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Abstract

Freezing of Gait (FoG) is defined as a sudden and short event in which a patient loses the ability to step forward. Ad-
vanced Parkinson’s Disease (PD) patients frequently experience these events. When FoG occurs, falling is possible
and this has a severe influence on patients’ quality of lives. Recently, the research on detecting and predicting FoG
and falls in PD has increased rapidly. However, there has not been a recent systematic survey in this area to con-
clude the efficacy of wearable devices in both detection and prediction in different environments (clinical, laboratory,
home). Thus, this survey summarizes the previous research on FoG computing in sensor selection, feature extraction,
algorithms and performance, which provides sufficient background knowledge on the state-of-the-art research. In this
paper, we discuss a series of FoG challenges and integral future research trends, which will allow for the advancement
of further research.

Keywords: Parkinson’s Disease (PD); Freezing of Gait (FoG); FoG Computing; Wearable Computing; Detection;
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1. Introduction

Parkinson’s Disease (PD) is a progressive neurodegenerative disease which impacts millions of patients [1]. For
many PD patients, FoG and its associated fall risk are the most concerning disabling problems [2]. Pharmacological
interventions are currently limited [3]. Some wearable devices that provide interventions, such as rhythmical cueing
and step-synchronized vibratory cueing, have satisfactory performance [4] [5]. To treat the FoG efficiently, FoG
detection and FoG prediction are emerging as a subject of research.

In this paper, we summarize the previous work of FoG computing in four aspects: sensor selection, feature ex-
traction, algorithms, and performance. In the sensor selection section, we go through and introduce the off-the-shelf
sensors (e.g. pressure sensors, motion sensors, etc.), and clinical sensors (e.g. EEG, ECG, EMG, etc.) in FoG
computing. And we summarize this in Table 2. In the feature extraction section, we detail the time-domain and
frequency-domain features employed in FoG computing. In the algorithm section, we describe all the algorithms
that have been utilized in FoG computing and separate them into two main categories: threshold-based algorithms
and learning-based algorithms. Next, we introduce the algorithms and how they are applied in FoG detection and
prediction. Lastly, in the performance section, we show the performance metrics that are widely used in the evalua-
tion of FoG computing and other wearable computing. We summarize the performance of previous research on FoG
detection and prediction ( see Table 3 and Table 4).

Some surveys have summarized previous work on both PD and FoG (Section 2.3). However, there is not a survey
so far that summarizes both FoG detection and FoG prediction with the details of different approaches. We begin
with the sensor selection to choose the hardware device, and then we go through feature extraction and algorithms to
select the classifier. Finally, we compare all the FoG detection and FoG prediction work to present the state-of-the-art
performance based on different sensors and classifiers.

Figure 1 shows the overview of this survey. In Section 2, we introduce the background knowledge of PD and
FoG, FoG intervention with wearable devices, and related surveys in PD and FoG. In Section 3, we present the
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Figure 1: Flowchart of FoG computing

sensor selection including the different introduction of widely used off-the-shelf sensors and clinical sensors in FoG
computing. Characteristic features extracted from both time-domain and frequency-domain are shown in section
4. Next, we include threshold-based algorithms and learning-based algorithms that have been employed in FoG
computing in Section 5. Then, the performance metrics and the performance for FoG detection and prediction are
presented in Section 6. Last, we summarize the insights to propose the challenges and future trends for FoG computing
for future researchers to work on. In summary, the contributions are as follows:

1. We summarize the background knowledge, intervention, and related reviews of FoG and PD, which may inspire
future researchers to easily get involved in this research field.

2. We completely summarize, introduce and discuss previous research on sensor selection, feature extraction,
algorithm, and performance in FoG computing.

3. Based on the insights of the survey, we identify a series of challenges and future research trends, which will
improve future research in FoG detection and prediction.

2. Background & Related Work

In this section, we present the background knowledge of PD and FoG, the intervention of FoG, and related survey
for PD and FoG. We briefly introduce what PD and FoG are and how people are struggling with them. Then, we
present the intervention of FoG and explain how FoG can be mitigated both in clinical and home environment. Next,
we go through the related works on the background information about PD and FoG, the intervention for PD and FoG,
FoG wearable computing surveys, etc.. Lastly, we discuss the differences and advantages of this survey compared
with others.

2.1. Background of PD and FoG

PD is a disease which is continuous degenerative of the central nervous system with more than 10 million patients
worldwide and is expected to continue increasing in number [6]. PD is identified by four main motor symptoms:
postural instability, rigidity, bradykinesia, and tremor. Also, non-motor impairments like executive dysfunctions,
memory decline, and smelling ability reduction may occur concurrently [7] [1] [8]. FoG difficulties and fall risk are
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some of the most concerned disabling problems in many PD patients. According to a survey of more than 6,000 PD
patients, 47% of them suffered from regular occurrences of FoG, and nearly 60% of them suffered from FoG every
day [9].

FoG often occurs when a patient is navigating narrow spaces, turning while performing other actions, and moves
from standing to walking [2] [10] [11] [12] [13]. With the deterioration of the disease, incidences of FoG episodes
increase, and the effectiveness of medications decrease. This amplifies the burden of the symptoms of the disease [12]
[14] [15]. The FoG risks include falls [16], loss of mobility and independence and even death [17]. These risks can
cause nervousness and anxiety and a decrease in a patient’s quality of life.

2.2. Intervention of FoG
The management of FoG often includes two types of interventions: pharmacological treatments and deep brain

stimulation (DSB). Typically, PD patients can take manipulated dopaminergic medicine to maintain the normal state.
However, pharmaceutical are not very effective when treating FoG. A dopaminergic medicine L-dopa will lose ef-
fectiveness as the disease becomes severe and it can also increase the severity of FoG [3]. Methylphenidate (MPH),
which has been commonly employed in attention disorder treatment, is another pharmacological treatment [18]. How-
ever, [19] mentioned that MPH had shown unclear findings with both positive results and negative results in different
studies. Also, [19] concludes that DSB is expensive and invasive compared with pharmacological treatment, and the
results are also not so clear.

Since clinical interventions are expensive and ineffective, researchers have proposed some other treatments for
FoG, such as external rhythmical cueing and step-synchronized vibratory cueing. Even though they can not funda-
mentally treat the FoG or PD, they can help patients to relieve the symptoms of FoG. To help patient exit from an
FoG event and continue walking, researchers propose rhythmical cueing such as a continuous periodic ticking sound
can synchronize the patient gait [4] [5] [20], [21] [22] [23]. On body sensors and feedback devices can detect FoG
and generate a rhythmical cue to mitigate the symptoms and risks associated with FoG. Another method is step-
synchronized vibratory cueing, which is still in the early stage of research. [24] first employed the pilot study to
explore how augmented sensory feedback improves Parkinson’s gait stability in a short period. [25] can improve gait
metrics in a clinical setting with their step-synchronized vibratory cueing wearable device. These two approaches are
unobtrusive and can be applied in any environment, which can be commercialized in the future.

Table 1: Summary of Related Surveys and Reviews on PD and FoG

Reference Scope Topic Focus
[26] PD Background Background Knowledge and latest progress about PD
[27] PD Intervention Levodopa dose equivalency reporting in PD
[28] PD Depression Prevalence studies of depression in PD
[29] PD and Technology The challenges and opportunities of technology in PD
[30] FoG Background Cross-Sectional Study of FoG and its associations and

clinical motor stages
[31] FoG Background Background knowledge and the-state-of-art progress of

FoG
[16] FoG and Falls Intervention Clinical presentation on FoG and Falls
[32] FoG Intervention Clinical and wearable intervention of Gait
[22] FoG Intervention Sensor-based Cueing for the Intervention of Gait
[33] Gait Analysis with Wearable Sensors Review of gait analysis methods and feature extraction
[34] FoG Detection with Wearable Device Clinical and wearable device comparison on FoG

detection
[35] FoG Detection with Wearable Device Summary of FoG detection works

2.3. Related Work
Researchers have published some surveys on PD and FoG, including PD background knowledge, intervention,

technology, etc., and FoG background knowledge, intervention, wearable computing, etc.. Table 1 presents related
surveys and reviews in these fields. [26] [28] are some representative reviews on PD background knowledge and
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latest progress about PD. [27] introduces the levodopa dose equivalency and intervention of PD, while [29] shows the
challenges and opportunities of technology in PD. In FoG fields, [30] [31] introduce the FoG background knowledge
and the-state-of-art progress of FoG. Next, [16] [32] [22] present the Intervention of FoG in both clinical and wearable
domains. [33] gives a review of gait analysis methods and feature extraction techniques. Also, [34] shows the
comparison between clinical and wearable devices on FoG detection. Last, [35] summarizes the FoG detection works
with some large tables mainly on the sample, type of sensors, sensor locations, procedures, and main contributions of
each paper.

Unlike the previous surveys and reviews on PD and FoG, our scope is focusing on FoG computing which contains
the application of both FoG detection and prediction. We first briefly introduce the background knowledge and
intervention methods of FoG. Then, we mainly focus on presenting the sensor selection, feature extraction, algorithms,
and performance of FoG detection and prediction, which comprehensively introduces the FoG computing process and
methods. We present this survey to help the researchers who are concentrating on FoG computing and state-of-art
works in the FoG computing area.

Table 2: Sensor Selection for FoG Detection and Prediction

Type Sensors References

Pressure Sensors
Insole Sensor [36]

Pressure Platform [37], [38]

Motion Sensors

Accelerometers
[39], [40], [41], [42],[43],[44], [45],
[46], [47], [48], [49], [50], [51], [52],
[53], [54], [55], [56], [57], [58], [59],

[60], [61],[62], [63]
Accelerometers + Gyroscopes [64], [65], [66], [67], [68]

Accelerometers + Gyroscopes + Magnetometers [69], [57]
Accelerometers + Telemeter + Goniometer [70]

Gyroscopes [71]

Clinical Sensors
EEG [72]

fNIRs [73]
ECG+SC [74]

Other Sensors

EMG + Accelerometers [75]
EMG + Camera [76]

Depth Camera + Accelerometer [77]
Camera + Goniometer [78]

ECG+ Insole + Accelerometer [79]

3. Sensor Selection

Sensing FoG events is one of the essential and fundamental processes of FoG detection and prediction. Since
different types of sensors generally determine feature extraction and algorithm selection, it is necessary that we present
sensor selection in this section. Based on different applications and principles, we have multiple choices in sensor
selection. Typically, we classify the sensors as off-the-shelf sensors or clinical sensors. Off-the-shelf sensors are
ready to purchase and simple to implement in a home environment. For clinical sensors, even though it is obtrusive
and limited in a clinical environment, it still can provide valuable signals for FoG prediction and potentially contribute
to the intervention of FoG and PD where off-the-shelf sensors are ineffectual.

Initially, some researchers selected pressure sensors placed in the insoles of shoes to detect FoG. Following that, as
motion sensors became increasingly popular in wearable computing, researchers selected them to sense FoG events.
This allowed for more robust and precise data with a simple and efficient implementation. Then, cameras and other
video systems were added to the data collection process to increase the accuracy of the motion sensors. Later, however,
researchers found that using only the motion sensors with flexible devices can still reach a high accuracy. Now, motion
sensors are the most popular part of wearable device on FoG detection.

Motion sensors have been widely employed to detect FoG since FoG has apparent motion features when the event
happens. However, before FoG occurs, there are not obvious motion features. This creates difficulty for prediction of
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FoG with motion sensors. Even though slight signal patterns may occur, it is not enough to lead to prediction. There-
fore, researchers divert their attention to mental conditions, which may be essential in the treatment of FoG.[14]. Un-
der this hypothesis, the physiological data such as Electroencephalogram (EEG), Electrocardiography (ECG), Heart
Rate (HR), Skin Conductance (SC) are introduced to capture specific features before FoG. Even though most of the
physiological data needs to be collected from obtrusive clinical sensors, some data, like HR, can be acquired by a
wearable device such as a smartwatch or a smart wristband. Therefore, physiological data also has the potential to
predict the FoG episodes unobtrusively. Table 2 show previous work with different sensors. Next, we introduce the
sensor selection in more details.

Figure 2: UG Sensor: A combination of accelerometer, gyroscope, magnetometer

3.1. Off-The-Shelf Sensors

Wearable computing devices are unobtrusive, portable, reproducible, and inexpensive. Therefore, off-the-shelf
sensors, such as motion sensors, cameras, and insole pressure sensors are used to monitor FoG events. We detail these
sensors and how they are employed in the FoG computing in the following paragraphs.

Since FoG is related to motor impairment, most previous research selected wearable motion sensors to detect
abnormal gait behaviors. Motion sensors such as accelerometers, gyroscopes, and magnetometers are chosen most
frequently to recognize FoG due to their unobtrusive, portable, low power consumption characteristics. Figure 2 shows
UG sensor [80], a commercial hardware embedded with a combination of accelerometer, gyroscope, magnetometer,
which is simple but effective. Among the previous work with motion sensors, there are three sensor choices. First,
researchers solely worked with accelerometers. Second, researchers combined the accelerometer and gyroscope.
Third, researchers exploited all three sensors: accelerometer, gyroscope, and magnetometer. Also, telemeter and
goniometer have been exploited in preceding work. Next, we will present these cases one by one in the following
paragraphs.

Initially, researchers attempted to use the insole pressure sensors to detect FoG events. The pressure sensors are
embedded into the shoes to sense the step frequency. If the step frequency exceeded a threshold, they classified an
FoG event. This threshold based classifier had a high rate of misclassification. Later, pressure sensors were replaced
by motion sensors.

Microelectromechanical systems (MEMS) accelerometers are electromechanical devices that can measure static
and dynamic acceleration forces caused by movement and vibration. For FoG detection, Han et al. [39] first utilized
two MEMS accelerometers around the ankles to extract FoG features from the gait episodes. After they applied Fast
Fourier transform (FFT) to the signals, they observed that a normal gait has a primary frequency of near 2Hz while
FoG is near 6-8Hz. This proves that MEMS accelerometers can efficiently contribute to the classification between
normal gait and FoG episodes.

Gyroscopes and magnetometers are two common motion sensors that can sense the variation of orientation and
direction. Since the specific causes of FoG are unknown, to enhance the precision of applying the shallow learning
algorithms to FoG detection, more data and features of FoG are needed. Therefore, some research like Tripoliti et
al.[64], combine accelerometers with gyroscopes, while Mazilu et al. [69] combines accelerometers with gyroscopes
and magnetometers to collect more features for the ML algorithms.

Recently Ali Saad et al.[78] employed telemeters and goniometers with accelerometers to detect FoG events. By
sensing the voltage variation, telemeters can measure the distance variation between two devices while goniometer
can measure the angle variation of joints. These devices are small, portable and energy efficient. To enhance the
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precision, telemeters measure the variation of the inter-foot distance during walking to detect each step, and they
exploit goniometers to measure the angle of the knee.

3.2. Clinical Sensors

Motion sensors are effective on detecting FoG events, while they do not work well on predicting FoG episodes.
Since FoG is caused by PD, traditional clinical sensors like EEG, ECG, EMG, fNIRS have been employed to help
detect the FoG events. FoG events are commonly caused by reactions such as agitation, anxiety, and tightness in
the patient. Clinical sensors can help to provide insight into these reactions. Even though clinical sensors sacrifice
the convenience and low power consumption they produce less noise and potentially can perform better on FoG
prediction.

Electroencephalography (EEG) monitors the electrical activity of the brain. It measures voltage fluctuations
caused by ion currents in the brain neurons[66]. Typically, doctors pay attention to event-related potentials or EEG
spectral content when they diagnose the patient. Since PD is related to brain activities, EEG has great potential in
predicting FoG events. Recently, Handojoseno et al.[72] explored the relation between EEG and FoG and reach the
result of 75% accuracy, 75% sensitivity, 75% specificity, which shows the potential in FoG prediction.

Electrocardiography (ECG) is the process of recording the electrical activity of the heart using electrodes placed
on the skin.These electrodes detect electrical changes on the skin that are a result of blood movement because of heart
beat. Since FoG may be related to emotions and moods, ECG has the potential to reveal the connection between
FoG and heart signals. Mazilu et al.[74] has explored ECG combined with Skin Conductance signals to predict FoG
events and reach an accuracy of 71.3% in classify pre-FoG episodes, which is the first time to employ these signals to
compute FoG.

Electromyography (EMG) is an electrodiagnostic medical technique used to evaluate and record the electrical
signals generated from skeletal muscle activities. EMG can create an electromyograph to detect the electric potential
generated by muscle cells when these cells are electrically or neurologically activated. The signals can contribute to
identifying FoG events with learning algorithms [75].

Functional Near-Infrared Spectroscopy (fNIRS) is a non-invasive imaging method that makes the use of near-
infrared spectroscopy aiming at functional neuroimaging. Brain activities can be measured and detected by hemo-
dynamic responses and neuron behaviors when applying fNIRS. As we have mentioned, FoG and PD is related to
brain activities. Therefore, prior to FoG events, the images of brain activities can have different patterns, which may
potentially contribute to FoG prediction. [73] first explore the fNIRS as a sensor to predict FoG episodes and detect
the chemicals variation in blood that is related to FoG events.

4. Feature Extraction

Feature extraction is the most critical part of FoG detection and prediction. Because of the differences between
sensors, the features extracted may vary. In the feature extraction process, slight changes for each parameter may
have a considerable influence on the performance, such as window size, frequency threshold, etc.. Typically, we have
time domain features and frequency domain features. Most research utilizes threshold-based algorithms to compute
the FoG events on frequency domain features. Some research selects both time and frequency domain features as an
input of learning algorithms to detect or predict FoG episodes. First, we present the signal processing techniques used
in both the time and frequency domain. Second, we discuss features limited to the time domain. Finally, we examine
the features used in the frequency domain.

4.1. Signal Processing Techniques

Before introducing these features, we will briefly go through the signal processing techniques and parameters that
have been employed in FoG computing (mainly for motion sensors), which can potentially enhance the sensor signal
qualities.

First is the Sampling Rate Selection. Motion sensors such as the accelerometers typically can provide an inertial
signal from 64Hz to 256 Hz. For FoG events computing, due to the slow movement frequency, the sampling rates
are chosen less than 100Hz, which is enough to compute FoG events. Like, [63] [47] use 64Hz as sampling rate for
threshold-based algorithm, while [61] use 40Hz for learning-based algorithm.
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Second is the Noise Reduction. The step frequency and frequency of FoG are typically less than 15Hz, which
are not rapid movements. Therefore, some researchers utilize a low-pass filter to reduce high-frequency noise. For
example, [61] employs a 2nd order Butterworth low-pass filter to gain 15Hz cut-off frequency. Also, removing the
outliers can help to reduce the unexpected variance in the signal. Z score and interquartile range (IQR) are two
common approaches to remove outliers. Both methods utilize the standard deviation and mean to determine the
unexpected points[81] [82].

Third is the Window Size Selection. Initially, Bächlin et al. [63] uses the window size of 4 seconds, and Zach
et al. [54] explores that the result works similarly between 2s-4s. Later, [48] verifies that the specificity is very low
when it employs a tiny window size, and they suggest working with the window size over 2.5 s. Thus, 2.5s to 4s is a
well-selected range of the window size for better performance of FoG computing.

Fourth is Data Imputation. Missing data is not uncommon in raw sensing signals. Data imputation will potentially
enhance the FoG computing accuracy. Data imputation [83] [84], including average imputation, regression substi-
tution, and multiple imputation, is a widely adopted method that uses substitute values to replace the lost data. The
substitute values can be replaced either by the average values of other participants, the regression estimations, or the
regression and correlation predictions.

4.2. Time Domain Features

Different sensors, such as motion sensors and fNIRs will create different time domain features. Typically, for
motion sensors and EEG, time domain features are selected as the input to learning algorithms. This is because it is
difficult to set any threshold to filter time domain signals into time domain features. As for fNIRs signals, it can show
how our brain works and how chemicals react. Therefore, we will introduce the time domain features separately.

For the sensors with electrical signals, we usually extract the features from each window or correlated windows.
Next, we will introduce time domain features that have been employed in FoG wearable computing. Take one window
x axis reading of an accelerometer as an example, Let x1w, · · · , xNw be the time domain samples in the Window W .

1. Mean: The average value of electrical signals in one window. It is related to orientation of the inertial system.

x̄W =
1

n
Σn

i=1x
i
w (1)

2. Standard Deviation: The standard deviation of electrical signals in one window. It is related to the intensity of
movement.

σxW =

√
1

n
Σn

i=1(xiw − x̄iw)2 (2)

3. Increment of one axis: The Increment of different mean values from continuous windows of one axis. It can
provide the movement variation within the time of two continuous windows.

δxW = xW+1 − xW (3)

4. Increment of two axes: The Increment of different mean values from two continuous windows of two axes. It can
provide the movement variation between different axes. Take two continuous windows x axis and y axis reading
of an accelerometer as an example:

δx̄yW = δy(W+1) − δx(W+1) (4)

5. Integral: The Integral of all the values in one window. It is related to the quantity of movements.

x̂W =

∫ n

i=1

xiW (5)

6. Correlation Coefficient: Correlation between each couple of axes. It indicates the linear relation of different
directions. Take two continuous windows x axis and y axis reading of an accelerometer as an example:

rxyW =
Σn

i=1[(xiw − x̄iw)(yiw − ȳiw)]

nσxwσyw
(6)
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7. Autoregressive Coefficient: The coefficient is the relation between time-shifted version of original version when
given the amount of time shift.

ACx
W = arburg(xiW , Shift) (7)

Other features that may not have apparent relations with movement such as Min, Max, Median, Root Mean Square,
Geo Mean, Kurtosis, Skewness, TrimMean, Range, Zero Crossing Rate, Mean Crossing Rate, etc. and certain sensor
features such as Signal Magnitude Vector, Average Acceleration Energy etc. have been explored by Mazilu et al.[49].
These features can be further selected by principal component analysis (PCA) and they capture top five to top twenty
features with mutual information.

fNIRs images can show chemical variations in the blood. Maidan et al. discovered that HbO2 changes before
and during FoG while turning in PD patients [73]. Specificly, during anticipated turning, HbO2 increased before
FoG and increased more during FoG. During unexpected turning without FoG, HbO2 decreased. In non-PD patients,
HbO2 does not change during turns. Even though these features can only be acquired in the hospital, it can be more
significant in understanding the pathology and FoG intervention compared with other wearable devices.

4.3. Frequency Domain Features

Frequency domain features are dominant indexes for sensors with electrical signals. Step frequency change is an
apparent of FoG. This has lead to the deployment of motion sensors in an attempt use this feature to detect and predict
FoG. Based on this principle, a well-known frequency threshold algorithm Moore-Bächlin FoG Algorithm, (MBFA)
is designed to detect FoG episodes. Later, as learning algorithms are introduced into FoG computing, more frequency
domain features are required as the input. Next, we will present various features based on different algorithms.

Before introducing the frequency domain features, we will briefly present the techniques of signal transformation
that have been utilized in FoG computing.

First, Fast Fourier Transforms (FFT) have been commonly employed in ubiquitous computing to search the
distinct dominant frequencies from time-domain signals. It is accessible to combine a Low-Pass Filter to remove the
high-frequency noises or a Band Pass Filters to gain target frequency signals. FFT is also a light computing method for
time-frequency analysis [85]. In FoG computing, most research with motion sensors utilizes FFT to obtain frequency
domain features.

Second, Discrete wavelet Transforms (DWT) is a discretely sampled wavelet transformation. Different from
FFT, DWT typically can have a high resolution and also can capture the frequency and location in time [86]. [72]
applies DWT to analyze the EEG signals and extract the frequency domain features.

Since the threshold-based algorithms have been widely used by many researchers, we will take the most represen-
tative one MBFA algorithm as an example to introduce the features. They mainly propose two features [63]:

(1) Freezing Index (FI): The equation for FI is as follows. It is the result of the power spectral density (PSD) from
Freezing Band ( FB) and the PSD from Walking Band (WB). Typically, FB is from 3 to 8Hz, and the WB is from
0.5 to 3 Hz.

FI =
PSD3−8Hz

PSD0.5−3Hz
=

FB

WB
(8)

(2) Power Index (PI):The euation for Pi is as follows, defined as the addition of WB and FB to determine if there is
any relative amount of movement when FI is high. PI also can help eliminate the situations where the patients are
not moving voluntarily. In Section 5.1, we will discuss the algorithm into details.

PI = FB +WB (9)

Some frequency features for learning algorithms are similar to time-domain features such as the standard deviation,
kurtosis, skewness. Other frequency domain features demand further computing such as Entropy, Energy, etc. Entropy
is the measurement of the distribution of frequency components. Energy is the summation of the squared discrete FFT-
component magnitudes of the signal, which is divided by the window length for normalization. [61] [47] [49], have
investigated all the features with shallow learning algorithms for FoG detection and prediction.

8



5. Algorithm

After introducing sensor selection and feature extraction, we present different types of algorithms selected by re-
searchers in FoG computing. FoG computing is focused on classification and prediction of FoG events. To accomplish
this, there are two main types of algorithms that are commonly utilized in FoG computing: threshold-based algorithms
and learning-based algorithms.

Learning-based algorithms have been widely used recently, and most of the recent research on FoG computing
employed the shallow learning algorithm and deep learning algorithm to improve the accuracy of FoG detection and
attempt to predict the FoG episodes.

Threshold-based algorithms typically have the following benefits. First, they need less computing resources,
which means it can be implemented on smart devices. Second, it does not require massive data samples, and does
not need the data augmentations, which reduces the burden of data collection. Third, to promoting the performance
of MBFA algorithm a series of research has been working on improving it and testing it with different parameters in
alternative environments, which makes it most robust and sound threshold-based algorithm so far.

Learning-based algorithm mainly has the following advantages: First, learning-based algorithm can reach higher
accuracy on FoG detection. Second, it has the potential to predict the FoG events hundreds of milliseconds before it
happens, while threshold-based algorithm is not able to predict FoG episodes. Third, it can also be implemented in
both motion sensors, clinical sensors and other types of sensors.

5.1. Threshold-Based Algorithm
Threshold-based algorithms mainly use frequency features for FoG computing since FoG is related to the step

frequency. Before the MBFA algorithm, researchers set a threshold to classify the FoG events based on the heuristic
rules, which may cause a series of misclassifications. Later Moore et al. and Bächlin et al. proposed the threshold-
based MBFA algorithm to enhance the accuracy of FoG detection.

In 2008, Moore et al. have proposed an algorithm to detect FoG with the accelerometer attached to the ankle. They
presented the FI as Eq. (8) to describe FoG episodes. When FI exceed a distinguished threshold, Freezing Threshold
(FTH), they classified it as an FoG event. Later in 2009, Bächlin et al. employed the Power Index (PI) as Eq. (9)
to address the false positives caused by the rest of the patients. When PI exceeds the Power Threshold (PTH), they
identify whether they have a related amount of movement when FI exceed the FTH. In this way, it will eliminate the
case where the patients don’t have enough movement. Consequently, in the MBFA algorithm, an FoG event will be
classified if FI > FTH and PI > PTH . So far, this is the best Threshold-based Algorithms for FoG detection due
to its excellent performance and less cost of computing [40] [63].

5.2. Learning-Based Algorithm
In the Feature Extraction section, we have mentioned that both time domain features and frequency domain fea-

tures are selected as the input of learning-based algorithms. Since threshold-based algorithms are limited to computing
those features, learning-based algorithms are employed to enhance the performance of FoG detection and prediction.
Typically, learning-based algorithms can be divided into two groups: shallow learning algorithms and deep learning
algorithms. Next, we will introduce the two groups of algorithms

5.2.1. Shallow learning Algorithm
Shallow learning algorithms mainly have two types: Supervised and unsupervised algorithms. Supervised al-

gorithms are learning the mapping function from input variables to an output variable based on the given pairs of
input-output [87]. These algorithms learn from a manually labeled data set. Unsupervised algorithms learn from
the input data without any output labels. The goal of unsupervised learning is to model the underlying structure or
distribution in the data since it may be difficult to label the data manually or we don’t have the classification group.

In FoG computing shallow learning approaches were first employed by Mazilu et al. in 2012 [47] and 2013 [49].
They selected the following classifiers as the algorithm used on the dataset which is based on the motion sensors:
Naive Bayes (NB), K-nearest neighbor (KNN), Random Forest (RF), Adaptive Boosting (AdaBoost). Based on their
research, RF has the best performance with four seconds windows features as input. Later, Ahlrichs et al. [53]. and
Rodrı́guez et al. [61] mainly utilize the Support Vector Machine (SVM) algorithm to classify FoG events also based
on the motion sensors. Next, we are going to introduce each shallow learning method used in FoG detection.
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Bayesian Network is a graphical model that can generate the probability for each node and link to process uncertain
data. The model represents features as nodes connects them with directional dependency links. Researchers usually
employ the model to support decision making or strategy searching when the domain is uncertain or ground truth is
difficult to collect [88] [89].

A K-Nearest Neighbors classifier is a machine learning algorithm that employs a probabilistic method to determine
classification questions and regression problems. First, the algorithm maintains all samples in the training dataset.
Next, the algorithm determines k most similar training samples from each test sample. And then, it picks the most
frequently used class label for the test instance. The algorithm can return the mean of the k labels for regression and
the most used class of the k labels for a classification problem. Although researchers frequently use a KNN classifier,
it is more expensive in computing time than other classifiers [90] [91].

Random Forests is a machine learning algorithm that can create models for both classification and prediction
problems. The model employs multiple unpruned decision trees to calculate a target value, which can also avoid
overfitting. Although the workload is somewhat expensive, this algorithm can potentially be used to predict FoG
episodes [92] [93]. In addition, Random Forests are often used in feature selection, as the tree-based approaches
typically rank features by how they enhance the purity of the node. At the top of all trees are the nodes with the most
considerable decrease in impurity, while at the bottom of the trees are the nodes with the slightest decrease. Therefore,
by pruning trees below a specific node, a subset of the most significant features can be created [94].

Logistic regression is a form of regression analysis modeling the probabilities for binary classification problems.
Compared with linear regression, logistic regression can provide probabilities for the classification model. Besides,
Logistic regression significantly helps in understanding which independent variables discriminate between the two
groups, which can contribute to feature selection [95] [96].

AdaBoost is a method used for classification problems in which a strong classifier is built from a group of weaker
classifiers. Based on the first model, it creates a second model to eliminate errors from the training data. The models
is continually updated until the prediction is precise enough or maximum models have been employed. AdaBoost
works best for binary classification problems [97] [98].

Support Vector Machine has been widely utilized to solve the high-dimensional classification problems. It applies
the hyperplanes as the boundaries to separate the data points accurately. There are two rules to choose the hyperplanes:
First, the hyperplanes must divide the data points precisely. Second, there must be a maximum potential distance
between support vector points and the hyperplanes. SVM is highly acceptive since it can solve non-linear classification
problems with less computing workload, which can also be utilized on devices with less computing power [99] [100].

5.2.2. Deep Learning Algorithm
Recently, deep learning algorithms are becoming popular and commonly used in wearable computing. Deep

learning algorithms are typically multi-layer neural network architectures similar to that of a natural human. In deep
learning, a machine can learn to classify tasks directly from images, dynamic electrical signals, or text. So far, it can
achieve state-of-the-art accuracy, even exceeding human-level performance due to the huge computing power. Models
are trained by massive labeled data, which is much larger than the amount of data required for shallow learning.

Some research employs the deep learning model in FoG computing in order to enhance the performance of FoG
detection and explore the FoG prediction. Mazilu et al. in 2012 [47] has explored the Multilayer Perceptron (MLP) in
FoG online detecting. In 2011, Cole et al. [75] first employed the Dynamic Neural Network (DNN) for FoG detection.
In 2012, Handojoseno et al. [72] explored Back Propagation Neural Network (BP-NN) based on the EEG signals to
predict the FoG events. In recent year, Saad et al.[70] tried the Gaussian Neural Network (GNN) based on multiple
motion sensors in FoG detection, while Camps et al. [62] utilized Convolutional Neural Network (CNN) to detect the
FoG events. Next, we mainly introduce the most recent used deep learning model MLP, GNN, and CNN.

Multilayer Perceptron (MLP) is a supervised learning approach with fully connected neural network that has been
broadly used for solving complex classification problem and parallel processing. MLP is in a directed graph in which
the signal path through the nodes only goes one way. Researchers select MLP as the first step of deep learning since
the graph is simple, and the workload is less compared with other deep learning algorithms [101], [102].

Gaussian Neural Network is actually the deep neural network with the Gaussian Process. Gaussian Process models
a higher abstract of human thought in contrast to human brain modeled by neural network. Compared to conventional
deep neural network, GNN is quite tractable and precise, without relying on your training parameter and the input
function for convergence [103] [104].
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Figure 3: Flowchart of FoG computing

Convolutional Neural Network can refer to a regularized version of MLP, which employs a hierarchical pattern
to avoid overfitting. It is a forward feeding deep neural network that contains an input layer, an output layer, and
multiple hidden layers. Different from conventional deep learning models that include stacked dense layers, CNN
applies an efficient and practical alternative to reduce the overwhelming amount of weights. Recently, CNNs have
been extensively utilized in image processing, video processing, and natural language processing where the data is
complex and extremely large. In FoG computing, CNN has the potential to predict the FoG events [105] [106].

Recurrent Neural Networks (RNNs), different from traditional neural networks, contain an internal memory that
can process sequences of input. RNNs contains loops, which means that the current input and output are learned from
previous input allowing to classify and predict current events based on previous ones [107]. Therefore, RNNs, like
Long Short-Term Memory (LSTM), are suitable for classifying and predicting time-aware datasets, which makes for
excellent potential in FoG computing [108].

6. Performance

Researchers often utilize the performance of FoG computing as the most important criterion to evaluate their
system. Typically, we use performance metrics to quantify the accuracy of the system’s execution. In this section, We
first introduce the implication of performance metrics and how to calculate each parameter. As we have mentioned,
FoG computing generally contains FoG detection and FoG prediction. Next, we will present the performance of FoG
detection and prediction respectively.

6.1. Performance Metrics

The confusion matrix is an array that stores the results of a classifier. It presents the performance of a learning
algorithm as shown in Figure 3. Since FoG detection is a binary classification, typically the result contains True
Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN). During the evaluation process, two
central parameters Sensitivity and specificity are employed to determine the performance quality. The definitions are
defined as below:

(1) True Positive (TP): Positive instance that is classified as positive.
(2) True Negative (TN): Negative instance that is classified as negative.
(3) False Positive (FP): Negative instance that is classified as positive.
(4) False Negative (FN): Positive instance that is classified as negative.
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Next, we will present the performance indicators which can assess the efficacy of a learning algorithm.
Performance indicators used to evaluate the efficiency of learning algorithms are presented next.
Accuracy is the most commonly used performance indicator. It describes how close the predicted value is to the

original and the systematic errors throughout the data. It is defined as Eq. (10):

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

The recall, also known as TP rate or sensitivity, is the number of True Positives over the combination of True Positives
and False Negatives. It is defined as Eq. (11):

Recall =
TP

TP + FN
(11)

The precision, also known as positive predicted value, is the number of True Positives over the combination of True
Positives and False Positives. It is defined as Eq. (12):

Precision =
TP

TP + FP
(12)

The specificity, also known as true negative rate, is the number of the True Negatives over the combination of True
Negatives and False Positives. It is defined as Eq. (13):

Specificity =
TN

TN + FP
(13)

The false positive rate (FPR), is the number of False Positives over the combination of True Negatives and False
Positives. It is defined as Eq. (14):

FPR =
FP

TN + FP
(14)

F-measure is a way to combine the previous performance indicators for an overall assessment. It is defined as Eq.
(15):

F −measure =
2Precision ∗Recall
Precision+Recall

(15)

6.2. Performance of FoG Detection
FoG detection has been explored by many researchers for the recent two decades. They have tested different

sensors, classifiers, datasets, window sizes, etc. in order to enhance the performance of FoG detection and increase
the convenience of the wearable devices, such as using a smartphone to detect FoG events. Generally, researchers
always use accuracy, sensitivity, specificity to assess their system accuracy. However, we believe that the time delay
is also an index which we need to pay attention to though many researchers ignore to mention it. Because time delay
may have an influence on the FoG treatment, such as when will the rhythm cueing start or warning the patients from
falling. In Table 3, we show the Reference, Sensors, Classifiers, PD patients, Time Delay, and Performance for each
FoG detection application. This table mainly summaries previous work on FoG detection. Since all these works have
different experiment settings, the performance is not comparable.

First, most papers choose motion sensors to detect FoG events, and the result of them are much better than other
sensors like EEG and EMG since motion sensor signals are more directly related to FoG events. Therefore, to detect
FoG, motion sensors especially the accelerometer is the best choice so far both on performance and practicality.
Next, we can discover that the performance of learning-based classifiers is typically better than threshold-based ones.
It is not difficult to understand since learning-based classifiers employ more features and more massive computing
resources. So far, the deep learning based algorithms [62] perform best with the sensitivity of 91.9% and specificity
of 89.5% ( Performance of [47] is under special conditions). Besides, the dataset of PD patients is generally less than
30 since it is challenging to collect data of randomly occurring events from PD patients. Also, even though many
papers do not mention the time delay of FoG detection, we still consider this as an essential performance index, which
can determine the efficacy of the just-in-time intervention. So far, the time delay is typically less than 500ms with
certain classifiers. However, as we utilize more sophistical classifiers and algorithms, the time delay will undoubtedly
increase, which decrease the significance of FoG detection.
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Table 3: Performance for FoG Detection

References Sensors Classifier PD Patients Time Delay Performance
[40] Motion Sensor Threshold-based 11 N/A Accuracy: 89.10%
[41] Motion Sensor Linear Classifier 2 N/A Accuracy: 82.70%
[42] Motion Sensor Threshold-based 1 Avg: 332ms Max:

580ms
Accuracy: 78.00%

[78] Motion Sensor Threshold-based 10 N/A Sensitivity:
75.00%-83.00%

Specificity:95.00%
[75] Motion Sensor &

EMG
Dynamic Neural

Networks
10 N/A Sensitivity: 83.00%

Specificity:97.00%
[43] Motion Sensor Threshold-based 6 N/A Sensitivity: 88.30%

Specificity:85.30%
[45] Motion Sensor Threshold-based 8 N/A Sensitivity: 81.70%

Specificity: N/A
[72] EEG BP-NN 26 N/A Sensitivity: 74.20%

Specificity:78.90%
[47] Motion Sensor Learning-Based 10 Avg: 340ms Max:

710ms
Sensitivity: 95.00%

Specificity:95%
[48] Motion Sensor Threshold-based 25 N/A Sensitivity: 86.80%

Specificity:82.40%
[64] Motion Sensor Learning-based 5 N/A Accuracy: 96.11%

Sensitivity: 81.94%
Specificity:98.6%

[54] Motion Sensor Threshold-based 23 N/A Sensitivity: 75.00%
Specificity: 76.00%

[53] Motion Sensor Learning-based 8 N/A Accuracy > 90.00%
[69] Motion Sensor Threshold-based 5 < 500ms Sensitivity: 97.00%

Specificity: N/A
[56] Motion Sensor Threshold-based 10 N/A Best: Sensitivity: 84.90%

Specificity: 81.00%
[66] Motion Sensor Learning-based 15 N/A Best: Sensitivity: 86.00%

Specificity: 92.00%
[59] Motion Sensor Threshold-based 10 N/A Sensitivity: 73.10%

Specificity: 81.60%
[60] Motion Sensor Threshold-based 20 N/A Sensitivity: 87.57%

Specificity: 94.97%
[61] Motion Sensor Learning-based 21 N/A Sensitivity: 88.10%

Specificity: 80.10%
[62] Motion Sensor Deep Leanring 21 N/A Sensitivity: 91.90%

Specificity: 89.50%
[109] Motion Sensor Learning-based 10 N/A Sensitivity: 92.40%

Specificity: 94.90%
[110] Motion Sensor Learning-based 4 N/A Accuracy: 94.40%
[111] Motion Sensor &

EMG
Deep Learning 4 N/A Accuracy: 96.30%

[112] Motion Sensor Deep Learning 5 N/A Accuracy: 99.38%
Sensitivity: 97.50%

[113] Motion Sensor Learning-based 16 N/A Accuracy: 81.30%
[114] Motion Sensor Deep Leanring 10 N/A Sensitivity: 96.10%

Specificity: 95.50%
[115] Motion Sensor Leanring-based 63 N/A Sensitivity: 95.60%

Specificity: 90.20%
[116] Camera Deep Leanring 45 N/A Accuracy: 82.50%
[117] Motion Sensor Learning-based 18 N/A Sensitivity: 95.80%

Specificity: 95.00%
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6.3. Performance of FoG Prediction

Different from FoG detection, FoG prediction applications are in the exploration stage. Researchers tested various
sensors, features, and algorithms to try to create a system to solve this problem. So far, even though some systems
have been built to predict FoG events, the performance is not as accurate as FoG detection. This is mainly due to the
lack of information on the mental causes of FoG and non-physical symptoms before FoG. Researchers employ EEG,
fNIRs, ECG, Skin Conductance to predict the FoG episodes. These signals are monitored with clinical sensors to
predict FoG even though they are obtrusive and inconvenient. Next, we will use Table 4 to summarize explorations
that contribute to FoG prediction.

Table 4: Performance for FoG Prediction

References Sensors Classifier PD Patients Performance
[49] Motion Sensors Learning-based 10 F-measure=56.00%
[74] ECG + Skin

Conductance
Threshold-based 18 Accuracy: 71.30%

[73] fNIRs N/A 22 N/A
[118] EEG Learning-based 26 Sensitivity: 83.50%

Specificity: 60.50%
[119] EEG Learning-based 16 Sensitivity:

60.80%-86.00%
Specificity:

66.13%-82.89%
[120] Motion sensor Learning-based 12 Accuracy: 82.7%

In Table 4, we can discover that clinical sensors perform better than motion sensors. The performance is very
intuitive that before FoG happens, there is no movement features for motion sensors to capture. Even though the
performance of clinical sensors are still from 60% to 86%, it is a good start for researchers to work on FoG prediction
with different sensors. fNIRs are a new way that could predict the FoG in the future with new classifier.

7. Challenges and Future Trends

Existing FoG computing mainly focuses on FoG detection and researchers are able to achieve a high-performance
on it. Future FoG computing could pay more attention to FoG prediction, which is valuable to prevent PD patients
from falling or other physical damage. This section presents the challenges and future trends for both existing and
future FoG computing.

7.1. Challenges for FoG Computing

The future of FoG computing is still confronted with many challenges, such as data collection, and time latency
for FoG detection, and FoG prediction. These challenges may still be a research topic in the near future. Next, we
present the challenges and possible solutions for FoG computing.

Challenges for Data Collection: Data collection for FoG computing is a challenge both for existing and future
research. First, PD patients are typically senior people who are not always available to collaborate with researchers for
data collection. Second, FoG events occur randomly, so it is hard to control the data collection process. To increase
the chance of FoG occurrence some researchers create narrow spaces for PD patients to walk through. However,
researchers purposefully creating FoG events is still limited and not always friendly to PD patients. Therefore, data
collection for FoG computing is a time-consuming and challenging process. DAPHNET is an open source dataset
containing data from three acceleration sensors placed at the hip and leg and labelled to reflect FoG occurences [59].
While some researchers have explored this dataset with different classifiers, it still has the potential to be explored in
the future.

Challenges for reducing the time latency of FoG detection: Even though the performance for FoG detection is
efficient and significant, the time latency is still around 350-500 milliseconds. Since FoG is dangerous and poses a
threat to PD patients’ lives, the time between the FoG occurrence and detection should be as short as possible. Due to
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the time latency, FoG can still cause a falling or other physical damage to PD patients, which lower the significance of
FoG detection. FoG detection is supposed to contribute to FoG intervention and treatment. No matter how accurate
the detection of FoG events, more time is necessary to prevent PD patients from getting hurt or falling. Time latency
is typically related to the hardware and signal transmitting and signal processing. It could be improved if we upgrade
one of them to be faster.

Challenges for unbalanced data: Unbalanced data refers to the problem in which the dataset contains uneven
examples. It is an especially common problem when researchers process FoG data, as FoG episodes comprise a
relatively small set compared to healthy control samples. The unbalanced data can be a problem in machine learning
algorithms. Suppose we have 5 FoG events and 95 healthy episodes: the machine learning model could predict all
the samples to be healthy ones, and the accuracy would still be 95 percent. Typically we have two simple approaches
to deal with the problem: under-sampling and over-sampling. With under-sampling, we can randomly choose the
number of healthy samples and make them match the number of FoG cases. However, the model may lose some
relevant information because we have discarded samples. With over-sampling, we can randomly duplicate some FoG
samples and make them match the number of healthy cases. However, this may lead to an overfitted model and an
overestimation performance. There is a trade-off between the two resampling methods, and this problem needs to be
better addressed in the future.

Challenges for FoG prediction: FoG prediction is a better choice for the intervention or treatment of FoG compared
with FoG detection. Predicting hundreds of milliseconds before FoG occurrence can make a significant difference.
However, so far, FoG prediction is still limited to obtrusive and inconvenient clinical sensors, which is not applicable
to the home environment. As researchers have discovered, FoG is relevant to physiological signals, such as heart rate,
and skin conductance, which could be combined with motion sensors to predict FoG events.

7.2. Future Trends
The future trends for FoG computing will likely be associated with FoG prediction. Therefore, we propose some

possible trends that can contribute to the advancement of FoG prediction.
Using domain knowledge for prediction: Researchers have explored motion sensors and clinical sensors for the

FoG prediction. Even though it shows promise for the prediction of FoG events, the accuracy is limited. Therefore,
employing health domain knowledge may potentially contribute to the performance of FoG prediction. Also, exploring
new sensors which are related to human physiological signals, such as fNIRs, skin conductance sensors is also a future
trend.

How to make it less intrusive: Researchers have employed wearable devices and smartphones to detect FoG in
home environments. However, so far, only clinical devices are able to predict FoG, which are intrusive, unportable
and unable to commercialize. Therefore, how to make the devices less invasive is a future trend. Researchers can
employ wireless sensing such as WiFi-sensing, RF-based Sensing, Acoustic-based sensing or other smart device to
address this challenge.

Just-in-time intervention: The goal of FoG computing is to treat or mitigate the FoG just-in-time. Therefore,
how to deal with the time delay for FoG detection or predict a period of time earlier before the FoG happens are
the future trends. Currently, researchers utilize rhythmical cueing and step-synchronized vibratory cueing to mitigate
FoG, which is still in the early stages of research. Therefore, it is a future trend that researcher can develop efficient
and portable just-in-time intervention device for PD patients.

Deep learning features: The deep learning features are difficult to understand intuitively by clinical researchers
since those features are not directly related to disease symptoms. It is important that researchers can visualize deep
learning features so that they can be better understood. It is a trend for clinical researchers to cooperate with data
science and computer science researchers on FoG computing and other smart health research.

8. Conclusion

This paper gives a survey of background knowledge, related work, sensor selection, feature extraction, algorithms,
and performance results of FoG computing. It presents the basic concepts, advantages, limitations and use cases of
different approaches. Besides, the survey highlights three FoG computing challenges: Data collection, Time latency
reduction, and FoG Prediction in FoG computing. Finally, we propose three future trends: FoG prediction, Just-in-
time intervention, and how to make it less intrusive, for improving existing FoG research.

15



9. Acknowledgement

This research was supported by the U.S. National Science Foundation under grant CNS-1841129 (CSR EAGER).
The authors would like to thank everyone who helped to proofread and revise the paper.

References

[1] B. E. Levin, H. L. Katzen, Early cognitive changes and nondementing behavioral abnormalities in parkinson’s disease., Advances in neurol-
ogy 65 (1995) 85–95.

[2] J. G. Nutt, B. R. Bloem, N. Giladi, M. Hallett, F. B. Horak, A. Nieuwboer, Freezing of gait: moving forward on a mysterious clinical
phenomenon, The Lancet Neurology 10 (8) (2011) 734–744.

[3] A. Espay, A. Fasano, B. Van Nuenen, M. Payne, A. Snijders, B. Bloem, ?on? state freezing of gait in parkinson disease: a paradoxical
levodopa-induced complication, Neurology 78 (7) (2012) 454–457.

[4] M. Suteerawattananon, G. Morris, B. Etnyre, J. Jankovic, E. Protas, Effects of visual and auditory cues on gait in individuals with parkinson’s
disease, Journal of the neurological sciences 219 (1-2) (2004) 63–69.

[5] A. Nieuwboer, G. Kwakkel, L. Rochester, D. Jones, E. van Wegen, A. M. Willems, F. Chavret, V. Hetherington, K. Baker, I. Lim, Cueing
training in the home improves gait-related mobility in parkinson’s disease: the rescue trial, Journal of Neurology, Neurosurgery & Psychiatry
78 (2) (2007) 134–140.

[6] A. Javor, G. Ransmayr, W. Struhal, R. Riedl, Parkinson patients? initial trust in avatars: theory and evidence, PloS one 11 (11) (2016)
e0165998.

[7] J. Gratwicke, M. Jahanshahi, T. Foltynie, Parkinson’s disease dementia: a neural networks perspective, Brain 138 (6) (2015) 1454–1476.
[8] D. W. Dickson, Parkinson’s disease and parkinsonism: neuropathology, Cold Spring Harbor perspectives in medicine 2 (8) (2012) a009258.
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[49] S. Mazilu, A. Calatroni, E. Gazit, D. Roggen, J. M. Hausdorff, G. Tröster, Feature learning for detection and prediction of freezing of gait in
parkinson’s disease, in: International Workshop on Machine Learning and Data Mining in Pattern Recognition, Springer, 2013, pp. 144–158.
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patients: A performance characterization, in: Proceedings of the Fourth International Conference on Body Area Networks, ICST (Institute
for Computer Sciences, Social-Informatics, 2009, p. 11.

[64] E. E. Tripoliti, A. T. Tzallas, M. G. Tsipouras, G. Rigas, P. Bougia, M. Leontiou, S. Konitsiotis, M. Chondrogiorgi, S. Tsouli, D. I. Fotiadis,
Automatic detection of freezing of gait events in patients with parkinson’s disease, Computer methods and programs in biomedicine 110 (1)
(2013) 12–26.

[65] A. T. Tzallas, M. G. Tsipouras, G. Rigas, D. G. Tsalikakis, E. C. Karvounis, M. Chondrogiorgi, F. Psomadellis, J. Cancela, M. Pastorino,
M. T. A. Waldmeyer, et al., Perform: a system for monitoring, assessment and management of patients with parkinson’s disease, Sensors
14 (11) (2014) 21329–21357.

[66] H. Kim, H. J. Lee, W. Lee, S. Kwon, S. K. Kim, H. S. Jeon, H. Park, C. W. Shin, W. J. Yi, B. S. Jeon, et al., Unconstrained detection of
freezing of gait in parkinson’s disease patients using smartphone, in: Engineering in Medicine and Biology Society (EMBC), 2015 37th
Annual International Conference of the IEEE, IEEE, 2015, pp. 3751–3754.
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