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Abstract—Performing jump exercise can maintain a healthy
lymphatic system, which keeps human body in an optimal
condition and is a critical component of human immune
system. Accurate jump detection and count are crucial to
patients with a dysfunctional lymph system. In this paper,
we present a continuous jump detection framework on smart-
phones, SmartJump, for human jump detection and count,
by leveraging the accelerometer and magnetometer ubiqui-
tously built into smartphones. Specifically, SmartJump collects
sensing data from the accelerometer and magnetometer, and
processes these data through coordinate system translation
and data smoothing filter. Then, jump features are extracted
based on the smoothed z-axis acceleration data using the peak
and valley detection algorithm and then are matched with the
concluded three features from the analysis of physical jumps
using a finite state machine for jump detection and count.
We implement SmartJump on Samsung S6 Edge smartphones
and recruit 6 subjects for data collection. We evaluate the
accuracy of SmartJump in terms of five-fold cross-validation
test, self-test, and leave-one-out cross-validation test, and the
experimental results indicate that SmartJump achieves an
average of 96.4% recall, 97.2% precision, and 96.8% F1 score
in five different scenarios.

1. Introduction

In the last three years, over one billion smartphones
have been sold annually worldwide. The global market of
smart wearable devices will reach 19 billion U.S. dollars in
2018, which is ten times more than that in 2013 [1]. Taking
advantage of the large market and powerful smart devices,
various healthcare and fitness applications emerge on the
market providing users with health tracking and exercise
planning functions. For instance, Apple Health [2] and
Google Fit [3] can track steps, distance traveled, and time
of continuous sitting. These applications typically rely on
inertial measurement units (IMU) on smart devices to collect
the motion data from users. By analyzing the motion data,
these applications further provide users with personalized
plans for their exercises. Thus, users can receive instant ser-
vice with their existing smart devices, such as smartphones
and smartwatches. However, most popular healthcare and

fitness applications only track users’ exercises in horizontal
directions. For example, Apple Health can only provide
users with measurements such as the steps and distance
travelled, but it is not able to provide measurements on their
vertical exercise, such as jump [2].

Jump is a common exercise in our daily life. Lymphol-
ogists suggest that performing jump exercise can maintain
a healthy lymphatic system, which keeps human body in
an optimal condition and is a critical component of human
immune system [4]. It is important for people to be able to
track the number of jumps performed. Although a few of
jump count applications can provide users with the count
and height, some application reviews show that they are not
accurate [5]. Besides these amateur applications for jump
count, some commercial solutions are designed for profes-
sional athletes [6], [7]. These commercial solutions require
users to purchase additional peripherals that are expensive.
For example, Vert requires users to purchase a measuring
unit starting at $125 [6]. Other commercial solutions also
cost users hundreds to thousands of dollars. Therefore, the
existing commercial solutions are either inaccurate or too
expensive.

Researchers also take advantage of IMU-powered de-
vices to measure jump. Bojan et al. use their own hardware
platform to measure the performance of counter-movement
jump and plyometric jump, which mainly focus on the
height of jumps [8]. Similarly, other jump-related research
works also focus on the acceleration and speed during jumps
[9], [10], [11]. Most of these methods are not able to detect
the occurrence of jump. In addition to these research on
jump acceleration, speed, and height, Jin et al. [10] and
Kazuya et al. [12] manage to distinguish a variety of human
activities including jump. However, these general human ac-
tivity detection algorithms are validated with limited amount
test cases, and the test case for each category is even
smaller. In order to meet the three requirements in our jump
detection solution, we address two research questions: 1)
How to accurately detect and count jumps by only using
smartphones? 2) How to extract jump features from data
collected by smparphone sensors?

In this paper, we present SmartJump, a continuous jump
detection framework on smartphones for human jump detec-
tion and count, by leveraging the accelerometer and mag-



netometer ubiquitously built into smartphones. Specifically,
we first analyze the physical process of jump activities
and derive three key features of jump: 1) the peak of
the taking-off phase, 2) the flat valley of the in-air phase,
and 3) the peak of the landing phase. SmartJump collects
sensing data from the accelerometer and magnetometer
for acceleration and orientation, respectively, and processes
these data through coordinate system translation and data
smoothing filter. Then, jump features are extracted based
on the smoothed z-axis acceleration data using the peak
and valley detection algorithm and then are matched with
the concluded three features using a finite state machine
for jump detection and count. We implement SmartJump
on Samsung S6 Edge smartphones and recruit 6 subjects
for data collection in five different application scenarios
including indoor and outdoor environments. We evaluate
the accuracy of SmartJump in terms of five-fold cross-
validation test, self-test, and leave-one-out cross-validation
test, and the experimental results indicate that SmartJump
achieves an average of 96.4% recall, 97.2% precision, and
96.8% F1 score in the five different scenarios. Compared
with the existing solutions, we provide a smartphone sensor-
based continuous jump detection and count framework that
extracts jump features from smartphone sensors to match
them with physical jump features for jump detection and
count.

The contributions of this work are summarized as fol-
lows:

• We present SmartJump, a continuous jump detection
and count framework by leveraging the accelerome-
ter and magnetometer ubiquitously built into smart-
phones. SmartJump consists of three modules: jump
sensing, data processing and jump detection.

• We extract three jump features from smoothed z-
axis acceleration data by using the peak and valley
detection algorithm and match them with the derived
features from the analysis of physical jumps by using
a finite state machine for jump detection and count.

• We implement SmartJump on Andorid smart-
phones and recruit 6 subjects for experiments and
framework evaluation, and the experimental results
demonstrate SmartJump achieves an average of
96.4% recall, 97.2% precision, and 96.8% F1 score
in five different scenarios.

The rest of the paper is organized as follows: In Sec.
2, we present the SmartJump framework design in terms of
framework overview, features of jump, data processing, and
jump detection. We introduce the experiment setup and data
collection, and evaluate SmartJump in accuracy in Sec. 3.
We conclude this work in Sec. 4.

2. Framework Design

Jump is a general term for a variety of activities that peo-
ple push themselves off the ground into the air by using their
legs and feet and then return to the ground shortly. In this
section, we present the design of the SmartJump framework.

Specifically, we first overview the framework architecture of
SmartJump. Then, we analyze the physical process of jump
and derive three key features for jump detection. Finally, we
elaborate the modules of data processing and jump detection
for SmartJump.

2.1. Framework Overview

In this section, we overview the architecture of the con-
tinuous jump detection framework, SmartJump, as illustrated
in Fig. 1. As shown in Fig. 1, SmartJump consists of three
modules: 1) jump sensing, 2) data processing, and 3) jump
detection.

SmartJump is designed for smart devices equipped with
accelerometer and magnetometer. We select the Samsung
S6 Edge smartphone as the smart device for implementation
and experiments, which runs Android 5.0 operating system
and equips with common sensors, such as accelerometer
and magnetometer. Note that SmartJump can work on smart
devices equipped with accelerometer and magnetometer and
is a cross-Android operating system framework. To sense
jumps, smartphone implemented with SmartJump can be put
in users’ pant pockets for experiments. The jump sensing
module calls the Android APIs to collect the sensor data
from accelerometer and magnetometer on smartphones with
a data sampling rate of 50Hz. The accelerometer is used to
detect the motion of users while the magnetometer is used
to determine the orientation of the device according to the
ambient geomagnetic field strength. The collected sensor
data of accelerometer and magnetometer are then fed into
the data processing module.

The data processing module processes the collected
data of accelerometer and magnetometer through coordinate
system translation and data smoothing filter. The coordi-
nate system translation converts the collected acceleration
data from the smartphone coordinate system into the Earth
coordinate system. The acceleration perpendicular to Earth
surface can detect jumps. In Android OS, the acceleration
perpendicular to Earth surface is referred to as z-axis ac-
celeration [13]. The date smoothing filter is used to smooth
z-axis acceleration data since the translated z-axis data may
contain hardware noise and other noises from the relative
movements between users and phones.

The filtered acceleration data are fed into the jump detec-
tion module for jump detection and count. The jump detec-
tion module extracts three jump features from smoothed z-
axis acceleration data by using the peak and valley detection
algorithm and matches them with the derived features from
the analysis of a physical jump activity by using a finite
state machine. If the detected features match the three key
features of jumps, it reports an occurrence of jump to the
framework and the number will be counted.

Before we elaborate on the modules of the data process-
ing and jump detection, we first analyze the physical process
of jumps to derive jump features.



Figure 1: Framework Architecture of SmartJump

2.2. Jump Features

In order to distinguish jumps from various human ac-
tivities, we need to find key features of jumps. A motion is
usually characterized by acceleration, speed, and displace-
ment. We characterize jump activity by acceleration, which
can be captured by the accelerometer on smartphones. Since
jump is a vertical movement, we consider the acceleration
perpendicular to Earth surface in the analysis, which is
the z-axis of the acceleration after the coordinate system
translation in the data processing module. In this section, we
analyze the physical process of a single jump and multiple
consecutive jumps, respectively, to derive three key features
of jumps for jump detection.

2.2.1. Physical process of a single jump. As described,
jump is a process that a human subject pushes himself off
the ground into the air by using his legs and feet, and then
falls back on the ground shortly. From the description, we
can segment a jump process into three phases: taking-off
phase, in-air phase, and landing phase.

In the taking-off phase, the subject pushes himself off the
ground by bending his legs and then straightening them. In
this phase, the acceleration of the subject gradually increases
to a maximum point when the legs start to bend, and then
decreases to the gravitational acceleration until the subject
leaves the ground. As soon as the subject leaves the ground,
he reaches the in-air phase. In the air, gravity is the only
force that influences the subject and thus the acceleration
is equal to the gravitational acceleration. Then, the subject
lands on the ground and gets into the landing phase. This
phase is similar to the reverse of the taking-off phase.
The subject’s acceleration starts at gravitational acceleration,
then rapidly climbs to a maximum point, and finally falls
back to zero.

2.2.2. Physical process of multiple consecutive jumps.
The physical process of multiple consecutive jumps is not a
simple combination of single jumps. When two jump activ-
ities occur within a short time period (less than 0.5 second),

the landing phase of the first jump is indistinguishable from
the taking-off phase of the second one. This is because the
two peaks are combined as one single peak. According to
our experiment of a series of consecutive jumps, we observe
that all three phases of the first jump, but there is no clear
division between the landing phase of the first jump and the
taking-off phase of the second one. However, if a subject
pauses for a while between two jumps, the landing phase
of the first jump can be distinguished from the taking-off
phase of the second. Based on the experiment of jumps with
pauses in between. In this experiment, the subject pauses for
approximately half a second between two jumps. With the
one-second pause, we can divide the landing phase of the
first jump and the taking-off phase of the second.

2.2.3. Feature selection. Based on the analysis above, we
derive three key features of the acceleration data to char-
acterize jumps. The three features are: 1) the peak of the
taking-off phase, 2) the flat valley of the in-air phase, and
3) the peak of the landing phase. We notice that the am-
plitude of the valley is always equal to that of gravitational
acceleration, and thus we only accept a valley if its value
is close to the value of gravitational acceleration. We do
not set any limits to the amplitude of the peaks because the
amplitude of the peaks can vary significantly from cases
to cases. Therefore, we can only set a loose lower bound
depending on the experiment results.

2.3. Data Processing

To extract the three key features, we process the col-
lected data through coordinate system translation and data
smoothing filter. We first convert the acceleration data from
the smartphone coordinate system to the Earth coordinate
system. On an Android smartphone, the coordinate system
translation is achieved by getRotationMatrix() func-
tion and remapCoordinateSystem() function [14]. In
these built-in functions, both accelerometer readings and
the magnetometer readings are used for determining the
orientation of the device.



After the coordinate system translation, we pick the
acceleration perpendicular to the Earth surface for data
smoothing. Since the key features of jumps lie in the vertical
direction, we select a particular axis in the acceleration that
is perpendicular to the Earth surface. In Android system,
the particular axis in acceleration is referred to as z-axis
acceleration [13]. Based on the translated z-axis acceleration
data, we capture some peaks, flat valleys, and occasional
spikes. These spikes may come from three sources: 1) error
of the sensors, 2) relative movements between the device and
the human subject, and 3) trembling of the subject. We apply
Savitzky-Golay filter to the acceleration data to remove these
spikes [15]. This is because Savitzky-Golay filter shows
good smoothing effect on the acceleration data of jumps and
meanwhile maintains the three key features of acceleration
corresponding to jumps. In implementation, we set the data
sampling rate as 50Hz through SENSOR_DELAY_GAME
in SensorManager, according to Nyquist-Shannon sam-
pling theorem, the frame length of the filter as 35, and order
as 5. The Savitzky-Golay smoothing filter usually reduces
the noise and small oscillation of the original data and it
outlines the three key features. This amplification to the key
features makes Savitzky-Golay smoothing filter the best for
SmartJump. The filtered z-axis acceleration data are then
fed into the jump detection module for final detection.

2.4. Jump Detection

The jump detection module consists of two parts: feature
extraction and finite state machine based jump detection.
Based on the above analysis, we extract features of peaks
and valleys from the filtered z-axis acceleration data. We
further use the peaks and valleys in acceleration data to
match the three key features of jumps using a finite state
machine. If the extracted features of the acceleration data
appear in a peak-valley-peak pattern, a jump activity is
detected and counted.

We find the peaks and valleys by using a peak and valley
detection algorithm. Supposing that ai(i > 0) is the ith
data point in the filtered z-axis acceleration, the jth point
is a peak if and only if aj > aj−1 and aj > aj+1 and
aj > 5. We set a threshold of 5m/s2 to keep out the
interference of other activities. The jth point is a valley
if and only if aj < aj−1 and aj < aj+1 and aj < −10.
In the feature selection, we mentioned that the value of the
valley should be equal to that of gravitational acceleration.
However, the data processing module has altered the data
and amplified the valley. The valley is no longer the ideal
flat valley but becomes a steep valley, and the value of valley
can reach −15m/s2. We set a loose constraint −10m/s2 as
the threshold to accept the valley. The acceleration data are
continuously streamed from the previous module. As soon
as the peak and valley detection algorithm detects a peak or
valley from the streamed data, it passes the peak or valley
as an event to the jump detection part.

We use a finite state machine (FSM) to match the de-
tected peak/valley events with “peak-valley-peak” patterns.
The FSM has three states: Init, Peak, and Valley, where Init

indicates the initial state. In the Init state, it can only transit
into the Peak state when it receives a peak event. In the Peak
state, it stays in Peak state if it receives another peak event
and it transits to the Valley state when it receives a valley
event. When the FSM receives a Peak event in the Valley
state, it reports a jump activity and sets the state to Peak
state. The Valley state stays at the Valley state if the FSM
receives a valley event. Besides the normal state transition
rule, the FSM also has a half-second reset rule. The FSM
resets itself to Init state if no event is received within a half
second.

3. Evaluation

In this section, we first introduce the experiment setup
and data collection, and then evaluate SmartJump in terms
of five-fold cross-validation test, self-test, and leave-one-out
cross-validation test, respectively.

3.1. Experiment Setup and Data Collection

To evaluate SmartJump, we use the accelerometer and
magnetometer on a Samsung S6 Edge smartphone to collect
the acceleration and ambient magnetic field strength data. In
our experiments, we recruited six subjects including three
males (average weight and height: 70kg and 178cm) and
three females (50kg and 165cm). The six subjects were
required to perform five sets of activities, which represented
five different application scenarios. The smartphones were
put in their jeans’ pockets during the data collection process.
Note that jeans are tightly attached to human body which
can precisely capture subjects’ jump activities.

We test SmartJump in five application scenarios. The
first application scenario is a simple indoor environment
with enough space, where the subjects perform the following
activities in order: 1) put phones in their jeans’ pockets, 2)
jump 25 times, 3) walk around in a small range, 4) and
jump another 25 times. During the activities, the subjects
can take a rest or stop for a while between two jumps,
and there are no intense activities other than jump. We
expect that SmartJump shows the best performance in this
basic scenario. This scenario simulates some simple exer-
cises performed at home. This scenario includes common
activities in people’s daily lives, and is the baseline for our
evaluation. The second application scenario is a complex
indoor environment. The subjects were required to perform
the following activities in order: 1) put phones in their jeans’
pockets, 2) jump 10 times, 3) go upstairs to the second
floor, 4) jump 10 times, 5) go downstairs to the first floor,
6) jump 10 times, 7) run around, 8) jump 10 times, 9) sit
on the sofa and stand up for 2-4 times, and 10) jump the
last 10 times. This scenario contains more intense activities,
such as climbing stairs which has obvious displacement on
vertical direction. The complex indoor scenario simulates
the intense exercises performed in a gym, where people
have different intense exercises and move in a larger area
than the simple indoor scenario. We expect that SmartJump
can accurately distinguish the 50 jumps within a series



of activities. The third application scenario is an outdoor
environment. This scenario is similar to the complex indoor
scenario, except the required activities that are performed in
an open outdoor environment. The subjects were required
to perform 50 jumps, walking, running, and riding bikes in
an outdoor environment in any order. The only requirement
is that they must travel at least 1km, which ensures that the
subjects experience different terrains. The main difference is
that the outdoor environment has more complicated terrains
and unexpected events. The subjects can go up a hill or
evade a coming car outside. The noise is much stronger
than that in the indoor environments. This outdoor scenario
simulates that the user performs some exercises in outdoor
environment. With the various activities and complex ter-
rains as noise, this scenario evaluates SmartJump’s ability
to distinguish jumps from noise. The fourth application
scenario requires the subjects to freely perform their daily
activities and exercises except for jumps. In this scenario, the
subjects can freely move around in both indoor and outdoor
environments. We only require them to stay in motion for
at least 8 minutes. We design this application scenario to
ensure that SmartJump does not detect other activities as
jump. The fifth is rope jump scenario, in which the subjects
were required to jump with the jump rope for 100 times.
The subjects cannot rest during the 100 jumps. We expect
SmartJump can accurately detect the total count of the jumps
in this scenario.

3.2. Five-fold Cross-validation Test

In this section, we perform a five-fold cross-validation
test on the six subjects’ data. To construct the dataset, we
randomly concatenate the smoothed z-axis acceleration of
the six subjects’ data together. Then, we divide the dataset
into five subsets, where four of them are used for training
and the rest one for testing. In particular, we tune the
following parameters to achieve the best performance: frame
length of the Savitzky-Golay filter, order of the Savitzky-
Golay filter, and the thresholds of peaks and valley, in the
training process. Each of the five subsets is used as the test
sample once and we average the results of the tests.

Based on the five-fold cross-validation test, SmartJump
achieves an average of 96.4% recall, 97.2% precision, and
96.8% F1 score for the whole dataset. The results demon-
strate that SmartJump can effectively detect the jump and
accurately count jumps, and meanwhile, it tolerates noises
and other similar activities.

3.3. Self-test

In the self-test, we tune the same parameters of
SmartJump for the best performance for each individual
subject in different scenarios.

We conduct the self-test results for six subjects, and the
three metrics for subjects 1 to 5 are above 98%. Only subject
6 has lower 95.2% recall, 96.0% precision, and 95.6% F1
score. We also conduct the self-test results for five scenarios.
In the No-jump scenario, SmartJump only has one false

detection for subject 1. In general, the three metrics of the
rest four scenarios are all higher than 95%. The complex
indoor scenario has the lowest values of 97.5% recall, 95.1%
precision, and 96.3% F1 score. The outdoor scenario’s
performance is also lower than the average: 96.6% recall,
96.9%, and 96.7% F1 score. This is because the complex
indoor scenario and outdoor scenario have strong noises
from intense activities and complex environments.

3.4. Leave-one-out Cross-Validation Test

In the leave-one-out cross-validation, we leave the data
of one subject or one scenario out, use the rest of the data
to find the best parameters, and test them on the leave-
out subject or scenario. For example, we use the data of
subjects 1 to 5 to find the parameters of SmartJump, which
can achieve the best performance for these five subjects, and
then use the SmartJump to test subject 6. We repetitively do
this process to each subject and scenario, respectively. The
goal of the test is to ensure that SmartJump framework can
be generalized to other users and scenarios.

We conduct leave-one-subject-out cross-validation, and
the results are close to the results of overall performance
test. The recall, precision, and F1 score of each test in leave-
one-subject-out cross-validation are within the range of 95%
to 99%. In the five-fold cross-validation test, we divide the
dataset randomly. However, the results of randomly divided
dataset are close to that of dataset divided by subjects. This
result indicates that data grouped by subjects have no differ-
ence to randomly grouped data. We also conduct leave-one-
scenario-out cross-validation. When we leave the no-jump
scenario out, SmartJump still reports one false detection for
subject 1 and two false detection for subject 6. We can
observe that the three metrics of the simple indoor scenario
and the jump rope scenario are still good. However, the
performance of other scenarios are much worse. Compared
with five-fold cross-validation test, the precision of complex
indoor scenario drops to 85.8%, and the recall of outdoor
scenario drops to 93.4%. These results show that complex
indoor scenario and outdoor contain the most noises and
activities similar to jump.

From the results of leave-one-out cross-validation, we
conclude that collecting the data in different application sce-
narios is more important than that from different subjects. In
this case, we consider scenarios from people daily scenarios
to people exercise scenarios, which represent most of the
daily lives of users.

4. Conclusion

In this paper, we present SmartJump, a continuous jump
detection framework that detects human jump activity for
exercise tracking. SmartJump consists of three modules:
jump sensing, data processing and jump detection. We ex-
tract three jump features from smoothed z-axis acceleration
data by using the peak and valley detection algorithm and
match them with devised features from the analysis of phys-
ical jumps by using a finite state machine for jump detection



and count. We implement SmartJump on Samsung S6 Edge
smartphones and recruit 6 subjects for data collection in five
different application scenarios. We evaluate the accuracy
of SmartJump, and the experimental results indicate that
SmartJump achieves an average of 96.4% recall, 97.2%
precision, and 96.8% F1 score in the five scenarios.
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