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Continuous authentication monitors the security of a system throughout the login session on mobile devices.
In this paper, we present SCANet, a two-stream convolutional neural network based continuous authentication
system that leverages the accelerometer and gyroscope on smartphones to monitor users’ behavioral patterns.
We are among the first to use two streams of data - frequency domain data and temporal difference domain
data - from the two sensors as the inputs of the convolutional neural network (CNN). SCANet utilizes the
two-stream CNN to learn and extract representative features, and then performs the principal component
analysis (PCA) to select the top 25 features with high discriminability. With the CNN-extracted features,
SCANet exploits the one-class support vector machine (one-class SVM) to train the classifier in the enrollment
phase. Based on the trained CNN and classifier, SCANet identifies the current user as a legitimate user or an
impostor in the continuous authentication phase. We evaluate the effectiveness of the two-stream CNN and
the performance of SCANet on our dataset and BrainRun dataset, and the experimental results demonstrate
that CNN achieves 90.04% accuracy, and SCANet reaches an average of 5.14% equal error rate (EER) on two
datasets and takes approximately 3 seconds for user authentication.
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1 INTRODUCTION

With the widespread usage of mobile devices, a variety of mobile users use their devices to store
private and sensitive information, share personal information, or conduct commercial transactions.
To prevent users’ critical information on mobile devices from leaking or being illegally accessed, user
authentication mechanisms have been developed and applied. Authentication refers to the process
of verifying a user based on certain credentials before granting access to a secure system or resource
[1, 2]. Typical one-time user authentication mechanisms, such as passwords (e.g. PINs), graphical
patterns, touch ID, and even face ID, have been widely deployed on mobile/smart devices. However,
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these mechanisms authenticate users only at the time of initial logging-in, and serious security
flaws arise after the initial authentication has been performed. For instance, an unauthorized user
can easily gain access to an unattended mobile device without logging out [3]. These security flaws
have led to the investigation of continuous authentication mechanisms.

Continuous authentication has been a promising mechanism to alleviate the above security
flaws, by frequently authenticating users via biometrics-based approaches. These approaches can
be broadly categorized into: physiological biometrics-based approaches and behavioral biometrics-
based approaches. Specifically, on the one hand, the physiological biometrics-based approaches
rely on static physical attributes, such as iris patterns [4], fingerprints [5], pulse [6], voice [7, 8] and
face patterns [9, 10], but these approaches require direct user participation in the process of the
authentication. On the other hand, behavioral biometrics-based approaches exploit user behavioral
patterns, such as touch gestures [11, 12], gait [13, 14], and GPS patterns [15, 16]. In addition,
deep learning technologies have been applied to smart devices for user continuous authentication
[17-19]. These approaches identify invariant features of user interactions with smart devices by
using sampling data from built-in sensors and accessories, such as the accelerometer, gyroscope,
magnetometer, and touch screen.

However, current continuous authentication mechanisms on smart devices are primarily facing
two challenges: feature robustness and system effectiveness. On the one hand, it is hard to capture
the most robust features that accommodate diverse noise patterns since sensor data collected by
smartphones contain much noise [20, 21]. For instance, the authors in [22, 23] utilize designed
features, such as touch-screen features and HMOG features, to achieve low authentication accuracy
with 12.85% and 7.16% EERs, respectively. On the other hand, it is not easy to design an effective
continuous system with less limitations, such as representational power of extracted features,
and computational cost [4-6, 24]. For example, the authors of [25, 26] exploit the trained Hidden
Markov Model and one-class SVM classifiers to conduct the authentication within approximately
8s and 5s, respectively, based on the designed statistical features. To address the first challenge, we
generate two-stream data from the built-in sensors: frequency domain data and temporal difference
domain data. The frequency domain data are converted from time domain data by applying Fourier
transform, which contain better local frequency patterns that not only alleviate the impact of
noise but are also independent of how time-series data are organized in the time domain [27]. The
temporal domain data are generated by calculating the difference of the time domain data in two
consecutive time intervals, which contain dynamic temporal features [28]. Then, based on the
sensor data, we design a two-stream convolutional neural network (two-stream CNN) to learn and
extract representative features with high discriminability to achieve an average of 5.14% EER on our
dataset and BrainRun dataset. For the other challenge, we utilize temporal difference and frequency
data to generate CNN-extracted features and then exploit the trained one-class SVM classifier
to authenticate users within 3s. In addition, the two-stream CNN adapts to resource-constrained
mobile devices by significantly decreasing network parameters and the number of operations while
maintaining the same accuracy.

In this paper, by extending our previous work [29], we present SCANet, a novel continuous
authentication system based on a two-stream convolutional neural network (two-stream CNN) that
leverages the accelerometer and gyroscope on smartphones to monitor users’ behavioral patterns.
Specifically, SCANet consists of five modules: data collection, data preprocessing, feature extraction,
classification, and authentication. The operation of SCANet includes the enrollment phase (for data
collection, feature extraction by the two-stream CNN, and classifier training), and the continuous
authentication phase (for classifier testing and authentication). In the enrollment phase, the data
collection module captures users’ behavioral patterns during smartphone usage, by utilizing the
two sensors of the accelerometer and gyroscope that are omnipresently built into smartphones.
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The data preprocessing module converts the collected time domain data into two streams of data -
frequency domain data and temporal difference data - that are used as the inputs of the CNN. In
the feature extraction module, we design a two-stream CNN to learn and extract the representative
features for resource-constrained mobile devices and then apply the principal component analysis
(PCA) to these features in order to select the top 25 features with high discriminability. With the
CNN-extracted features, we use the one-class support vector machine (one-class SVM) to train the
classifier. In the continuous authentication phase, based on the trained CNN and classifier, SCANet
classifies the current user as a legitimate user or an impostor. Note that the two-stream CNN is
only trained based on a legitimate user’s data in the enrollment phase, and then the trained CNN is
used as a feature extractor in the continuous authentication phase. We evaluate the effectiveness
of the two-stream CNN in terms of five metrics (accuracy, macro F1, micro F1, model parameters,
and computational cost), and evaluate the performance of SCANet with respect to four metrics
(equal error rate, false acceptance rate, false rejection rate, and time efficiency) and unseen users
on our dataset, respectively, and the accuracy performance on BrainRun dataset. The experimental
results indicate that the two-stream CNN achieves 90.04% accuracy, 85.05% macro F1, and 90.04%
micro F1 in the 5-second time window, and 1.8M model parameters and 120M computational cost
in the 2-second time window. SCANet reaches an average of 4.57% equal error rate (EER), 4.65%
false acceptance rate (FAR) and 4.48% false rejection rate (FRR) on our dataset, and an average of
5.71% EER, 5.87% FAR and 5.56% FRR on BrainRun dataset. SCANet takes approximately 3 seconds
for user authentication.
The main contributions of this work are summarized as follows:

e We design SCANet, a two-stream convolutional neural network based continuous authenti-
cation system that authenticates smartphone users by leveraging the built-in accelerometer
and gyroscope to monitor users’ behavior patterns. SCANet is composed of five modules:
data collection, data preprocessing, feature extraction, classification, and authentication.

e We propose a two-stream CNN based on the depthwise separable convolution and linear
bottlenecks, which uses frequency domain data and temporal difference data collected by the
accelerometer and gyroscope as its two-stream inputs to learn and extract representative
features with high discriminability.

o We evaluate the effectiveness of the two-stream CNN and the performance of SCANet on our
dataset and BrainRun dataset, and the experimental results demonstrate that the two-stream
CNN achieves an accuracy of 90.04%, and SCANet reaches an average of 5.14% EER on the
two datasets and takes approximately 3 seconds for user authentication.

The remainder of this paper is organized as follows: Sec. 2 reviews the-state-of-art of efficient
network architectures and continuous authentication systems, and Sec. 3 proposes the two-stream
CNN to learn and extract representative features with high discriminability. In Sec. 4, we detail
the architecture of SCANet in data collection, data preprocessing, feature extraction, classification,
and authentication. In Sec. 5, we describe the dataset, classifier training, and accuracy metrics for
experiments, and evaluate the performance of the two-stream CNN and SCANet in Sec. 6. Finally,
we conclude the work in Sec. 7.

2 RELATED WORK

In this section, we review the state-of-the-art of efficient network architectures and continuous
authentication systems.
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2.1 Efficient Network Architecture

Deep neural networks have become one of the most popular methodologies in the area of the
artificial intelligence, such as speech recognition [30] and computer vision [31], in recent years.
There are some works devoting to detecting concrete crack damage in images by utilizing deep
learning technology, such as Faster R-CNN [32] and CNN-CDD [33]. For instance, to provide quasi
real-time simultaneous detection of multiple types of damages, Faster R-CNN proposes a faster
region-based convolutional neural network-based structural visual inspection method. A large
number of efficient network architectures have been proposed to improve the accuracy, such as
ResNet [31], AlexNet [34], and VGGNet [35]. For example, ResNet proposes shortcut connections
for CNNs, which greatly reduces the difficulty of training super-deep models. However, since
ResNet mainly focuses on visual inputs and super-deep models, it is not suitable for sensor data
input and can not be performed on the computationally limited platforms, such as smartphones.
There are some works dedicated to tuning neural network architectures to reach an optimal trade-
off between the accuracy and performance on some mobile and embedded applications, such as
MobileNet [36], ShuffleNet [37] and MobileNetV2 [38]. For instance, MobileNetV2 is based on an
inverted residual structure and achieves the state-of-the-art performance in COCO object detection,
ImageNet classification, VOC image segmentation. However, it also ignores sensor data inputs.

Our work differs in that the specially designed two-stream CNN architecture mainly deals
with multi-sensor inputs, and can be performed on the computationally limited platform, such as
smartphones.

2.2 Continuous Authentication System

Most authentication mechanisms on smartphones, such as passcodes, graphical patterns, Touch IDs,
and even face IDs, provide security just by a one-time authentication, which enable unauthorized
users to easily gain access to unattended mobile devices without logging out. To alleviate this
security issue, continuous authentication mechanisms are explored and developed, which can be
broadly categorized into two groups: physiological biometrics-based approaches and behavioral
biometrics-based approaches. Specifically, on the one hand, the physiological biometrics-based
approaches authenticate users by static physical attributes, such as iris patterns [4], fingerprints
[5], pulse [6], voice [7, 8], and face patterns [9, 10]. In [4], the authors provide two different iris
recognition approaches using Gabor filters and multiscale zero-crossing representation. The authors
in [5] develop a prototype biometrics system that integrates faces and fingerprints and operates in
the identification mode with an admissible response time. In [6], the authors propose a biometric
based on the human body’s response to an electric square pulse signal that can be used to enhance
security in an additional authentication mechanism in PIN entry systems, and a means of continuous
authentication on a secure terminal. The authors in [8] propose a continuous authentication system
VAuth through executing only the commands that originate from the voice of the owner. In [10],
the authors propose an application of the scale invariant feature transform approach in the context
of the face authentication. However, these approaches require users’ direct participation in the
process of the authentication. On the other hand, the behavioral biometrics-based approaches
authenticate users by the invariant features of human behaviors during different activities, such
as touch gestures [11, 12], gait [13, 14] and GPS patterns [15, 16]. In [12], the authors propose a
touch-based authentication system by exploiting a novel one-class classification algorithm import
vector domain description during smartphone usage. The authors in [13] identify users of portable
devices from gait pattern with accelerometers by using the acceleration signal characteristics
produced by walking. In [15], the authors present a n-gram based model for modeling a user’s
mobility patterns. However, these approaches can not achieve better performance due to lacking of
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robust features or efficient algorithms for authentication. In addition, deep learning technologies
have been applied to smart devices for user continuous authentication [17-19]. The authors in
[17] propose a Siamese convolutional neural network-based continuous authentication system that
detects unauthorized use on the smartphone by using the characteristic motion patterns of each
individual interacting with the device. In [18], the authors present a deep learning autoencoder-
based continuous biometric authentication system that relies on user-specific motion patterns while
interacting with the smartphone. The authors in [19] propose a deep recurrent neural network-
based authentication framework that leverages the unique motion patterns when users entering
passwords as behavioural biometrics.

We are different in that we design a two-stream CNN adaptable for mobile platforms to learn and
extract representative features that achieve better performance for continuous user authentication.

3 TWO-STREAM CNN ARCHITECTURE

Learning representative features is critical to continuous authentication systems because the
performance of real-word systems conforms to a set of criteria, such as representational power of
extracted features, and speed of the feature extractor. In this section, we introduce the depthwise
separable convolutions, and detail the structure of linear bottlenecks. Then, we elaborate on the
architecture of the two-stream CNN and describe its ability to learn representative features with
less network parameters and less operations while maintaining the authentication accuracy [39].

3.1 Depthwise Separable Convolution

Depthwise separable convolutions (DSC) factorize a standard convolution into a depthwise convo-
lution and a pointwise (or 1 X 1) convolution. The two-stream CNN model is based on depthwise
separable convolutions, where the depthwise convolution applies a single convolutional filter to
each input channel, and where the pointwise convolution applies a 1 X 1 convolution to build new
features (through computing linear combinations of the input channels).

A standard convolution takes a ¢; X h; X w; input tensor L; (where c; is the number of channel i,
and h; and w; are the height and the width) and applies a convolutional kernel K € Re*¢ixkixkz tq
produce a ¢; X h; X w; input tensor L;. The computational cost of a standard convolutional layer is

hi X w; X ¢; X ¢j X k1 X ky. Although depthwise separable convolutions empirically work as well as
k1><k2XCj
kixka+cj
convolutions. Compared with a standard convolutional layer, the two layers of the depthwise
separable convolution reduce computation by almost a factor of k; X ky, where k; and k; are the
sizes of convolutional kernel. In this work, SCANet uses 1x32 depthwise separable convolution for
convolutional layers; therefore, the computational cost is 32 times smaller than that of standard

convolutions with only a small reduction in accuracy [26, 42, 43].

standard convolutions, they only cost , which is the sum of the depthwise and pointwise

3.2 Linear Bottleneck

Our linear bottlenecks are based on the depthwise separable convolutions as described above. The
structure of these linear bottlenecks is shown in Fig. 1 and Table 1. A block with size h; X w;, kernel
size ky X ko, expansion factor ¢, ¢; input channels, and c; output channels takes a low-dimensional
input ¢; X h; X w;. The block is first expanded to a high dimension by the expansion factor ¢ and
then filtered with a lightweight depthwise separable convolution with kernel size k; X k; and stride
1, both of which use Rectified Linear Unit (ReLU6) as their activation function. Then the block’s
features are projected back to a low-dimensional output ¢; X h; X w; with a linear convolution.
We construct the two-stream CNN based on linear bottleneck blocks, because: 1) they greatly
reduce the number of parameters and computational cost in convolutional operations; 2) they
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Fig. 1. Structure of Linear Bottlenecks.

Table 1. Bottleneck block transforming from c; to ¢; channels, with stride s, and expansion factor ¢.

Input Operator Output

¢; X h; xw; 1x1Conv, ReLU6 tc; X h; X w;
tc; X h; X w;  1xX3DSC, s=1, ReLU6 tc; X hi X wj
tc; X hi Xw; 1% 1 Conv, Linear cj X hy X w;

provide a natural separation between the input/output domains of the bottleneck layers and the
layer transformation [38]. In this work, we do not use skip connection since we set stride = 1. The
total number of multiplications and additions required is h; X w; X ¢; X t X (c; + k1 X k2 + ¢j).

3.3 Two-stream CNN

Based on the linear bottlenecks, we construct the two-stream CNN architecture as illustrated
in Fig. 2 and detailed in Table 2. The two-stream inputs of CNN are the frequency domain data
X¢ and the temporal difference data X;, which are elaborated in data prepressing (Sec. 4.2). As
shown in Fig. 2, the CNN structure consists of two individual convolutional subnets (subnet 1 and
subnet 2) and a single merged convolutional subnet. With the inputs of the frequency domain data
and temporal difference data, the two-stream CNN extracts three kinds of features/relationships
embedded in Xf and X: the features in the frequency domain, the features in the temporal domain,
and the relationships across sensor data dimensions. The frequency domain generally includes
many spatial patterns in some neighboring frequencies. The temporal domain commonly contains
a number of local temporal dynamic patterns. The interaction among sensor data usually contains
all dimensions.

As demonstrated in Fig. 2, for X¢ (Individual convolutional subnet 1), we first apply 2d filters
with shape (d, Conv1) to learn interaction among sensor data dimensions and spatial patterns in
the frequency domain. Then, we apply two linear bottlenecks with shapes (1, Conv2) and (1, Conv3)
hierarchically to learn high-level features. For X; (Individual convolutional subnet 2), the same
process applies, since the structures of the individual convolutional subnets are the same. Next, we
flatten the two outputs and concatenate them along channels. For the merged convolutional subnet,
we first apply 2d filters with shape (2, Conv4) to learn the interactions between the temporal and
frequency domains, and then hierarchically apply Linear Bottlenecks with shapes (1, Conv5) and
(1, Convé) to learn high-level features. Finally, we use two full connection layers (layer 1 and layer
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Fig. 2. Architecture of the two-stream CNN.

2) to classify the input patterns into a finite number of classes. The output of these full connection
layers is ultimately fed into a softmax layer to generate the predicted category probability.

As detailed in Table 2, two-stream CNN learns 32 filters for individual convolutional subnets,
and 64 filters for the merged convolutional subnet. For all the experiments, expansion factor t = 6.
That is, for a bottleneck layer, when the input and output tensors have 32 channels and 64 channels,
respectively, then the intermediate expansion layer has 192 (32 X 6) channels. We use ReLU6 as
our activation function due to its robustness even in low-precision computation [36]. In addition,
batch normalization is applied at each layer to reduce internal covariate shift. Dropout is employed
during training process. Note that the structures of the individual convolutional subnets for two
streams of inputs are the same, but their parameters are not shared and they are learned separately,
and the symbol “-” in the table indicates there is no corresponding parameter value.

Also, note that a sequence of sensor data can be represented as various formats. In our experiment,
it is represented as a tensor with shape T X w X h. If the number of the sensor is fixed, w and h are
constants. However, the number of time window T can be regarded as a tunable hyper parameter,
which can be adjusted depending on desired accuracy/performance trade-offs. Our primary network
(8 X 75 % 6), has a computational cost of 120 million multiplication-addition operations (MAdds) and
uses 1.8 million parameters. We also explore the performance trade-offs, for the number of time
window from 8 (2 seconds) to 20 (5 seconds). The network computational cost ranges from 120M
MAdds to 310M MAdds, while the model size varies between 1.8M and 4.16M parameters. For
convenience, one minor implementation difference is the input tensor with shape 1 X T X (2f - d)
and 1 X T X (1 - d) to avoid 3d convolutional kernel.
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Table 2. The two-stream CNN body architecture

Network Input Operator t #XKernel Stride Padding Kernel
Individual 1Xx8x300 Convad - 32 (1,3) (0,0 (1, 3% 3)
convolutional | 32X 8x 98  Bottleneck 6 32 (1,3) (0,0) (1,3%x 2)
subnet 1 32x 8% 31 Bottleneck 6 32 (1,3) (0,0) (1,3x 1)
Individual 1x8x150 Convad - 32 (1,3) (0,0 (1, 3% 3)
convolutional | 32 X 8 Xx48  Bottleneck 6 32 (1,3)  (0,0) (1,3% 2)
subnet 2 32x8x 15 Bottleneck 6 32 (1,3) (0,0) (1,3x 1)
Flatten and concatenate the outputs of the subnets 1 and 2

1x8x480 Convad = 64 1,2) (1) (1, 16x 2)
Merged 64 X 8 X 226 Bottleneck 6 64 (1,2) (0,1) (1, 16x 2)
convolutional | 64 X 8 x99  Bottleneck 6 64 (1,2) (0,1) (1,16x 1)
subnet 64x8x43 Avgpool (1,7) - - - - -

1% 3072 Full connection - - - -

1x512 Full connection - - - - -

4 SCANET DESIGN

In this section, we present the design of the sensor-based continuous authentication system using
the two-stream convolutional neural network, SCANet, to continuously monitor users’ behavioral
patterns by leveraging the accelerometer and gyroscope on smartphones. We illustrate the architec-
ture of SCANet in Fig. 3. As demonstrated in Fig. 3, SCANet consists of five modules: data collection,
data preprocessing, feature extraction, classification, and authentication. The operation of SCANet
includes two phases for learning and classifying users’ behavioral patterns: the enrollment phase
and the continuous authentication phase, where SCANet learns the profile of a legitimate user in
the enrollment phase and then authenticates users in the continuous authentication phase. We
describe the five modules in the following:

4.1 Data collection

The data collection module collects all users’ sensor data from the accelerometer and gyroscope.
The accelerometer records a user’s motion patterns, such as arm movements or gaits, and the
gyroscope records a user’s fine-grained motions, such as smartphone orientation during usage. The
two sensors do not require root permission when requested by mobile applications, which makes
them useful in background monitoring. In SCANet, the data collection module captures the user’s
every subtle movement during operation on their smartphones, and records the instantaneous
readings of the two sensors when the screen is on. The collected data are stored in a protected
buffer for data preprocessing.

4.2 Data preprocessing
The synchronized raw sensor readings of the accelerometer and gyroscope at a time point can be
represented by a vector w= (xacc, Yace» Zaces Xgyros Ygyros zgym)T € RS, where x, y and z represent
the three-axis sensor readings of a sensor, and acc and gyro indicate the accelerometer and gyroscope,
respectively. For a series of sensor readings over certain time, they can be represented by a d X N
matrix P= (wyq, Wy, ..., wy), where d is the dimension of sensor readings (d = 6) and N is the
number of raw sensor readings over the time.

We first segment the sensor readings P into a series of non-overlapping time intervals with
width 7 (7 represents the number of sensor data in a time interval). In each time interval, a matrix
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Fig. 3. Architecture of SCANet.

Q = (W1, Wy, ..., ;) has a shape d x 7. For frequency domain data input, we apply Fourier transform
to each element in Q in a time interval, and then stack these outputs into a d X 2f matrix X¢,
where f is the dimension of frequency domain containing f magnitude and phase pairs (f = 7).
For temporal difference data input, we compute the difference of the time domain data in two
consecutive time intervals and obtain a d X r matrix X;. For example, we formulate the readings in
time interval T as XtT = Qr41 — Qr. Finally, Xf and X have shapes of n X TxdX2f and nXT xXd X,
respectively, where n = N /(T X r) is the number of samples fed into the efficient CNN, and T is the
number of time intervals for a time window. The length of a time window T usually determines
the time that the system requires to perform the continuous authentication.

After data preprocessing, the frequency domain data X¢ and temporal difference data X; are
obtained as the two-stream inputs for the CNN.

4.3 Feature Extraction

With the two-stream inputs of the frequency domain data Xy and temporal difference data X, the
feature extraction module extracts features with high discriminability through feature learning and
feature selection. The feature extraction module first learns representative features by using the
two-stream CNN and then selects highly discriminative features from the these representations via
the principal component analysis (PCA).

e Feature learning: The two-stream CNN concentrates on learning representative features by
detecting spatial patterns (related to the frequency domain data) and local temporal dynamic
patterns (based on the time difference domain data).

o Feature selection: Based on the extracted features, the top 25 features with high discrim-
inability are selected using the PCA.

4.4 Classification

The CNN-extracted features are then fed to the classifier for training and classifying. We use the
one-class support vector machine (one-class SVM) classifier, which utilizes a kernel function to
map data into a high dimensional space, and which considers the origin as the only sample from
other classes [44]. In the enrollment phase, the classifier is established by using training feature
vectors with a radial basis function (RBF) kernel. In the continuous authentication phase, the trained
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classifier projects the testing feature vectors onto the same high-dimensional space and classifies
the testing feature vectors.

4.5 Authentication

Based on the testing features from trained two-stream CNN and the trained one-class SVM classifier,
the authentication module classifies the current user as a legitimate user or an impostor. In the
enrollment phase, the legitimate user’s profile is generated from the training data and stored in a
protected buffer, while the current user’s features are compared with the profile in the authentication
phase. If the current user is classified as an impostor, SCANet will require initial login inputs;
otherwise, it will continuously authenticate the user.

5 EXPERIMENT

In this section, we first detail how to collect the dataset, then explain how to train the one-class
SVM classifier, and finally elaborate the accuracy metrics for performance evaluation.

5.1 Dataset

To investigate the authentication accuracy of SCANet, we developed a data collection tool for
Android phones to record real-time behavioral data invoked by user’s interaction with the phone.
We recruited 100 volunteers (53 male, and 47 female) to conduct three tasks on the phones, including
document reading, text production, and navigation on a map to locate a destination. When logging
into the data collection tool, the volunteer is randomly assigned a reading, writing, or map navigation
session. One session lasts 5 to 15 minutes, and each volunteer is expected to perform 24 sessions
(8 reading sessions, 8 writing sessions, and 8 map navigation sessions). In total, each volunteer
contributes 2 to 6 hours of behavior traits. The collected data are stored in CSV files on the phone
[23]. We recorded sensor readings of the accelerometer and gyroscope with the sampling rate of
100Hz and selected the first 100 minutes of the data for each user with 2-second and 5-second
window sizes as the experiment dataset.

5.2 Training

The training phase of SCANet is divided into two stages. In the first stage, the two-stream CNN is
trained to learn the universal features and relationships among the sensors for classification. We
use a step decay strategy to anneal the learning rate over time. The learning rate is initially set
to 0.0001, and then is gradually reduced by a 0.95 learning rate decay factor when the accuracy
starts to decline. A ReLUG6 is taken as the activation function. The batch size is set to 256, and the
network is trained for up to 100 epochs. We stop the epoch when loss function does not decrease
for ten consecutive training epochs.

The second stage is devoted to training SCANet. The trained two-stream CNN is fixed as a
universal feature extractor, and we train the one-class SVM using ten-fold cross validation. We
specify one of the 100 users as a legitimate user and the rest as impostors. In so doing, we ensure
the positive feature samples from one legitimate user and the negative feature samples from 99
impostors. Based on these samples, we train the classifier as follows:

Step 1: We randomly divide all positive samples into k (k = 10) equal-size subsets, where k — 1
positive subsets are used to train the one-class SVM model, and one subnet to test the model.

Step 2: We randomly select negative samples with the same size to positive ones from all the
negative samples, which are also divided into k (k = 10) equal-size subsets. One of the 10 negative
subsets is exploited to test the model.

Step 3: The above 2 steps are repeated 10 times until each subset of negative samples and each
subsets of positive samples are tested exactly once.
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Step 4: We repeat steps 1, 2, and 3 twenty times to account for randomness.

5.3 Accuracy Metrics

We describe six metrics that are used for analyzing the authentication accuracy of SCANet: accuracy,
Micro F1 score, Macro F1 score, false acceptance rate (FAR), false rejection rate (FRR), and equal
error rate (EER).

e Accuracy: It indicates the number of true positive (TP) divided by the number of all the
authentication attempts.

e Micro F1 score and macro F1 score: F-measure accuracy (F1 score) is known as the har-
monic mean of precision and recall. Precision is the number of true positive (TP) divided
by the number of positive calls (TP+FP), while recall is the number of TP divided by the
number of condition positives (TP+FN). Here, FP indicates false positive and FN represents
false negative. F1 score ranges from [0, 1], where 0 indicates the worst and 1 the best. F1 score

. . _ precisionxrecall _ 2TP
is defined as: Fl(%) =2X precision+recall — 2TP+FP+FN"

there are two possible ways of averaging precision, recall, and F1-measure: micro F1 score
and macro F1 score. Micro F1 score calculates the F1 score globally by counting the total
true positives, false negatives, and false positives. This equally weights all the classes, thus
favouring the performance on common classes. Macro F1 score calculates the F1 score for
each class and finds their unweighted mean, which equally weights all the classes, regardless
of how many documents belonging to it.

¢ FAR, FRR and EER: False acceptance rate (FAR) indicates the ratio of the number of false
acceptances to the number of authentication attempts by impostors, while false rejection rate
(FRR) represents the ratio of the number of false rejections to the number of authentication
attempts by legitimate users [45]. Then, equal error rate (EER) is the point where FAR equals
to FRR.

When dealing with multiple classes,

6 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of the CNN and the performance of SCANet, re-
spectively. We have implemented our system SCANet on smartphones by utilizing Python. The
two-stream CNN and some representative algorithms, such as KRR, one-class SVM, and kNN,
mainly call the Pytorch framework and sklearn package. The two-stream CNN in the enrollment
phase is implemented on GPU using Inter Xeon E5-2683v3 server clocked at 2GHz with 512GB
RAM and a NVIDIA Tesla M40 GPU with 12GB GDDR5 memory and 3072 CUDA cores. However,
all the experiments are conducted on a single CPU clocked at 2GHz platforms, which is relatively
low standard comparison with the CPU configuration of current smartphones. Before conducting
the evaluation, we first elaborate the representative algorithms or models for comparison.

6.1 Algorithms for comparison

In this section, we first describe typical models for comparison with the two-stream CNN, and then
introduce representative algorithms for comparison with SCANet.

6.1.1 Comparison models for the two-stream CNN. We compare our two-stream CNN model with
other typical models. There are four variants of the CNN model according to input streams: Time-
CNN, Frequency-CNN, TD-CNN, and RawFrequency-CNN. For convenient comparison, we refer to
our two-stream CNN as TDFrequency-CNN in this section. In addition, we select two competitive
models DeepSense and IDNet for comparison.
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e Time-CNN: Time domain sensor data are used as a single-stream input for CNN. This model
includes only one individual convolutional subnet [46].

e Frequency-CNN: Frequency domain sensor data are used as a single-stream input for CNN
[47]. This model includes one individual convolutional subnet.

e TD-CNN: Temporal difference data are used as a single-stream input for CNN. This model
includes one individual convolutional subnet.

e RawFrequency-CNN: Raw time domain data and frequency domain data are used as two-
stream inputs of CNN. This model consists of two individual convolutional subnets and one
merged convolutional subnet [29].

e TDFrequency-CNN: Temporal difference data and frequency domain data are used as two-
stream inputs of CNN (details in Sec. 3.3)

e DeepSense: Frequency representations of sensor data are used as a single-stream input
for the model. This model integrates convolutional neural networks and recurrent neural
networks [48].

e IDNet: Time domain sensor data are used as a single-stream input of the model. This model
utilizes convolutional neural networks including two convolutional layers and two fully
connected layers [49].

6.1.2  Comparison algorithms for SCANet. We compare SCANet with other representative authen-
tication algorithms. These authentication algorithms are: kernel ridge regression (KRR), one-class
support vector machine (one-class SVM), support vector machine (SVM), and k-nearest neighbors
(kNN), respectively. In addition, we also detail how to train these competitive algorithms in the
enrollment phase and how to test them in the continuous authentication phase.

o KRR: The kernel ridge regression classifier is the combination ridge regression (linear least
squares with 12-norm regularization) and the kernel trick. It learns a linear function in the
space induced by the kernel function and data. In the enrollment phase, the classifier is
trained by the training vectors with the RBF kernel function, which is similar to a SVM.
KRR parameters and kernel parameters are set by grid search [16]. In the continuous au-
thentication phase, the classifier maps the testing vector by the RBF kernel function into
the high-dimension space to calculate the distance between the testing vector and the linear
separator as the classification score.

e One-class SVM: The one-class SVM classifier is regarded as an unsupervised learning
algorithm. Different from SVM, KRR, and kNN, it projects data onto a high dimensional space
through a kernel function, and regards the origin as the only sample from other classes [50].
In the enrollment phase, the classifier is trained by the training vectors with the RBF kernel
function, and one-class SVM parameters and kernel parameters are set by grid search. In the
continuous authentication phase, the classifier maps the testing vector into the same high-
dimension space. It calculates the distance between the testing vector and the linear separator
as the classification score. Note that the difference between one-class SVM algorithm and
SCANet is that SCANet uses the two-stream CNN to learn features, and then exploits the
one-class SVM as the classifier.

e SVM: The support vector machine classifier is similar to the one-class SVM, but it is a
classification algorithm. We consider it as a binary classifier in this work. In the enrollment
phase, the classifier is trained by the training vectors from a legitimate user and impostors
with the RBF kernel function, and the SVM parameter and kernel parameter are set by grid
search. In the continuous authentication phase, the classifier maps the test vector into the
same high-dimension space. This calculates the distance between the test vector and the
linear separator as the classification score.
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Fig. 4. Accuracy comparison results

e kNN: The classifier authenticates a user through an assumption that the testing vector from
user will resemble one or more of those in the training vectors [51]. In the enrollment phase,
the classifier estimates the covariance matrix of training vectors, and the nearest-neighbor
parameter k is set by grid search. In the continuous authentication phase, the classifier
computes Mahalanobis distance and the average distance from the testing vector to the
nearest samples, which is used as the classification score.

6.2 Effectiveness of the two-stream CNN

In this section, to validate the effectiveness of the two-stream CNN, we evaluate its performance
by comparing other competitive models with respect to accuracy, computational cost, and model
size. For the comparison, we train the competitive models by the same process as ours.

6.2.1 Accuracy, macro F1 and micro F1. The two-stream CNN is considered as a multi-class clas-
sification problem (100 classes) and trained by Adam algorithm that minimizes a categorical
cross-entropy loss function L, which is defined as L = H(y, F(y)), where H(x, y) is the cross entropy
for two distributions. All the results (accuracy, macro F1 and micro F1 scores) are average values of
5 epochs after the network has reached convergence and stability. We illustrate the results in Fig.
4 and tabulate them in Table 3. Note that the competitive models are considered as a multi-class
model and use categorical cross-entropy as the loss function. Since these models have different
optimization functions for their own, we select Adam as the optimization function for these models
in this work. Adam algorithm is frequently applied into neural networks and is generally the most
stable one [52].

Fig. 4 demonstrates the three metrics of the accuracy, macro F1 score and micro F1 score with
95% confidence interval for different models. Specifically, Fig. 4(a) indicates the performance of
models displaying Frequency, Time, TD, RawFrequency, TDFrequency, DeepSense, and IDNet with
2-second evaluation data. In particular, the TDFrequency model shows the highest accuracy and
micro F1. Fig. 4(b) demonstrates the performance of the models with 5-second evaluation data. In
this figure, for all the three metrics, the TDFrequency model shows the best performance. Therefore,
our two-stream CNN achieves the highest accuracy.
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Table 3. Comparison of accuracy, macro F1, and micro F1 (%) with standard deviation (SD) between different
models over different time windows.

Time  Model Accuracy (SD) Macro F1 (SD) Micro F1 (SD)

D 71.51 (0.22) 64.23(0.19)  71.51(0.22)

Time 83.18 (0.17) 77.52 (0.24) 83.18 (0.17)

2 Frequency 86.05 (0.23) 81.25 (0.40) 86.05 (0.23)

seconds RawFrequency 87.14 (0.25) 82.99 (0.24) 87.14 (0.25)

TDFrequency  87.54 (0.09) 85.29 (0.20)  87.54(0.09)

DeepSense 79.32 (1.33) 73.05 (1.54)  79.32(1.33)

IDNet 38.95 (0.57) 37.26 (0.57) 38.95 (0.57)

D 70.98 (0.12) 6344 (0.17)  70.98 (0.12)

Time 82.29 (0.13) 76.27 (0.21)  82.29 (0.13)

5 Frequency 88.75 (0.49) 81.62 (0.81) 88.75 (0.49)

seconds RawFrequency 90.01 (0.39) 84.43 (0.68) 90.01 (0.39)

TDFrequency  90.04 (0.34) 85.05 (0.68) 90.04 (0.34)
DeepSense N/A N/A N/A

IDNet 45.94 (0.43) 4520 (0.67)  45.94(0.43)

Table 3 lists the comparison results of accuracy, macro F1, and micro F1 with standard deviation
(SD) between different models over different time windows. As depicted in Table 3, the TDFrequency
model achieves the highest accuracy in both 2 and 5-second time windows. For the 2-second time
window, the TDFrequency model achieves 87.54%, 85.29% and 87.54% with the standard deviation of
0.09%, 0.20% and 0.09% for accuracy, macro F1 and micro F1, respectively. Specifically, TDFrequency
outperforms RawFrequency with margins of 0.4%, 2.3% and 0.4%, respectively, and with lower
standard deviations. The results indicate that the temporal difference data combined with the
frequency domain data are more efficient and accurate than the time domain data with it in the
two-stream CNN. However, as a single input of CNN, the temporal difference data are not more
accurate than the time domain data, because the time domain data include better temporal dynamic
patterns. In addition, The TD model shows higher values with margins of 11.76%, 13.29% and 11.76%
than the Time model. The Frequency model outperforms the Time model with margins of 2.87%,
3.73% and 2.87% for accuracy, macro F1 and micro F1, respectively. In addition, our model and the
variants of Frequency, Time and RawFrequency outperform DeepSense model with margins of
3.86%, 4.47% and 3.86% at least. The IDNet model shows the worst performance compared with
all the other models. Therefore, TDFrequency reaches the best performance in the 2-second time
window.

For the 5-second time window in Table 3, the TDFrequency model achieves 90.04%, 85.05% and
90.04% with the standard deviation of 0.34%, 0.68% and 0.34% for accuracy, macro F1 and micro F1,
respectively. The performance of the models with 5-second data is similar to that with 2-second data.
However, The Frequency, TimeFrequency and TDFrequency models with 5-second data perform
better than that in 2-second data while the Time and TD models with 5-second data are inferior to
that in 2-second data. The results indicate that the increase of the frequency domain data improves
accuracy. Since the experiment on DeepSense in the 5-second time window can not be trained
on the GPU under our existing experimental conditions, the corresponding experimental results
(accuracy, macro F1 score and micro F1) are not available. IDNet with 5-second data outperforms
itself with 2-second data with margins of 6.99%, 7.94% and 6.99% for accuracy, macro F1 and micro
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Table 4. Comparison of model size and computational cost over different time windows.

Time  Model Parameter MAdds

TD 0.99M 30M

Time 0.99M 30M

2 Frequency 0.99M 50M
seconds RawFrequency 1.8M 120M
TDFrequency 1.8M 120M
DeepSense 68.6M 330M

IDNet 1.93M 20M

TD 2.17M 70M

Time 2.17M 70M
5 Frequency 2.17M 190M
seconds RawFrequency 4.16M 310M
TDFrequency  4.16M 310M
DeepSense 427.1M 840M

IDNet 6.35M 80M

F1, respectively. This is likely because more authentication data contain more user information.
Therefore, TDFrequency achieves the best performance in the 5-second time window.

6.2.2 Model size and computational cost. Table 4 lists the model comparison in terms of the model
size and computational cost, where the model size refers to the parameters of the models, and the
computational cost refers to the number of multiplication-addition operations (MAdd). We attempt
to trade off the model parameters and the computational cost.

As illustrated in Table 4, TDFrequency, RawFrequency and its three variants of TD, Time and
Frequency models are superior to the compared models of DeepSense and IDNet in the model size
and partially in the computational cost. Specifically, in the 2-second time window, the TD and Time
models achieve the best performance with 0.99 million parameters and 30 million MAdds. The
Frequency model has a higher computational cost of 50M MAdds. As found, the RawFrequency and
TDFrequency models both use 1.8M parameters and have a computational cost of 120M MAdds.
Combined with the accuracy performance in Table 3, the TDFrequency model is comprehensively
optimal, and thus we select TDFrequency model as the two streams inputs for the CNN. The
accuracy of DeepSense model is comparable to the Time model; however, it is about 68 times larger
in the model sizes and 11 times higher in the computational cost. Although IDNet has the smallest
computational cost of 20M, its has the lowest accuracy of 38.95%, macro F1 of 37.26% and micro F1
of 38.95%.

In the 5-second time window, both of the model parameter and computational cost increase,
because the input data increase in size. As listed in Table 4, the model performance is generally
the same to that in the 2-second time window. In particular, the TDFrequency model uses 4.16M
parameters and has a computational cost of 310M MAdds. Note that for DeepSense model, it uses
427.1M parameters and has a computational cost of 840M MAdds. The reason is that DeepSense
can not be trained on the GPU in the 5-second time window.

6.3 Performance of SCANet

To evaluate the performance of SCANet on our dataset, we first explore the impact of the feature
number on SCANet in terms of EER, FAR, and FRR. Then, we compare the accuracy of SCANet
to representative authentication algorithms with manually designed features, such as KRR, SVM,
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Fig. 5. EER, FAR and FRR for SCANet on different number of features.

one-class SVM, and kNN. Next, we compare the classifier performance of SCANet to comparable
classifiers with CNN-extracted features. Finally, we evaluate the accuracy on unseen users and
the time efficiency of SCANet, respectively. Note that the following experiments are conducted
in a 2-second time window taking the accuracy and time cost into account. In addition, we intro-
duce a public dataset BrainRun to further evaluate the performance of SCANet, and compare the
performance between our dataset and BrainRun dataset.

6.3.1 Impact of the feature number. Fig. 5 depicts the box plots of EER, FAR, and FRR for SCANet
on different number of features. As illustrated in Fig. 5(a), the EER first decreases with the increase
of the selected features until 25, and then gradually increases. The FAR in Fig. 5(b) and FRR in
Fig. 5(c) show the same trend to the EER. The results indicate that the feature number displaying
the lowest EER, FAR, and FRR for SCANet is 25. In addition, Table 5 lists EER, FAR and FRR with
standard deviation on different number of features. As shown in Table 5, based on 25 features,
SCANet achieves the highest accuracy with 2.35% EER, 2.30% FAR and 2.40% FRR. Therefore, we
choose 25 features with high discriminability by the PCA for SCANet in the feature extraction
module.

6.3.2 Comparison of the accuracy. In order to verify the accuracy of SCANet, we compare the
accuracy of SCANet to other representative algorithms, such as KRR, SVM, one-class SVM and
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Table 5. EER, FAR and FRR (%) with standard deviation (SD) on different number of features.

# Feature EER (SD) FAR(SD) FRR(SD)

15 3.16 (1.66) 3.11(1.67) 3.22(1.67)
20 2.61(1.24) 2.58 (1.24) 2.64 (1.27)
25 2.35(1.21) 2.30 (1.22) 2.40 (1.23)
30 2.50 (1.25) 2.46 (1.23) 2.54 (1.31)
50 3.42 (1.80) 3.43(1.80) 3.41(1.82)
100 8.59 (3.53) 8.55(3.52) 8.62(3.54)

Table 6. Manually designed features.

Feature Explanation

Mean Mean value of one-axis sensor readings

Standard Deviation Standard deviation of one axis sensor readings

Maximum Maximum value of one axis sensor readings

Minimum Minimum value of one-axis sensor readings

Range Difference between the maximum and minimum values

Kurtosis Width of peak of one-axis sensor readings

Skewness Orientation of peak of one axis sensor readings

Quartiles 25%, 50%, 75% quartiles of one axis sensor readings

Energy Intensity of one axis sensor readings

Entropy Dispersion of spectral distribution of one axis sensor readings

P1 Amplitude of the first highest peak of one axis sensor readings
p2f Frequency of the second highest peak of one axis sensor readings
P2 Amplitude of the second highest peak of one axis sensor readings

Table 7. EER, FAR and FRR (%) with standard deviation (SD) on different algorithms.

Algorithm EER (SD) FAR(SD) FRR(SD)
SCANet 2.35(1.21) 2.30 (1.22)  2.40 (1.23)
KRR 9.31(3.18) 9.31(3.18)  9.32(3.17)
SVM 13.90 (4.26) 13.91 (4.27) 13.90 (4.24)
One-class SVM  24.79 (6.06) 24.74 (6.07) 24.83 (6.06)
kNN 3532 (6.44) 35.29 (6.43) 35.35 (6.45)

kNN with the same collected data. The features for the representative algorithms are manually
designed, as shown in Table 6 [16, 23], where 2 X 3 X 15 = 90 (2 sensors, 3 axis for each sensor,
15 features) features are used in total. As we described, SCANet exploits a single-class algorithm
one-class SVM as its classifier and only requires users’ own data for training and classifying. Note
that SCANet and one-class SVM are different in that SCANet extracts features by the two-stream
CNN and selects 25 features with high discriminability by the PCA, while one-class SVM just uses
the manually designed features.

Fig. 6 illustrates the box plots of EER, FAR, and FRR for SCANet, KRR, SVM, One-class SVM and
kNN with different features, respectively. As demonstrated in Fig. 6(a), SCANet has the lowest EER
as compared to other representative algorithms. The FAR in Fig. 6(b) and FRR in Fig. 6(c) have the
same trend to the EER. Table 7 lists EER, FAR, and FRR with standard deviation on the representative
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Fig. 6. Accuracy comparison between SCANet and representative algorithms with manually designed features.

algorithms. As demonstrated in Table 7, SCANet surpasses the representative algorithms with
margins of 6.96%, 7.01% and 6.92% at least for the EER, FAR and FRR, respectively. In addition, the

KRR demonstrates the highest accuracy among other representative algorithms, approximately
reaching 9.31% EER, 9.31% FAR and 9.32% FRR.

6.3.3 Comparison of classifiers. To illustrate the efficiency of the one-class SVM with CNN-
extracted features, we use the two-stream CNN to extract features for classifiers of one-class
SVM, SVM, KRR and kNN. Fig. 7 describes the box plots of EER, FAR and FRR for SCANet and
comparable classifiers with CNN-extracted features. In Table 8, the corresponding results of these
classifiers are displayed. In this section, we refer to these classifiers as CNN-KRR, CNN-SVM,
CNN-kNN. As depicted in Fig. 7, all the classifiers perform better when using CNN-extracted
features. Specifically, the kNN achieves the best improvement, where the EER decreases from
35.32% (manually designed features) to 6.54% (CNN-extracted features), as shown in Table 8. The
KRR and SVM outperform SCANet with margins of 0.6% EER, 0.6% FAR and 0.6% FRR. However,
the KRR and SVM are two-class classifiers, which require positive and negative training data. The
one-class SVM has the advantage of being able to use a very small positive training set to learn
a classification function [53]. In addition, the computational complexity for the KRR and SVM is
O(N?®), while it is O(N?) for the one-class SVM [54]. The one-class SVM requires less training data

and training time, and less storage space compared to the KRR and SVM. Therefore, we choose
one-class SVM as the classifier for SCANet.
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Fig. 7. EER, FAR and FRR of SCANet and comparable classifiers with CNN-extracted features.

Table 8. EER, FAR and FRR (%) with standard deviation (SD) on different algorithms.

Algorithm EER (SD) FAR(SD) FRR (SD)
SCANet 235 (1.21) 230 (1.22) 2.40 (1.23)
CNN-KRR  1.75(1.00) 1.70 (1.01) 1.80 (1.04)
CNN-SVM  2.10 (1.03) 2.02(1.03) 2.18 (1.06)
CNN-KNN  6.54 (2.66) 6.47 (2.69) 6.61 (2.64)

6.3.4 Accuracy on unseen users. To show the performance of the pre-trained CNN on unseen
users, we evaluate the accuracy of SCANet on unseen users. Based on our dataset containing 100
users, we randomly select n users whose data are used to train the two-stream CNN. Then, we
exploit the pre-trained CNN to extract representative features from the rest (100-n) users whose
data are not used in the CNN training. Based on the extracted features of the (100-n) users, we train
and test the one-class SVM classifier in the same procedure as the second stage in Sec. 5.2, where
we specify one of the (100-n) users as the legitimate user and the rest (100-n-1) as impostors. To
generalize the accuracy, we set unseen users (100 — n) as 20, 30, 40, 50, 60, and 70, respectively. Fig.
8 describes the box plots of the EER, FAR and FRR for SCANet on different number of unseen users.
As demonstrated in Fig. 8(a), the EER varies with the increase of the unseen user number from 20
to 70 (less than 9%) and shows lower mean values with 30, 40 and 50 unseen users. The FAR in
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Fig. 8. EER, FAR and FRR for SCANet on different number of unseen users.
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Table 9. EER, FAR and FRR (%) with standard deviation (SD) on different number of unseen users.

Unseen users 20 30 40 50 60 70

EER(SD) 8.34 (2.41) 6.78(1.99) 6.89(1.97) 6.78 (2.06) 7.47 (2.63) 8.66 (2.87)
FAR(SD) 8.69 (2.15) 7.00(1.89) 7.05(1.87) 6.93(1.98) 7.57(2.57) 8.73(2.80)
FRR(SD) 7.99 (2.68) 6.56 (2.10) 6.73 (2.09) 6.63 (2.14) 7.36 (2.70) 8.58 (2.94)

Fig. 8(b) and FRR in Fig. 8(c) show the same trend to the EER. Moreover, Table 9 depicts the EER,
FAR and FRR with standard deviation for SCANet on different number of unseen users. As listed in
Table 9, when we select 70 users to train the two-stream CNN, and use the rest 30 users to train
and test the one-class SVM classifier, SCANet achieves the best accuracy with 6.78% EER, 7.00%
FAR and 6.56% FRR. With 50 unseen users, SCANet reaches almost the same accuracy with 6.78%
EER, 6.93% FAR and 6.63% FRR, but the standard deviations for the EER, FAR, and FRR are slightly
higher. On the other hand, with 70 unseen users, SCANet achieves the lowest accuracy with 8.66%
EER, 8.73% FAR and 8.58% FRR, but they are all below 9%.

6.3.5 Time efficiency. The time cost of SCANet consists of: the length of a time window for
authenticating (t;), the time of feature extraction in the enrollment phase (;), authentication time
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Table 10. Comparison with continuous authentication methods.

- . Authentication

Method Sensor Feature Participant Classifier TR Time
SCANet acc., gyr. CNN-extracted features 100 one-class SVM 2.35% ~3s
Roy et al.
(2015) [22] acc., gyr.  Touch-screen features 42 HMM 12.85% N/A
Sitova et al. ., EYT.

rova et ak - act, Y HMOG features 100 Scaled Manhattan 7.16%  ~60s
(2016) [23] mag.
Shen et al.  acc., gyr, Descriptive and
(2018) [25] mag., ori. intensive features 102 HMM 474% - ~8s

Li et al. Ti fi

Leta acc., gyr. ime and frequency 100 one-class SVM 4.66%  ~5s

(2019) [26] features

in continuous authentication stage (t3) and others (t,), such as data preprocessing and system delay.
In our experiments, taking the accuracy and model complexity into account, we choose a 2-second
time window for authentication (t; = 2s). The feature extraction time and authentication time are
169ms and 1ms (t; = 169ms, t3 = 1ms), respectively, for one sample. For other factors, different
system environment presents some difference, so we ignore the time (¢4 = 0). The overall time cost
is approximately 3 seconds, which is acceptable for interaction between a user and SCANet.

6.3.6 Comparison with authentication methods. We compare SCANet with four representative
continuous authentication methods as illustrated in Table 10. As demonstrated in Table 10, we
list the sensors for data collection, selected features, participants’ number in the experiments,
classifiers, and authentication performance in the EER and time. In the table, Roy et al. [22] and
Sitova et al. [23] utilize the designed touch-screen features and HMOG features to train the Hidden
Markov Model (HMM) and scaled Manhattan classifiers, respectively, but both reach low accuracy
(12.85% EER in [22] and 7.16% for walk in [23]). Moreover, Shen et al. [25] and Li et al. [26] utilize
the designed statistical features to train the HMM and one-class SVM classifiers, respectively, and
achieve low accuracy with 4.74% in [25] and 4.66% in [26], but have long authentication time around
8s and 5s, respectively.

However, based on the temporal difference and frequency data, SCANet exploits the two-stream
CNN to learn and extract representative features with high discriminability to achieve a 2.35% EER
on our dataset and takes approximately 3s for user authentication.

6.4 Performance on BrainRun Dataset

To further evaluate the performance of SCANet, we select a publicly available dataset - BrainRun
[55], which collected users’ behavioral biometrics, such as touch gesture and motion sensor data
from accelerometer and gyroscope. The dataset is mainly composed of two parts: gesture data
and sensor data, where the sensor data in original dataset consist of accelerometer, gyroscope,
magnetometer and deviceMotion sensors. In our experiment, we just use the accelerometer and
gyroscope sensor data from deviceMotion sensors, which are collected by a called DeviceMotion
library.

As the same selection criteria to our dataset, we selected 82 users from the BrainRun dataset,
and chose 5120 seconds of data for each user for the experiments, where the 82 users’ player_ids
are tabulated in Table 11. Different from our dataset sampling rate of 100Hz, the sampling rate
of BrainRun dataset is 10Hz, which indicates that the input shapes of the two-stream CNN are
different. Due to the inputs with different shapes, the features in a certain layer can reduce to 0.
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Table 11. player_id of the 82 users selected from BrainRun dataset.

réei6zy | tuvemg | ioxyr9y | uui53he | 3ypgstx | rnhwbot | wOlcyp8
otu8x88 | z8taipm | olé6roh6 | 8uohdv4 | 8xjh8a qa94pwy | d5deark
fit126a hqqo4w4 | o6g2zef | vo44iru | taOko40 | hw7rnéq | h2o2ieg
7stgpOr | pxipu7n | d99p79w | 9gykpég | 06mdn3c | 60u0i9n | z3u2vz

txxrlzc ldg6zjk | ntmyzk2 | 3pmv9aq | b0602fr | x8rbf3x | w8f2wrs
meakc9c | l11doqao | 3zd4fdk | 508rk86 | yghebyt | rcuqzrh | 7nv0i9p
agmp5h7 | n0g0Ozsv | lej2hfo | w764hxe | i6298h7 | 33a3a5u | r2p4ljs

7ksck80 | uzipSke | y2opfq8 | k9ptsb2 | lvrishm | Im8ujtt | bqwut29
6jtbpdh | 0sqy7ba | vk43uke | xrmé6gjj | 56zi3vy | 0z9xv36 | 68nIll

I3rcqx4 | 67718bq | cnllmwf | ftk8v41 | szmkl5t | n7ml8hx | r13q05q
aqq25vq | 148r1k5 | ydxu25a | gzx7rv sxvkh3b | 87g7ege | mixtfy4
9gx7uks | flidyt frlafzq z8c5rtb | v90gnfo6

Therefore, we slightly adjust the input shapes, and the corresponding hyper parameters (stride,
kernel, and avgpool) of the two-stream CNN architecture in Table 2 are reassigned values as: for
individual convolutional subnet 1, the input shape is (1, 2, 120), the stride is (1, 2), and the kernel
is (1,3 X 1). For individual convolutional subnet 2, the input shape is (1, 2, 60), the stride is (1, 2),
and the kernel is (1,3 X 1). For merged convolutional subnet, the kernels are (1, 8 X 2), (1,8 X 2),
(1,8 x 1), respectively, and the avgpool is (1, 5).

To validate the performance of SCANet, we compare SCANet to other representative algorithms,
such as KRR, SVM, one-class SVM and kNN on BrainRun dataset, where the features for the
representative algorithms are manually designed, as shown in Table 6 [16, 23]. Note that for all
the algorithms, we conduct the same procedure as the second stage in Sec. 5.2 to train and test
the classifiers. Moreover, to show the performance of SCANet on unseen users, we train it using
different user distribution, represented as SCANet-82 and SCANet-60, respectively.

SCANet-82: use the 82 users to train the two-stream CNN, and then use the same 82 users to
train and test the one-class SVM classifier.

SCANet-60: randomly select 60 users out of the 82 to train the two-stream CNN, and then exploit
the rest 22 users (unseen users) to train and test the one-class SVM classifier.

We list the model size and computational cost in a 2-second time window for SCANet-82 and
SCANet-60 in Table 12. As shown in Table 12, SCANet-82 uses 1.13M parameters and has a
computational cost of 1.12M MAdds while SCANet-60 uses 40M parameters and has 40M MAdds
computational cost.

Fig. 9 demonstrates the box plots of EER, FAR, and FRR for SCANet-82, SCANet-60, KRR, SVM,
One-class SVM and kNN on BrainRun dataset, respectively. As illustrated in Fig. 9, both SCANet-
82 and SCANet-60 perform better in EER, FAR, and FRR, comparing to the other representative
algorithms. In particular, SCANet-82 shows the best accuracy among all the algorithms. Table 13
depicts EER, FAR, and FRR with standard deviation on the representative algorithms. As listed in
Table 13, SCANet-82 outperforms SCANet-60 with margins of 4.98% EER, 5.17% FAR, and 4.80%
FRR. Moreover, SCANet on BrainRun dataset surpasses the representative algorithms with margins
of 35.2%, 36.05%, and 34.34% at least for EER, FAR, and FRR, respectively.

6.5 Comparison on Different Datasets

To compare the performance of SCANet on our dataset and BrainRun dataset, we list the EER, FAR,
and FRR with standard deviation on different datasets in Table 14. As listed in Table 14, in general,
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Table 12. Model size and computational cost in a 2-second time window for SCANet-82 and SCANet-60.

Algorithm Parameter MAdds
SCANet-82 1.13M 1.12M
SCANet-60 40M 40M
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Fig. 9. Accuracy comparison between SCANet and representative algorithms with manually designed features
on BrainRun dataset.

Table 13. EER, FAR and FRR (%) with standard deviation (SD) on different algorithms.

Algorithm EER (SD) FAR(SD) FRR (SD)
SCANet-82 322 (1.68) 3.28(1.67) 3.16 (1.68)
SCANet-60 8.20 (2.02)  8.45(1.80)  7.96 (2.25)
KRR 15.61 (5.56) 15.53 (5.60) 15.69 (5.52)
SVM 15.95 (5.38) 15.48 (5.46) 16.41 (5.41)
One-class SVM  22.19 (8.34) 22.11 (8.35) 22.27 (8.35)
kNN 43.40 (6.43) 44.50 (7.72) 42.30 (9.52)

SCANet with our dataset performs better than that with BrainRun dataset. Specifically, SCANet
on our dataset surpasses SCANet on BrainRun dataset with margins of 0.87% EER, 0.98% FAR,
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Table 14. EER, FAR and FRR (%) with standard deviation (SD) on different datasets.

Algorithm EER (SD) FAR (SD) FRR (SD)

SCANet on our dataset 2.35(1.21) 2.30(1.22) 2.40(1.23)
SCANet on our dataset with 30 unseen users 6.78 (1.99) 7.00 (1.89) 6.56 (2.10)
SCANet on BrianRun dataset 3.22 (1.68) 3.28 (1.67) 3.16 (1.68)
SCANet on BrianRun dataset with 22 unseen users 8.20 (2.02) 8.45(1.80) 7.96 (2.25)

and 0.76% FRR, respectively, which indicates that SCANet is strongly robust to different datasets.
SCANet on our dataset with 30 unseen users outperforms that on BrainRun dataset with 22 unseen
users with margins of 1.42% EER, 1.45% FAR, and 1.40% FRR, respectively, which represents SCANet
has good performance on different datasets.

7 CONCLUSION

In this paper, we propose a novel two-stream CNN based authentication system, SCANet, for
continuously authenticating users by leveraging their behavioral patterns. SCANet consists of five
modules: data collection, data preprocessing, feature extraction, classification, and authentication.
We design a two-stream CNN to learn and extract representative features and the most discriminable
ones are further selected by the PCA. Then, with the CNN-extracted features, we use the one-class
SVM to train the classifier in the enrollment phase. Based on the trained CNN and classifier, and
testing features, SCANet classifies the current user as a legitimate user or an impostor in the
continuous authentication phase. We evaluate the effectiveness of the two-stream CNN in terms
of the accuracy, macro F1, micro F1, model parameters, and computational cost, and evaluate the
performance of SCANet with respect to feature number impact, accuracy, classifiers, unseen users,
time efficiency on our dataset, and the accuracy performance on BrainRun dataset, respectively.
The experimental results show that the two-stream CNN achieves the best performance with
an accuracy of 90.04%, macro F1 of 85.05%, micro F1 of 90.04%, and SCANet reaches an average
EER of 5.14% on the two datasets and consumes approximately 3 seconds for user authentication,
respectively.
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