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Abstract—Recent research shows that when multiple dynamic
adaptive streaming over HTTP (DASH) clients stream Internet
videos simultaneously via a wireless access point (AP), they may
experience poor quality of experience (QoE). This is because
DASH clients in a wireless local area network (WLAN) indepen-
dently estimate current available bandwidth and make bitrate
selections. Lacking coordination in the WLAN causes competition
for downlink bandwidth, introducing unnecessary bandwidth
fluctuations especially when some clients start streaming. Such
bandwidth fluctuations lead to cascading video bitrate changes
on each stream, resulting in dramatic video quality variations,
in the worst case, for example, video stalls. To address this
problem, it is essential to mitigate the bandwidth competition
by coordinating DASH clients in the WLAN. In this paper, we
propose a QoE control framework at the AP to dynamically
allocate bandwidth for each DASH client based on their real-time
streaming performance feedback. To deal with uncertainty in
Internet traffic besides streaming traffic, we design robust control
algorithms to minimize stalls while balancing bandwidth sharing
among clients. We implement and evaluate our solution with
real systems under various settings. Extensive evaluation results
show that our design significantly reduces average video stalling
duration by 57.1% and improves the average video bitrate by
42.0% for all clients when compared to state-of-the-art solutions.

I. INTRODUCTION

Internet video traffic accounts for an overwhelming majority
of Internet traffic. A recent study shows that 82.0% of all IP
traffic will be video in 2021 [1]. Existing video streaming
services, such as YouTube and Netflix, rely on the Dynamic
Adaptive Streaming over HTTP (DASH) protocol to transfer
data from video content servers to clients over the Internet. The
DASH protocol enables high-quality video content delivery,
adapting to changing network conditions via end-to-end bitrate
adjustment.

Recent research shows that when multiple DASH clients
stream Internet videos simultaneously via a wireless access
point (AP), they may experience poor quality of experi-
ence [2], [3]. This is because co-existed DASH clients in-
dependently estimate current available bandwidth and make
bitrate selections. The lack of coordination in the wireless
local area network also leads to bandwidth fluctuations in each
stream, especially when clients start or finish streaming. Such
rapid bandwidth fluctuations usually cause cascading video
bitrate selection changes at these DASH clients, resulting in
drastic video quality variations, in the worst case, for example,
video stalls. Although DASH has very effective end-to-end
adaptation mechanisms that allow it to be flexible and robust
to various Internet traffic, it is not designed to address such

local bandwidth competitions due to their independent and
asynchronous adaptation.

To address this problem, it is essential to resolve bandwidth
competition among DASH clients in the wireless local area
network. Traditional research on DASH focuses on designing
adaptive bitrate selection algorithms [4] [5] [6] [7] [8] [9],
but such solutions are usually based on independent end-to-
end closed-loop adaptation between one client and the video
content server, which does not coordinate among multiple
clients. Some recent research uses different approaches to
achieve better coordination and shows promising results. [10]
introduces a traffic shaping algorithm that works at the content
server, whereas [5] and [11] present control-theoretic designs
on the client-side. In [12], authors directly modify TCP to
improve fair sharing. These works require direct modification
on either the server or the client software, so they cannot
be easily deployed with various commercial DASH players
and platforms with their own private implementations. [13]
assumes that every client is aware that the network is shared
and does not increase its video quality if others cannot do, and
[14] demonstrates that heuristic-based traffic shaping at home
network gateway can reduce unstable conditions among multi-
clients. Our work takes a step further to provide a quality of
experience control framework at the wireless access point for
coordinating multiple DASH clients, which requires no direct
modification on data traffic between servers and clients.

In our design, a controller located at the AP dynamically
optimizes the quality of experience (QoE) metrics of DASH
clients based on their real-time performance feedback. The
objectives of the controller include but are not limited to
minimize the stall duration and balance the bandwidth sharing
among users. Our control design employs DASH models to
predict the future bitrate and bandwidth of each client based
on their real-time bitrate selection and buffer health data
generated by DASH clients. With the prediction, the controller
adjusts the bandwidth allocation for each user at the AP. This
design also allows a network manager to specify QoE metrics
and sharing policies for different users according to their
needs so that they can better regulate multimedia streaming
traffic in the local network without unfairly compromising
bandwidth for individual users. To deal with various Internet
traffic besides streaming traffic from AP users, we design a
robust control algorithm to balance bandwidth sharing among
clients while minimizing video stall duration under uncertain
bandwidth.



Our solution has three major benefits: i) our solution is
transparent to video content servers and can be integrated into
the wireless local area networks without direct modifications
on the data content and DASH player software on the user
side. ii) As recent research suggests the possibility to predict
bandwidth variations [15] and DASH parameters [16], our
model predictive control algorithms have the potential to
adapt to different streaming clients and applications. iii) Our
design allows local network controller to accurately regulate
bandwidth usage among users without dramatic interruptions
of their online streaming videos.

Our control solution is implemented in real systems and
our design is compared with existing AP based control de-
sign [14] and other heuristic solutions under different settings,
e.g., different available bandwidths, different number of clients
(DASH and non-DASH), different control parameters, etc. The
experimental results show that our solution can significantly
reduce average video stall duration by 57.1% and improves
average video bitrate by 42.0% for all users.

The contributions of this work are summarized as follows:
• Our control framework utilizes real-time performance

data from each client to dynamically mitigate bandwidth
competition and optimize the quality of experience of
multiple DASH clients in a local area network at the AP.

• Our multi-objective control formulation considers both
QoE metrics and bandwidth sharing policies, which al-
lows a network manager to flexibly regulate local network
bandwidth and meet various application needs.

• Our robust control algorithm design optimizes streaming
bandwidth sharing under uncertain Internet traffic in the
local area wireless network.

• Extensive real system evaluations show that our design
significantly reduces average video stall duration by
57.1% and improves the average video bitrate by 42.0%
for all users when compared to state-of-the-art solutions.

The rest of the paper is organized as follows: Section II in-
troduces the background knowledge of DASH and motivation
of our research problem. Section III describes the framework
of the model predictive based QoE control system. We also
propose the problem formulation and a model predictive
control (MPC) algorithm. The experiment results are shown in
Section IV, and more discussions about our design are shown
in Section V. Related works are discussed in Section VI. Main
results are summarized in Section VII.

II. BACKGROUND AND MOTIVATION

A. DASH Model

DASH is an adaptive bitrate streaming technology which
enables users to stream videos over the Internet delivered from
conventional HTTP web servers [17]. Basically, a video is
split into multiple segments (chunks) with a uniform interval
of playback time. Every segment (chunk) is encoded with
different discrete video bitrate that determines the size and
quality of video: the higher the bitrate, the better the quality
and the larger the file size [18]. As shown in Figure 1, all
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Fig. 1: Abstract model of DASH client
the video chunks and multiple copies of every chunk are
stored on the DASH server. When one DASH client wants
to download one chunk, it firstly sends one HTTP GET
request to the DASH server, in which the bitrate of the
chunk is also specified. Then the DASH player replies the
corresponding copy of the chunk to the client. After receiving
all the data of the current chunk, the HTTP access client
sends one new request for the next chunk to the server. The
DASH bitrate control engine in the client automatically and
adaptively chooses the bitrate level of the next chunks to be
downloaded with two inputs: buffer occupancy and predicted
throughput [19] [6].

B. Motivation

We conducted an experiment to study the performances
of Internet video streaming with multiple DASH clients in
a wireless local area network. In this experiment, there are
two users with two wireless devices and one access point
(AP). The first user connected to the AP and watched a
DASH video, and then the second user connected with the
same AP and watched the same video 15 seconds later. Both
of them used the same DASH player GPAC [20] and the
default setting is provided in Section IV-A. We measured the
downlink throughput, buffer length and video chunk bitrate
of both DASH clients and plotted them in Figure 2. From
this figure, we have the following observations: (i) the first
user experienced two stalls during time interval (28,31) and
(48,54) as highlighted by the red rectangle in the middle sub-
figure; (ii) there exists bandwidth competition between two
users as shown in the first sub-figure, which results in the
stalls as highlighted by the red rectangle in the upper sub-
figure; (iii) Due to the bandwidth competition, there exists
unfair video quality of two users even though they use the
same video player and watch the same video streaming after
the 40th second.

To reduce the impact of bandwidth competition at the AP,
we tested a simple load balancing solution (LBS) in the same
settings. The experimental results are shown in Figure 3. From
this figure, we have the following observations: (i) stalls still
exist (highlighted by the red rectangles) since the allocated
bandwidth doesn’t match the downloading bitrate, e.g., the
first stall exists when the chunk bitrate is 1850 kbps and
the available bandwidth is 1100 kbps; (ii) only the existing
user is affected with stalls and cascading decrease and the
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Fig. 2: Two DASH Clients Share a Wireless Link
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Fig. 3: Two DASH Clients with load balance solution
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Fig. 4: System architecture overview

new user doesn’t get affected. The existing client experienced
stalls since its bandwidth dropped rapidly as the bandwidth
share of the other client increased. The new client did not
experience any stalls because the first chunk was requested
at a low bitrate, and its bitrate then increased gradually to
the higher ones below its bandwidth share; (iii) if bandwidth
allocation can be dynamically adjusted according to real-time
bitrate selection, it will reduce stall duration. For example, at
the second stall, the first chunk bitrate is 1200 kbps which is
larger than 1100 kbps and there is not enough content in the
buffer, so stalling exists. Meanwhile, the buffer length of the
second user is healthy, around 10 seconds. If more bandwidth
could be allocated to the first user during the second stall, the
stalling duration will be reduced, and it will not influence the
overall bitrate of the second user.

Stalls happen mostly in unstable conditions such that the
prediction of future throughput is inaccurate. For example,
when one or more new users start streaming, and when the
downlink bandwidth at the AP is varying dramatically. It is
noted that this type of problems can occur in wired local area
networks too.

III. QOE CONTROL FRAMEWORK AT AP

A. Framework overview

The overview of our control system design is shown in
Figure 4. The main idea is to allocate downlink bandwidth
among clients simultaneously at the AP by one controller,
which coordinates bandwidth adaptations of all clients to
optimize their QoE in terms of stall duration and provide

fair sharing of bandwidth. Here we show the feedback con-
trol loop between the AP and one representative client i.
There are two controllers in our system: the first one is the
DASH bitrate control engine, which is specified by DASH
players, and the second one is designed for deciding the
bandwidth for every client and implemented at the AP. Our
design allows close interactions between two controllers: (i)
Bandwidth controller affects the decisions of bitrate control
engine implicitly, i.e., making bitrate control engine select
bitrate level passively by adjusting downlink bandwidth. The
downlink bandwidth determines the predicted throughput and
buffer occupancy at DASH player, which are two keys input
parameters of bitrate control engine to select video bitrate
level. (ii) Bitrate control engine influences the bandwidth
allocation decisions explicitly. According to the chunk size
decided by the bitrate control engine, our bandwidth control
should actively determine bandwidth allocation to avoid stalls
and reduce the cost of unfair bandwidth sharing.

In our system, there is no modification of the users’ DASH
players. Therefore, to make bitrate control engine of DASH
players select the chunk bitrate passively, controller at the
AP should understand the selection logic behind the players’
bitrate controller. One predictive bitrate selection model is
proposed and embedded at the AP to estimate the chunk
bitrate based on the two inputs: control decisions related buffer
occupancy and throughput. A monitor program is deployed at
each client to collect their real-time information as feedback
to the controller, i.e., current buffer level and whether one new
chunk request is sent, and the requested bitrate. This monitor
collects the information of DASH players in the application
layer, e.g., YouTube’s IFrame API provides functions for
accessing this information [21], [22], [23]. This feedback
information is used to correct the prediction error of both
buffer occupancy and current chunk bitrate, which is beneficial
to clients for getting better QoE control. A bandwidth control
unit (BCU) receives the downlink data traffic of all clients
connected to the AP and then allocates the bandwidth of every
client based on the control decisions.

B. System design

In this subsection, we first explain why there exist stalls for
DASH players. Then we introduce the multi-objective control
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Fig. 5: Illustration of DASH player stall

problem formulation. Finally, we describe the model-based
control solution, which periodically computes a solution for
the control problem at the beginning of each update period
based on real-time performance feedback.

1) Why there exist stalls?: Based on our introduction of
DASH protocol in the previous section, video content is
divided into multiple chunks and DASH player downloads
chunk one by one. Therefore, stalls occur when the previous
video chunk has finished playing while the next chunk has
not been downloaded fully. As shown in Figure 5, at the
beginning of downloading chunk h, the buffer length is Bh.
The size of chunk h is denoted as Sh and Ch represents the
average throughput during the download of h-th chunk. DASH
player selects bitrate of the next chunk based on the historical
throughput and current buffer occupancy.

However, in our network scenario, a DASH client does not
know the throughput information of all the other local clients.
The decrease of Ch due to bandwidth competition significantly
increases downloading time Sh/Ch for the next chunk. If
Sh/Ch > Bh, there will be a stall. Such an explanation is
consistent with the observation of the stall from the 22nd to
24th second in Figure 2.

2) Multiple-objective control problem formulation: Quality
of experience (QoE) of DASH video services are usually
evaluated by four major metrics: video bitrate level, video
bitrate variations, stalls (rebuffering) and startup delay. [6]
shows that there exists a trade-off among these four metrics
when the bitrate selection engine decides the bitrate level of
the next chunk. It proposes one model predictive control-based
bitrate selection algorithm to decide the bitrate level for future
several chunks to maximize the sum of weighted four metrics.
According to the experiment results in Section II, we use stall
duration as the representative metric to evaluate the QoE, as
stalls are the most noticeable events in video streaming.

Suppose there are N client and the total available downlink
bandwidth at the AP is W . The time horizon we consider
consists of M time slots and the length of one time slot is T .
The control variable is formulated as Ci[k] representing the
bandwidth allocated to i-th client during time slot k. Let Bi[k]
denote the buffer occupancy of i-th client at the beginning of
time slot k. Si[k] represents the data needed to be downloaded
for i-th client’s current chunk at the beginning of k-th time
slot. Normally, different chunks of the same video can be
played for the same time period, and we assume that one chunk

can be decoded into one L-seconds video.
The total bandwidth allocated to clients during any time slot

k should not exceed the downlink bandwidth constraint W [k],
and we formulate it as:

∑N
i=1 Ci[k] ≤W [k], 1 ≤ k ≤M

Stall duration of one client: We use qi[k] to denote the
stall duration of i-th client during k-th time slot. It is clear
that qi[k] is related to Ci[k], Bi[k], Si[k] and T , and we have
the following analysis:

• If Bi[k] ≥ T , qi[k] = 0. If the buffer length at the start
of time slot k is greater than T , there is no stall.

• If Bi[k] < T and Ci[k] · Bi[k] ≥ Si[k], qi[k] = 0. It
means if current chunk can be downloaded fully before
the buffer is run out, there is also no stall.

• If Bi[k] < T and Ci[k] · Bi[k] < Si[k], qi[k] =
min{Si[k]/Ci[k], T} −Bi[k]. It means that the buffer is
used up before the download of current chunk is finished.

Based on the above analysis, we conclude that:

qi[k] =

(
I(T −Bi[k]) ·

(
min{Si[k]/Ci[k], T} −Bi[k]

))
+

(1)
where (x)+ = max{x, 0} and I(x) = 1 if x > 0, otherwise,
it is 0. Therefore, the total stall duration of N clients during
time horizon, M time slots is: Js =

∑N
i=1

∑M
k=1 qi[k].

Then we study the relation between Bi[k] and Bi[k + 1],
and we analyze it as follows:

• If Si[k] > T ·Ci[k] and qi[k] = 0, Bi[k+1] = Bi[k]−T . It
means that during k-th time slot, the download of current
chunk is not finished and there is no stall.

• If Si[k] > T ·Ci[k] and qi[k] > 0, Bi[k+1] = 0. If there
exists stall and current chunk isn’t downloaded fully, the
buffer level for the time slot k + 1 is 0.

• If Si[k] < T · Ci[k] and qi[k] = 0, Bi[k + 1] = Bi[k]−
T + L, meaning there is no stall and the download of
current chunk is finished, the buffer level increases L.

• If Si[k] < T · Ci[k] and qi[k] > 0, Bi[k + 1] = L −
(T − Bi[k] − qi[k]) = L − T + Bi[k] + qi[k]. If there
exists stall, meanwhile, the chunk is downloaded fully,
only (T − Si[k]/Ci[k]) seconds of video is played.

We conclude that:

Bi[k+1] =
(
Bi[k]+qi[k]−T+L·I(T ·Ci[k]−Si[k])

)
+

(2)

where the initial value Bi[1] (1 ≤ i ≤ N ) is updated based
on the feedback from clients’ player.

Finally, we model the relation between Si[k] and Si[k+1].
If current chunk is not fully downloaded during time slot k,
meaning Si[k] > Ci[k] ·T , there is only remainder of data that
needs to be downloaded, and we have Si[k+1] = Si[k]−Ci[k]·
T . Otherwise, one new chunk is requested. Let Pi[k] be the
bitrate of one chunk if it is requested by i-th client during
time slot k. Under such condition, the relation is:

Si[k + 1] = Pi[k] · L− (T − Si[k]/Ci[k]) · Ci[k]

= Si[k]− Ci[k] · T + Pi[k] · L (3)
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According to the above discussion, the relation between Si[k]
and Si[k + 1] is concluded as:

Si[k+1] = Si[k]−Ci[k]·T+Pi[k]·L·I(T ·Ci[k]−Si[k]) (4)

where Si[1] (1 ≤ i ≤ N ) is updated according to the
feedback from the clients, such as when one chunk request
is sent and what the bitrate is. It is noted that Pi[k] is decided
by the DASH player. According to background introduction
in Section II, a player chooses the bitrate of the next chunk
with two inputs: historical throughput and buffer level. Here,
Pi[k] is estimated by one model, which predicts the player’s
bitrate selection based on the two inputs, and we describe the
model in the following part in detail.

Cost of unfair sharing of bandwidth: Note here we
consider fair sharing of bandwidth among clients as a basic
objective. We could extend our framework to support other
sharing policies. Let pi[k] denote the cost of unfair sharing of
bandwidth for i-th client during time slot k, and it is defined
as:

pi[k] =
∣∣∣Ci[k]−W [k]/N

∣∣∣ (5)

To simplify the equation, let U [k] =W [k]/N . Therefore, the
total cost of unfair sharing of bandwidth is:

Ju =

N∑
i=1

M∑
k=1

pi[k] =

N∑
i=1

M∑
k=1

∣∣∣Ci[k]− U [k]
∣∣∣ (6)

Since there exists a trade-off between two objectives as
discusses in Section II, we define a weight parameter α when
summing up the costs related to both objectives as follows:

min
Ci[k]

Js + αJu =

N∑
i=1

M∑
k=1

(
qi[k] + α · |Ci[k]− U [k]|

)
(7)

s.t.
N∑
i=1

Ci[k] ≤W [k], 1 ≤ k ≤M

Ci[k] ≥ 0, (1), (2), (4)

Although the above problem is a non-convex and non-
linear optimization problem, the state space is limited due
to the discrete bitrate of each client, the limited number of
clients and compaction of bandwidth via binning. Given one
initial state of the system, we can get the optimal control
decisions by enumeration within 1∼2 minutes. In the system
implementation, we first build the decisions table for a limited
number of possible system states and then control bandwidth
dynamically for each client via looking up the table.

3) Robust Optimization with Uncertain Network Traffic: In
the previous problem formulation, we assume that all network
traffic is for video streaming applications. However, other
light network traffic, e.g., reading news, searching and online
shopping, etc, may coexist with video streaming traffic through
the same access point. Due to such uncertain network traffic,
we do not have perfect knowledge of available bandwidth
for video streaming in the local wireless network. Hence,
we discuss a formulation of the robust bandwidth allocation
problem for video streaming with uncertain network traffic. It

is noted that the bandwidth controller at the AP may allocate
fixed bandwidth for heavy network traffic, e.g., FTP, BitTorrent
and teleconference to avoid over-consumption.

Both video and non-video traffic will go through the same
AP simultaneously, which disturbs the bandwidth control of
video streaming applications. Since the network characteristic
of video and non-video streaming traffic is different [15], our
solution first collects the data-trace of every client, e.g., av-
erage throughput during each time slot to differentiate video
and non-video clients in the AP. Then we learn the pattern of
uncertain network traffic disturbing the available bandwidth
for video streaming, e.g., burst traffic from web browsing.
With such uncertain traffic pattern, we can consider the effects
by setting uncertainty parameters. Let W ′l [k] and W ′h[k] be
the historical minimum and maximum bandwidth used by
non-video applications, and the available bandwidth for video
streaming is denoted by an inequality: Wl[k] ≤W [k] ≤Wh[k]
(Wl[k] =W −W ′h[k],Wh[k] =W −W ′l [k]).

By introducing interval uncertainty to available bandwidth,
we have the following robust optimization problem:

min
Ci[k]

max
W [k]

Js + αJu (8)

=

N∑
i=1

M∑
k=1

(
qi[k] + α ·

∣∣Ci[k]− U [k]
∣∣)

s.t. Wl[k] ≤W [k] ≤Wh[k],

N∑
i=1

Ci[k] ≤W [k]

In the above robust optimization formulation, the max
function denotes the worst-case performance when available
bandwidth is within the range, and we try to minimize the
worst-case performance by the min function to achieve a
robust optimization. Since for fixed Ci[k], according to [24],
the maximization expression is equal to
N∑
i=1

M∑
k=1

(
qi[k] + α ·max{Ci[k]−Wl[k]/N,Ci[k]−Wh[k]/N,

Wl[k]/N − Ci[k],Wh[k]/N − Ci[k], (9)

Ci[k]−
N∑
i=1

Ci[k]/N,

N∑
i=1

Ci[k]/N − Ci[k]}
)

(10)

Then the optimization problem can be reformulated with
slack variables ti[k] = |Ci[k]− U [k]| as:

min
Ci[k]

N∑
i=1

M∑
k=1

(
qi[k] + α · ti[k]

)
ti[k] ≥ Ci[k]−Wl[k]/N, ti[k] ≥ Ci[k]−Wh[k]/N,

ti[k] ≥Wl[k]/N − Ci[k], ti[k] ≥Wh[k]/N − Ci[k]}

ti[k] ≥
N∑
i=1

Ci[k]/N − Ci[k], ti[k] ≥ Ci[k]−
N∑
i=1

Ci[k]/N}

Therefore, the robust optimization problem can be solved like
the regular optimization problem with close computation cost.
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4) Model Predictive QoE Control Algorithm: Firstly, we
describe the predictive bitrate selection model to estimate the
chunk bitrate one client may select according to two inputs:
buffer occupancy and historical throughput. Next, we introduce
one model predictive control (MPC) algorithm to compute
the bandwidth control decisions for every client. Finally, we
demonstrate how to update control parameters in our system.

Predictive Bitrate Selection Model: As explained previ-
ously, the bandwidth controller needs to understand the control
logic behind the DASH adaptation bitrate selection algorithms
so that it estimates the possible selection of chunk bitrate based
on its control decisions. As shown in Equation (3), during the
optimization time horizon, the controller update Si[k+1] based
on the relation between Si[k] and Si[k + 1], which is related
to the bitrate selection model Pi[k]. Pi[k] is used to estimate
the bitrate of one chunk the DASH player may select so that
enough bandwidth is allocated to avoid stalling or specified
bandwidth is allocated to reduce the bitrate of the chunk and
minimize the unfair sharing of bandwidth.

Now, different players use different bitrate adaptation algo-
rithms, which have two inputs: estimation of network capacity
and playback buffer occupancy [7]. Then we propose the
following bitrate selection model of different bitrate adaptation
algorithms:

Pi[k] = argmax
uj∈U

{
uj ≤

(
Fb(Bi[k]) · Fr(R̂i[k])

)}
(11)

where U is the set of bitrates of the video, and R̂i[k] is one
series with K inputs: Ri[k − 1],..., Ri[k − K]. Fb(Bi[k])
is one adjustment function based on the playback buffer
occupancy. It is noted that for different bitrate adaptation
algorithm, Fb(Bi[k]) varies. For example, for the throughput-
based algorithm, Fb(Bi[k]) = 1 for any Bi[k]. Moreover, for
buffer-based algorithm, Fb(Bi[k]) < 1 if Bi[k] is less than the
low-level threshold, otherwise, it is 1. Fr(R̂i[k]) estimates the
future available bandwidth based on the historical downlink
throughput, and it’s formulated as one linear model:

Fr(R̂i[k]) = β0 + β1Ri[k − 1] + · · ·+ βKRi[k −K] (12)

We model that the chunk bitrate is the maximum level that is
no more than Fb(Bi[k]) · Fr(R̂i[k]). To obtain function Fb(·)
and Fc(·), we collect the data trace of DASH players in terms
of buffer level, selected bitrate and throughput over time, and
then determine model parameters to fit in with the data-trace.

Model predictive control algorithm: Here we propose one
model predictive control (MPC) based QoE control algorithm
to compute the control decisions of every client during each
time slot. MPC utilizes an explicit process model to estimate
the future response of a system if taking some decisions [25],
[26], [27]. The benefit of MPC is that it not only optimizes
the current time slot but also keeps future time slots in the
account. By considering the possible buffer level, data needed
to be downloaded and predictive bitrate selection results in
the future time slots according to the control decisions, it
optimizes the objectives in a complex dynamical system.

Algorithm 1: Model predictive control algorithm for
real-time bandwidth control

Input: Time horizon M time slots; length of one time slot
T ; number of clients N ; total available downlink
bandwidth W ; time length of video that one chunk can
be played L seconds.

Output: Control decision: Ci, 1 ≤ i ≤ N
1: while At the beginning of every time slot T , denoted as
k-th time slot do

2: Update the historical throughput: Ri[k− 1]; update the
buffer level of every client: Bi[k], update the data
needed to be downloaded: Si[k];

3: if there exists non-video traffic then
4: Solve the robust optimization problem during fixed

time horizon M : (8)
5: else
6: Solve the optimization problem during fixed time

horizon M : (7)
7: end if
8: Send the control decision Ci[k] to the bandwidth

control unit.
9: end while

10: return Control decision

Let us introduce the control algorithm of the controller in
detail, whose pseudo-code is shown in Algorithm 1. The main
idea is at the beginning of every time slot, denoted as time slot
k, the controller updates the current buffer level of every client
Bi[k] and data needed to be downloaded for current chunk,
Si[k] based on the feedback from clients’ monitor. Then the
controller detects whether there exists non-video traffic, if so, it
solves the robust optimization problem (8), otherwise, it solves
the problem (7) to get the optimal solution Ci[k

′], k ≤ k′ ≤
k+M−1. Finally, only the optimal solution Ci[k] is forwarded
to the BCU. In our model predictive control algorithm, we
predict the possible adaptive bitrate selection of every client
based on the allocated bandwidth during the time horizon.
It means making the clients select bitrate passively based on
controlling bandwidth and the feedback scheme of DASH.

Update Si[k] and Bi[k]: Controller updates the buffer level
and data size that needed to be downloaded for the current
chunk at the start of every time slot. DASH players can be
classified into two categories: open source players, such as
GPAC [20] and DASH-IF [28] and commercial players, such
as YouTube player [29]. DASH players belonging to both of
the two categories can provide the information, such as current
buffer level, when one chunk is requested and what the bitrate
is. Therefore, our controller can update Bi[k] based on the
real-time feedback from every client.

Let Ini [k] denote whether one new chunk is requested by
client i during time slot k. If so, it is 1, otherwise, it is 0. di[k]
represents the corresponding chunk (segment) size. For given
bitrate selected during time slot k, the client monitor replies
future chunk size di[k] by averaging the size of previous
chunks which have the same bitrate level. Then Si[k] is
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Fig. 6: Stall duration of three solutions
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MPQC LBS NoC
Convergence time (second) 12 24 26

# of bitrate increase 4 6 7
# of bitrate decrease 3 5 2

TABLE I: QoE of three solutions with three clients
updated according to the following equation:

Si[k] = Si[k − 1]−Ri[k − 1]T + Ini [k − 1]di[k − 1] (13)

IV. EVALUATION

A. Implementation and experiment setup

With the consideration of computational overhead for solv-
ing the one-iteration problem, we adopt the method men-
tioned in [6] to implement our model predictive QoE control
(MPQC). We first enumerate potential scenarios captured for
each value and then compute the control decision offline,
stored as one table. At the access point, the controller updates
the real-time system parameters and looks up the table to get
the bandwidth control decisions.

In the evaluation, the MPQC is implemented in one wireless
router (Linksys WRT1900ACS) using Linux traffic control to
allocate bandwidth among clients. The same player GPAC [20]
is installed on the Ubuntu and macOS to watch the video
streaming1. The buffer size of GPAC is 10 seconds and the
segment length of the video is 2 seconds. The possible bitrate
levels are 200, 300, 480, 750, 1200, 1850, 2850 and 4300 kbps.
The experiment is conducted in the regular school building
with other wireless networks. Three control strategies are
evaluated:
• Model Predictive QoE Control (MPQC): this strategy is

proposed in this paper.
• Load Balance Solution (LBS) [14]: multiple clients

share the downlink bandwidth by one fixed ratio
according to their target bitrate level. In this evaluation,
clients have the same target bitrate, so bandwidth is
shared among them equally.

• No Control (NoC): there is no bandwidth control at the
AP. It demonstrates the baseline of the system.

The three strategies are evaluated with these metrics: (i)
average stall duration: it is the average stall duration of all the
clients over their playback period; (ii) video quality variations:
the number of chunk bitrate increase and decrease; (iii) video
quality: the bitrate of chunks; (iv) bandwidth fairness: it’s

1https://dash.akamaized.net/envivio/EnvivioDash3/manifest.mpd

defined as Equation (6); (v) convergence time: the length of
time duration from joining new users to reaching stable states
that there is no stall or bitrate change for all clients. We run
a program in each client to collect the QoE information, i.e.,
video quality and buffer length.

We also test robust MPQC, MPQC, LBS and NoC under
the scenario that there is uncertain web browser traffic from
one client. The default settings of our evaluation are listed
as follows: there are two clients and the bottleneck of the
downlink is 2.2 Mbps. The update period is 0.3 seconds, the
time horizon is 1.2 seconds and the value of α is 0.1.

B. Comparison of three strategies

Figure 6 plots the average stall duration of three solutions
with a different number of clients. When there are two clients
in the system, compared to LBS and NoC, MPQC achieves
57.1% and 78.6% less average stall duration, respectively. This
is because that MPQC dynamically controls the bandwidth
such that the existing client decreases its requested chunks’
bitrate gradually, meanwhile it provides enough bandwidth
to prevent using up the buffer before finishing downloading
current chunk. It is observed with the more clients in the
system, the higher average stall duration is introduced since
more clients introduce fiercer competition of bandwidth among
clients. Whereas, as shown in Figure 6, given the same number
of clients, MPQC always outperforms LBS and NoC.

Figure 7 and 8 show the video quality of each client by
three solutions under the two-client and three-client case,
respectively. There are two sub-figures in Figure 7, where
the upper one describes the video quality of the first client
and the bottom one demonstrates that of the second client.
In each subfigure, there are three curves for three comparison
solutions. We can observe that for the second client, the video
quality does not vary by LBS and MPQC, since its first chunk
was requested at a low bitrate, and its bitrate then increased
gradually to the higher ones below its bandwidth share. The
first user experienced better video quality by MPQC compared
with LBS and NoC, e.g., all chunks’ bitrate is no less than
750 kbps, whereas, 42.0% and 83.0% of chunks’ bitrate is
below 750 kbps by LBS and NoC, respectively. QoE of three
clients by different solutions is also shown in Table I. It can
be observed that it costs 50.0% and 53.8% less time to achieve
the final stable state by MPQC, compared with LBS and NoC.
It is explained that the first client gradually reduces its chunks’
bitrate from the higher one to the stable one due to dynamic
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bandwidth control, whereas by LBS and NoC, the first client’s
bitrate firstly decreases to the lowest one and then increases.

Impact of different available bandwidth: Figure 9 plots the
average stall duration of three solutions with different total
available bandwidth. It can be observed that given the same
total available bandwidth, MPQC performs better than LBS
and NoC do, e.g., when total available bandwidth is 3.2 Mbps,
the average stall duration of MPQC is 48.1% and 75.0% less
than that of the other two solutions respectively. When the
available bandwidth changes from 1.2 to 2.2 and 3.2 Mbps,
MPQC performs better since the existing client gets more
bandwidth to avoid stalls while the new client does not request
so much bandwidth.

Impact on Round Trip Time: We evaluate round trip time
(RTT) under different solutions and show the results in Figure
10. To measure RTT, we use tcpdump to capture network
packets on the client side and then calculate the time difference
between sending one packet and receiving the acknowledg-
ment packet. The left bar represents the regular case that
only one client connects to the access point, which is used
as the baseline. Compared to the regular case, round trip time
of MPQC increases from 0.82 to 1.48 milliseconds, which
is obvious that less bandwidth increases the waiting time
in the queue for transmission from the access point to the
client. MPQC and LBS have close average RTT since MPQC
also tries to provide fair bandwidth sharing among clients.
However, RTT of MPQC is 81.4% less than that of NoC, since
uncontrolled bandwidth competition results in much fewer
bandwidth for the client.

Impact of clients’ mobility: We measure how clients’ mo-
bility affects the performance of MPQC and LBS. Here we
consider two cases: (i) clients are far/near to AP; (ii) clients
are fixed/moving. Due to the space limitation, we state the
results without figures. The stall duration increases from 1.50
seconds to 1.67 seconds averagely when clients are 1 and 5
meters away from AP respectively. When clients are moving,
the average stall duration is 1.83 seconds, with an increase of
0.33 seconds on average. The stall duration of LBS is 3.83 and
4.125 seconds when clients are far or moving respectively. It
is concluded that MPQC always outperforms LBS.

C. Impact of uncertain Internet traffic

In this subsection, we measure the performance of fours
solutions under the regular Internet application scenario that

Convergence time (second) Regular Aggressive
Robust MPQC 17 27

MPQC 25 38
LBS 29 41
NoC 39 51

TABLE II: Convergence time with traffic uncertainty

there exists uncertain Internet traffic from non-video applica-
tions. Figure 11 shows the performance of four solutions with
non-video application traffic, where two users watch video
streaming and one user uses a web browser to read the news
on the Internet. There is no bandwidth control of the non-
video flow, so the third user may compete bandwidth with the
other two streaming clients. We consider two cases: a regular
case and an aggressive case. In the regular case, the third user
loads webpages with only texts and in the aggressive case,
the third user loads webpages with both figures and texts.
Robust MPQC achieves the best performance in both two cases
since it considers the dynamic change of available bandwidth
rather than one static threshold during the optimization horizon
once non-video traffic is detected. Robust MPQC performs
worse in the aggressive case because the bandwidth demand
of uncertain network flow is out of the estimation. Table II
shows the convergence time with uncertain network traffic, in
which robust MPQC also converges quickly compared with
the other three solutions in both two cases.

D. Performance of MPQC with different parameters

We study how the performance of MPQC changes with
different parameter settings, where the update period is 0.3
seconds and the time horizon is 1.2 seconds. In Figure 12, the
value of α is changed from 0.1 to 2. There is no doubt that with
the increase of α, the stall duration of MPQC increases and
bandwidth fairness decreases, e.g., the average stall duration
increases 14.9% and bandwidth fairness decreases 87.5%
when α changes from 0.1 to 2.

Figure 13 plots the performance of MPQC with different
control update periods: 0.4, 0.5 and 1.0 seconds. The predic-
tion time horizon is set to be 2.0 seconds. We can see that
the short control update period increases the performance of
MPQC, as it allows more frequent control decisions for updat-
ing buffer level, bitrate selection and data to be downloaded:
when the update period is 0.4, it improves the performance by
28.4% and 37.5% compared with time period lengths of 0.5
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Fig. 14: Performance of MPQC with
different time horizon

and 1.0 seconds respectively. Meanwhile, bandwidth fairness
also increases with the growth of the update period.

Figure 14 plots the performance of MPQC with different
prediction time horizon: 0.5, 1.0 and 3.0 seconds. The update
period length is set to 0.5 seconds. The observation is that
with the increase of future time horizon, the average stall
duration and the bandwidth fairness improves 54.9% and
82.5% respectively, since considering the longer future time
horizon introduces an opportunity to conduct better control.

V. DISCUSSION

Different types of DASH clients: There are two main cate-
gories of DASH clients, open source, and private commercial
players. Understanding and modeling the bitrate selection
logic of different DASH clients is one key challenge of our
design to allocate the bandwidth properly. In this work, we
propose one general model to estimate the bitrate selection
of different players. Nevertheless, to improve the accuracy of
the prediction model, the specified model for different players
can be proposed used, which is easy to be learned for open
source players, but not for private commercial players, such
as YouTube, Netflix, and Hulu. Studying the black-box bitrate
selection model is one future research direction.

The design of DASH adaptation algorithms forms a rich
literature [5] [6] [7] [8] and they aim to maximize one
user’s QoE via designing novel bitrate selection algorithms.
However, [4] has already shown that there exist unfairness
and instability among multiple commercial players due to
uncertain bandwidth competition. Our solution provides the
opportunity to solve the problem due to the bandwidth compe-
tition among multiple DASH players with a centralized method
to coordinate them at the AP.

Concern of clients’ privacy: our design does not increase
the risk of leaking clients’ privacy, such as which player
one client is using and what video one client is watching.
This privacy information is protected by the application’s
encryption mechanism and our design does not require any
knowledge of such information to realize the objectives.

User priority: Considering user priority is a future direction,
e.g., some users have higher priority over normal users due to
their payment for on-demand service. Whereas, our work also
provides some useful insights for priority-based bandwidth
allocation, e.g., for a group of users paying for the same
service plan with the same priority.

VI. RELATED WORK

We classify the related work into the following categories:
bandwidth control and traffic shaping, bitrate adaptation algo-
rithm design, and buffer management and packet scheduling.

Bandwidth control and traffic shaping: A category
of related work studies how to optimize the quality-of-
experience (QoE) of one or multiple clients by bandwidth
control or traffic shaping [30] [10] [31] [14] [32] and
some of them consider the similar application scenario with
ours [11] [4] [33] [34] [35]. [11] considers optimizing the
multi-client quality-of-experience fairness problem from a
control theory perspective, but it requires control of clients’
bitrate selection process. [4] considers how to optimize ef-
ficiency, fairness, and stability when multiple bitrate-adaptive
players share a bottleneck link. However, it solves the problem
via redesigning the bitrate selection algorithms of clients,
which introduces a high overhead to implement it for all
the DASH players. [33] [34] [35] propose Software Defined
Network (SDN) based in-network solution to dynamically
allocate network resource. Whereas, such solutions either
require the modification of clients’ chunk requests or simply
assume that clients can reach the highest bitrate level below the
allocated bandwidth resource. [36] and [14] demonstrate that
heuristic-based traffic shaping can reduce unstable conditions,
but it has to intercept data traffic from each client at the AP.

Bitrate adaptation algorithm design: There are sev-
eral pieces of work focusing on designing the bitrate adap-
tation algorithms to optimize the application level perfor-
mance [5] [6] [7] [8]. [6] develops a formal control-theoretic
model of the bitrate adaptation problem and then proposes a
model predictive control algorithm which optimizes the quality
of experience, such as average video quality, quality variations,
rebuffering, and startup delay. However, such solutions are
usually based on end-to-end closed-loop adaptation between
the client and the video content server, which does not
coordinate among multiple clients.

Buffer management and packet scheduling: some related
work, such as [37] [38] [39] [40] concentrates on offering rel-
ative differentiated services among different service classes or
different traffic types. [38] proposes a token-based scheduling
scheme for wireless local area networks to provide guaranteed
priority access to voice traffic and service differentiation for
data traffic. However, the existing works only classify the ap-
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plication into different classes and provide differential service
for every class. In our problem, all the video applications
belong to the same service class and they cannot offer a
specific service for every application.

VII. CONCLUSIONS

This paper presents our framework design of model predic-
tive QoE control for multi-client Internet video streaming in a
wireless local area network. Our control design has four main
advantages over existing solutions: 1) it enables local network
administrator to effectively control the quality of experience in
Internet video streaming for local network clients; 2) the cross-
layer design can directly plug-and-play in the network layer at
the access point, which does not require explicit modification
of the implementation of DASH players; 3) this solution
utilizes real-time performance data from clients as feedback to
better optimize the quality of experience for video clients; 4)
extensive evaluation shows that our solution outperformed load
balance solution, significantly reducing average video stall
duration by 57.1% and improving the average video bitrate
by 42.0% for all clients.
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“Traffic profiling for mobile video streaming”, in ICC. IEEE, 2017.

[17] Wikipedia, Dynamic Adaptive Streaming over HTTP, 2019, https://
en.wikipedia.org/wiki/Dynamic Adaptive Streaming over HTTP.

[18] L. Brown, What is video bitrate and why it matters?, 2019, https://
filmora.wondershare.com/video-editing-tips/what-is-video-bitrate.html.

[19] X. Xie, X. Zhang, S. Kumar, and L. E. Li, “pistream: Physical layer
informed adaptive video streaming over lte”, in MobiCom ’15. 2015,
ACM.

[20] GPAC, GPAC Multimedia Open Source Project, 2017, https://
gpac.wp.imt.fr/.

[21] TubularInsights, YouTube Brings Us Stats for Nerds, 2013, http:
//tubularinsights.com/youtube-stats-for-nerds/.

[22] YouTube, YouTube Player API Reference for iframe Embeds, 2019,
https://developers.google.com/youtube/iframe api reference.

[23] M Hammad Mazhar and Zubair Shafiq, “Real-time video quality of
experience monitoring for https and quic”, in INFOCOM. IEEE, 2018.

[24] F. Miao, S. Lin, S. Munir, J. A. Stankovic, H. Huang, D. Zhang,
T. He, and G. J. Pappas, “Taxi dispatch with real-time sensing data
in metropolitan areas: A receding horizon control approach”, in ICCPS.
2015, ACM.

[25] James Blake Rawlings and David Q Mayne, Model predictive control:
Theory and design, Nob Hill Pub. Madison, Wisconsin, 2009.

[26] S. Qin and T. Badgwell, “A survey of industrial model predictive control
technology”, Control engineering practice, 2003.

[27] M. Morari and J. Lee, “Model predictive control: past, present and
future”, Computers & Chemical Engineering, 1999.

[28] DASH-IF, DASH Industry Forum, 2017, http://dashif.org/.
[29] YouTube, YouTube HTML5 Video Player, 2017, https://

www.youtube.com/html5.
[30] X. Chen, J. Hwang, C. Wu, S. Yang, and C. Lee, “A qoe-based app

layer scheduling scheme for scalable video transmissions over multi-rat
systems?”, in ICC. IEEE, 2015.

[31] R. Rejaie and J. Kangasharju, “Mocha: A quality adaptive multimedia
proxy cache for internet streaming”, in NOSSDAV. ACM, 2001.

[32] A. El Essaili, D. Schroeder, E. Steinbach, D. Staehle, and M. Shehada,
“Qoe-based traffic and resource management for adaptive http video
delivery in lte”, IEEE Transactions on Circuits and Systems for Video
Technology, 2015.

[33] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race, “To-
wards network-wide qoe fairness using openflow-assisted adaptive video
streaming”, in Proceedings of the 2013 ACM SIGCOMM Workshop on
Future Human-centric Multimedia Networking. 2013, FhMN ’13, ACM.

[34] M. Taha, L. Garcia, J. M Jimenez, and J. Lloret, “Sdn-based throughput
allocation in wireless networks for heterogeneous adaptive video stream-
ing applications”, in Wireless Communications and Mobile Computing
Conference (IWCMC). IEEE, 2017.

[35] G. Cofano, L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and
S. Mascolo, “Design and experimental evaluation of network-assisted
strategies for http adaptive streaming”, in MMSys. ACM, 2016.

[36] A. Mansy, M. Fayed, and M. Ammar, “Network-layer fairness for adap-
tive video streams”, in IFIP Networking Conference (IFIP Networking),
2015. IEEE, 2015.

[37] C. Dovrolis and P. Ramanathan, “A case for relative differentiated
services and the proportional differentiation model”, IEEE Network,
1999.

[38] P. Wang and W. Zhuang, “A token-based scheduling scheme for
wlans supporting voice/data traffic and its performance analysis”, IEEE
Transactions on Wireless Communications, May 2008.

[39] G. Panza, S. Grilli, E. Piri, and J. Vehkaper, “Qos provisioning by cross-
layer feedback control”, in IEEE 21st Symposium on Communications
and Vehicular Technology in the Benelux (SCVT), Nov 2014.

[40] S. Wittevrongel, S. De Vuyst, C. Sys, and H. Bruneel, “A reservation-
based scheduling mechanism for fair qos provisioning in packet-based
networks”, in 2014 26th International Teletraffic Congress (ITC). IEEE,
2014.

10


