Accuracy Comparison on Different Features
	6.4 Accuracy Comparison on Different Classifiers
	6.5 Accuracy on Unseen Users
	6.6 Time Efficiency
	6.7 Comparison with Representative Authentication Methods

	7 Related Work
	7.1 Deep Learning in Recognition Systems
	7.2 Biometric Fusion in Recognition Systems

	8 Conclusion and Limitation
	Acknowledgments
	References

