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Abstract—With the increasing prevalence of mobile devices,
people prefer to use smartphones to make payments, take
photos, and collect personal vital information. Due to the
high possibility of smartphone illegal access, the security and
privacy of the devices become more important and critical. In
this paper, we present FusionAuth, a sensor-based continuous
authentication system leveraging the accelerometer, gyroscope,
and magnetometer on smartphones to capture users’ behav-
ioral patterns. In order to improve the authentication perfor-
mance and enhance system reliability, we are among the first to
utilize two feature fusion strategies of serial feature fusion and
parallel feature fusion to combine the designed features from
the three sensors in the feature extraction module. Based on the
trained one-class support vector domain description classifier,
we evaluate the authentication performance of FusionAuth in
terms of impact of window size and user size, and accuracy
on different users. The experimental results demonstrate that
FusionAuth reaches 1.47% mean balanced error rate (BER)
with the serial fusion and achieves 1.79% mean BER with the
parallel fusion.

1. Introduction

With the increasing advancements in wireless commu-
nication technologies, mobile devices have been extensively
developed in hardware and software in recent years. Tens of
thousands of mobile apps have been significantly researched
and created for these devices. Smart devices become more
popular and pervasive, and play an important role in our
daily lives. For example, according to “Number of mobile
phone users worldwide from 2015 to 2020 (in billions),”
there will be approximately 4.78 billion mobile phone users
worldwide by 2020 [1]. According to “Number of monthly
active WhatsApp users as of 2013-2017 (in millions),” there
were around 1,500 million users using WhatsApp monthly
on smartphones for communication in December 2017 [2].
People prefer to use smartphones to make payments, take
photos, and collect personal vital information. Due to the
popularity and importance of smartphones, their security and
privacy become more critical to users.

To protect the security and privacy of smartphones, one-
time user authentication and continuous user authentication

have been investigated, successively, by researchers. One-
time user authentication has been a preliminary and popular
authentication mechanism that identifies users at the time
of initial login, such as passcodes, PINs, graphical patterns
(e.g. Gestures), fingerprints (e.g. Touch ID), and face pat-
terns (e.g. Face ID). These approaches, however, provide
limited security because they are susceptible to guessing
[3], video capture [4] and spoofing [5], and they work only
at the time of initial login. Subsequently, continuous au-
thentication becomes a promising and critical authentication
mechanism that frequently identifies users via their biomet-
rics, which alleviates the above security issues. Biometrics-
based approaches can be widely categorized into physi-
ological biometrics-based and behavioral biometrics-based
approaches. Physiological biometrics-based approaches rely
on personal physical attributes, such as fingerprints [6] and
face patterns [7], which require user direct participation.
Behavioral biometrics-based approaches depend on users’
behavioral patterns, such as touching [8] and gait [9]. These
approaches exploit smartphone sensors to capture unique
characteristics of users’ movement, but ignore how to im-
prove the representation and correlation of features.

Biometric systems that rely on a single biometric modal-
ity suffer from significant limitations due to biometric traits,
noise, and poor data quality. Multibiometric systems uti-
lize fusion to combine multiple biometric sources to im-
prove authentication accuracy [10], [11]. Feature fusion
combines features from dissimilar sensors and generates a
combined feature vector. However, it is mainly used in phys-
iological biometrics-based identification, not the behavioral
biometrics-based identification.

In this paper, we present a sensor-based continuous
authentication system with feature fusion, FusionAuth, lever-
aging the accelerometer, gyroscope, and magnetometer on
smartphones to capture users’ behavioral patterns. Fusio-
nAuth is composed of data collection, feature extraction,
classifier, and authentication. FusionAuth operates in two
phases: 1) the enrollment phase for learning a profile of a
legitimate user, and 2) the continuous authentication phase
for classifying users. Specifically, the data collection module
captures users’ every subtle movement during their opera-
tions on smartphones leveraging the accelerometer, gyro-
scope, and magnetometer. The feature extraction module
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Figure 1. Architecture of FusionAuth

designs statistics features and frequency features that indi-
cate the operation motions, then combines them by using
the serial fusion or parallel fusion, and then selects top 5
features with the maximum mutual information by using
the conditional mutual information maximization. We are
among the first to exploit the two feature fusion strategies
of the serial feature fusion and parallel feature fusion to
combine the designed features from the three sensors for
the authentication performance improvement in the feature
extraction module. With the extracted features, FusionAuth
utilizes the one-class support vector domain description to
train the classifier in the enrollment phase. With the trained
classifier and the testing fused feature vectors, FusionAuth
classifies the current user as a legitimate user or an impostor
in the continuous authentication phase. We evaluate the
performance of FusionAuth in terms of the impact of time
window size and user size, and accuracy on different users.
The experimental results indicate that FusionAuth reaches
1.47% mean BER with the serial fusion and achieves 1.79%
mean BER with the parallel fusion. Comparing with the ex-
isting solutions, we utilize serial feature fusion and parallel
feature fusion strategies in the behavioral biometrics-based
authentication.

The contributions of this work can be summarized as
follows:

• We present FusionAuth, a smartphone user contin-
uous authentication system that leverages existing
sensors of the accelerometer, gyroscope, and magne-
tometer on smartphones to capture users’ behavioral
patterns. FusionAuth consists of four modules: data
collection, feature extraction, classifier, and authen-
tication.

• We are among the first to provide two feature fusion
strategies - serial feature fusion and parallel feature
fusion to combine the designed features from the
three sensors, which can improve the authentication
performance and enhance system reliability.

• We evaluate the performance of FusionAuth in terms
of the impact of time window size and user size,
and accuracy on different users, and the experimental
results demonstrate that FusionAuth achieves 1.47%
mean BER with the serial fusion and reaches 1.79%
mean BER with the parallel fusion.

The rest of this paper is organized as follows. We de-
scribe the architecture of FusionAuth in Sec. 2, and evaluate
the authentication performance in Sec. 3. Sec. 4 concludes
this work.

2. System Design

In this section, we present the architecture of the con-
tinuous authentication system using feature fusion, Fusio-
nAuth, as illustrated in Fig. 1. As illustrated in Fig. 1,
FusionAuth consists of four modules: 1) data collection, 2)
feature extraction, 3) classifier, and 4) authentication. The
operation of FusionAuth includes two phases for learning
and classifying users’ behavioral patterns: 1) the enrollment
phase and 2) the continuous authentication phase. Fusion-
Auth learns a profile of a legitimate user in the enrollment
phase and then authenticates users in the continuous authen-
tication phase. In particular, we provides two feature fusion
strategies: serial feature fusion and parallel feature fusion in
the feature extraction module to improve the authentication
accuracy and enhance system reliability.

2.1. Data Collection

To collect all users’ data for FusionAuth, we select
the accelerometer, gyroscope, and magnetometer equipped
on smartphones. This is because: 1) the accelerometer can
record users’ larger motion patterns; 2) the gyroscope can
capture users’ fine-grained motions; and 3) the magnetome-
ter can measure users’ ambient geomagnetic field. These
three sensors do not require root permissions when they
are requested by applications on smartphones, which makes
them suitable for background monitoring service. In Fu-
sionAuth, the data collection module captures every subtle
movement during the user’s operation on the smartphone,
and records the instantaneous readings in x, y, and z axes
of the three sensors, respectively, when the screen is on. The
collected data are then used for feature extraction.

2.2. Feature Extraction

The feature extraction module consists of the feature
design, feature fusion, and feature selection. We first design
statistics features and frequency features that capture the
operation motions, then combine these features using serial
fusion or parallel fusion, and then select the combined
features with maximum mutual information by using the
conditional mutual information maximization.

2.2.1. Feature Design. In the feature design module, with
the collected sensor data, we segment them by a time period
or time window. In a time window, we extract statistics



and frequency features from each axis of the accelerometer,
gyroscope, and magnetometer, respectively.

Statistics features characterize the motion patterns with
meaningful statistics on smartphones. We design 11 statistics
features for each axis of each sensor in a time window,
including the mean, median, maximum, minimum, standard
deviation, range, 25%, 50%, and 75% quartiles, kurtosis, and
skewness. The kurtosis feature indicates the width of peak
of one-axis reading while the skewness feature represents
the orientation of peak of one-axis reading. In particular, z-
axis accelerometer data represent the resistance to the force
exerted by user touching on smartphone screen. The range
of a y-axis gyroscope data indicates the angle of smartphone
rotation around the y-axis, which can discriminate between
users with different rotation angles.

Frequency features capture the frequency domain in-
formation of the motion patterns, which is generated by
applying the Fast Fourier Transform on sensor data. We
design 5 frequency features involving the energy, entropy,
HP1, FHP2, and HP2. In particular, HP1 indicates the
amplitude of the first highest peak in one-axis reading in a
time window. FHP2 represents the frequency of the second
highest peak and HP2 denotes the amplitude of the second
highest peak.

We design 16 features for each axis of each sensor, and
then we have 144 features (3 axes × 3 sensors × 16 features)
in total.

2.2.2. Feature Fusion. Feature fusion merges multiple fea-
tures from the same or different input data and the utilization
of multiple sensor features can improve the authentication
accuracy and enhance system reliability. We present two
feature fusion strategies: serial feature fusion and parallel
feature fusion [12]. Suppose A, G, and M are three feature
spaces on feature sample space Ω, indicating features of
the accelerometer, gyroscope and magnetometer. For an
arbitrary sample ξ ∈ Ω, the corresponding three feature
vectors are α ∈ A, γ ∈ G, and µ ∈M .

The serial feature fusion combines the three feature
vectors α, γ, and µ into a 144-dimensional feature ξs defined
by δs = [α, γ, µ]T , where feature vectors α, γ and µ are 48-
dimensional. All serial combined feature vectors of feature
samples form a 144-dimensional serial combined feature
space.

The parallel feature fusion combines α, γ, and µ into
a 48-dimensional feature ξp defined by a complex vector
δp = α + iγ + iµ (i is an imaginary unit). Note that since
the dimensions of the feature vectors α, γ and µ are the
same, the parallel combined feature is 48-dimensional.

2.2.3. Feature Selection. To select features with the maxi-
mum mutual information for each user from the combined
serial features or combined parallel features, we conduct
feature selection by using the conditional mutual informa-
tion maximization (CMIM) [13]. Based on the computed
mutual information between feature sets, the CMIM selects
features with maximum mutual information one by one to
generate an optimal feature subset. Based on the collected

dataset (50 users with a sampling rate of 100 Hz, details
in Sec. 3.1.1), we record the 5 most selected features for
each user using the CMIM. Then, we count the number
for each feature selected by all 50 users and the top 5
selected features are: 75% quartile of z and y axes of the
accelerometer, 25% quartile of x axis and minimum of y
axis of the magnetometer, and 75% quartile of x axis of the
accelerometer.

We select top 5 features with the maximum mutual
information by the CMIM for each user from the 144
designed features as the extracted features. Note that the
selected top features for different users may vary.

2.3. Classifier

After features are extracted, they are passed to a classi-
fier for training and testing, respectively. We implement the
one-class support vector domain description (SVDD) clas-
sifier. The goal of SVDD is to find a sphere with minimum
volume, containing all (or most of) the data objects [14].
These data objects can be regarded as one class.

In the enrollment phase, the one-class SVDD classifier is
trained by the extracted features of the owner’s data with a
radial basis function (RBF) kernel. To train the classifier, we
randomly select 50% positive samples (legitimate data) as
the training dataset. The remaining 50% with all the negative
samples (impostor’s data) are used as the testing dataset for
classifier testing. In the training phase, two parameters C
and σ need to be optimized, where C is the volume factor,
controlling the number of samples that fall into the decision
boundary, and σ is used to calculate the primal problem,
controlling the width of the RBF kernel. We utilize a grid
search over the parameter space to perform the parameter
optimization, and use the cross-validation to avoid over
fitting. In the continuous authentication phase, the trained
SVDD classifier finds a bounding sphere with minimum
radius, containing most of the positive samples.

2.4. Authentication

Based on the serial or parallel fused features and the
trained SVDD classifier, Authentication classifies the current
user as a legitimate user or an impostor. If the current user
is classified as an impostor, FusionAuth will require initial
login inputs; otherwise, it will continuously authenticate the
user.

3. Performance Evaluation

In this section, to evaluate the performance of Fusio-
nAuth, we first elaborate the experiment setup including
dataset, classifier training and metrics, and then provide the
experimental results in terms of the impact of time window
and user number, and accuracy.

3.1. Experiment Setup

In this section, to set up the experiments, we first de-
scribe how to collect the data from the three sensors. Then,



we discuss how to select appropriate parameters for the one-
class SVDD classifier and how to train the classifier. Finally,
we introduce three representative metrics for the evaluation
of the authentication accuracy of FusionAuth.

3.1.1. Dataset. To collect sensor data, we recruited 100
users (53 male and 47 female) interacting with ten Samsung
Galaxy S4 smartphones [15]. When they started operating on
smartphones, they were randomly assigned one of the three
scenarios: document reading, text production, and navigation
on a map. Each user was designed to perform about 24
sessions (8 reading sessions, 8 writing sessions, and 8 map
navigation sessions) and each session lasted about 5 to 15
minutes. The collected sensor data were stored in .CSV files
on smartphones.

To evaluate FusionAuth, we select sensor data of the
accelerometer, gyroscope, and magnetometer from 50 users
including 25 male and 25 female with a sampling rate of
100 Hz.

3.1.2. Classifier training. With the extracted features for
50 users, we design the training procedure for the one-class
SVDD with a radial basis function as the kernel function:

Step 1 (User selection): Randomly select one user from
the 50 users as a legitimate user and the rest 49 users as
impostors. The legitimate user’s data are labeled as positive
samples and impostors’ data as negative samples.

Step 2 (Training set and testing set): Randomly select
50% of the positive samples as the training set and the rest
50% with all the negative samples are used as testing set.

Step 3 (Parameter optimization): Utilize grid search over
parameter space to find optimal values for parameters C and
σ.

We obtain one classification model for each user each
procedure (from Step 1 to Step 3), and then we can obtain
50 classification models for 50 users. Since the training set
are randomly selected, we repeat the procedure 10 times for
each user.

3.1.3. Metrics. To evaluate the authentication accuracy
of FusionAuth, we select three representative metrics
in our evaluation: false acceptance rate (FAR), false
rejection rate (FRR), and balanced error rate (BER)
[14]. The FAR is the probability that an impostor
is falsely classified as a legitimate user, defined as:
FAR = # of false acceptances (FP )

# of attempts by impostors (FP+TN) . The FRR
is the probability that a legitimate user is incor-
rectly identified as an impostor, defined as: FRR =

# of false rejections (FN)
# of attempts by legitimate users (FN+TP ) . The BER is an
equally weighted combination of the FAR and the FRR,
defined as: BER = FAR+FRR

2 , and a lower BER indicates
higher authentication accuracy.

3.2. Experimental Results

In this section, based on the experiment setup, we eval-
uate the performance of FusionAuth. Specifically, we first

explore the impact of time window size and impact of user
size on the authentication accuracy and then evaluate the
system authentication accuracy on different users by using
the serial fused features and parallel fused features.

3.2.1. Impact of time window. In the feature extraction
module, we set a time window for the collected sensor data
and extract features from each time window. The length of
the time window determines the period and data amount for
the user authentication.

We explore the impact of different time window sizes
from 1s to 15s with a 1s interval. Based on the exper-
iment, we plot the BERs against different time window
sizes for FusionAuth using serial fusion and parallel fusion,
respectively, in Fig. 2. As shown in Fig. 2, both the BERs
decrease with the increase of the window size. In particular,
both BERs decrease rapidly until 9s and then keep steady.
Considering the authentication frequency and the accuracy,
we set the time window size as 9s for FusionAuth in the
experiments.

3.2.2. Impact of user size. To show the advantage of our fu-
sion strategies, we compare the accuracy of FusionAuth us-
ing serial fusion and parallel fusion strategies with that using
non fusion strategy. From the feature extraction module, sup-
posing the designed features are Fα = {Fα1, Fα2, ..., Fα48}
for the accelerometer, Fγ = {Fγ1, Fγ2, ..., Fγ48} for the
gyroscope, and Fµ = {Fµ1, Fµ2, ..., Fµ48} for the mag-
netometer, the non fusion feature is obtained by FNon =

(
√
F 2
α1 + F 2

γ1 + F 2
µ1,

√
F 2
α2 + F 2

γ2 + F 2
µ2, ...,√

F 2
α48 + F 2

γ48 + F 2
µ48). In the system architecture, we im-

plement non fusion by replacing feature fusion with FNon.
To investigate the impact of user size on the authen-

tication accuracy, we train the classifier with 10 different
user sizes, ranging from 5 to 50 with stride 5. We plot
the BERs against 10 different user sizes for serial fusion,
parallel fusion, and non fusion strategies, respectively, in
Fig. 3. As illustrated in Fig. 3, with the increase of the user
number, the BER gradually decreases and becomes steady at
around 1.56%. In addition, the BERs of FusionAuth using
fusion strategies are lower than that without fusion. The
serial fusion strategy achieves the lowest BER at 1.47% with
45 users while the parallel fusion strategy reaches the lowest
BER at 1.49% with 25 users.

3.2.3. Accuracy on different users. To evaluate the adapt-
ability of FusionAuth to different users, we conduct experi-
ments to calculate the user authentication accuracy for each
of the 50 users, as depicted in Fig. 4. As shown in Fig. 4,
the mean BERs of the two fusion strategies for each user
are lower than that of non fusion strategy. In addition, using
the two strategies, the mean BERs are around 1%-2% for
most of the users. We calculate the mean, minimum and
maximum of BER for the three strategies for all the 50 users.
The results indicate the serial fusion and parallel fusion
achieve 1.47% and 1.79% mean BER, respectively, while
non fusion reaches 5.31% mean BER. For the two fusion
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Figure 4. Accuracy on different users

strategies, they have almost the same statistic performance.
Moreover, the serial fusion shows the lowest maximum BER
(10.46%) while the parallel fusion has the lowest minimum
BER (0.01%).

In order to compare the performance of the serial fusion
and parallel fusion, we compute the FAR and FRR for
FusionAuth. According to the results, the FRR of the parallel
fusion (0.74%) is better than that of the serial fusion (1.05%)
while the FAR of the serial fusion (1.89%) is better than
that of the parallel fusion (2.85%). That is, FusionAuth
using the parallel fusion rarely rejects legitimate users, and
FusionAuth using the serial fusion rarely accepts impostors.

4. Conclusion

To address the security and privacy issues on mobile
devices, we present a sensor-based continuous authentica-
tion system, FusionAuth, leveraging the accelerometer, gyro-
scope, and magnetometer on smartphones to capture users’
behavioral patterns. FusionAuth consists of four modules:
data collection, feature extraction, classifier, and authenti-
cation. We are among the first to utilize two feature fusion
strategies of serial feature fusion and parallel feature fusion
to combine the designed features from the three sensors.
We evaluate the authentication performance of FusionAuth
and the experimental results demonstrate that both the serial
fusion and the parallel fusion greatly improve the authenti-
cation accuracy of the system.
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