
TremorSense: Tremor Detection for Parkinson’s
Disease Using Convolutional Neural Network
Minglong Sun

Computer Science Department
William & Mary

Williamsburg, United States
msun05@email.wm.edu

Amanda Watson
The PRECISE Center

University of Pennsylvania
Philadelphia, United States
aawatson@seas.upenn.edu

Gina Blackwell
School of Nursing

Virginia Commonwealth University
Richmond, United States

gina.blackwell@vcuhealth.org

Woosub Jung
Computer Science Department

William & Mary
Williamsburg, United States

wjung01@email.wm.edu

Shuangquan Wang
Computer Science Department

Salisbury University
Maryland, United States

spwang@salisbury.edu

Kenneth Koltermann
Computer Science Department

William & Mary
Williamsburg, United States
khkoltermann@email.wm.edu

Noah Helm
School of Nursing

Virginia Commonwealth University
Richmond, United States
helmnb@mymail.vcu.edu

Gang Zhou
Computer Science Department

William & Mary
Williamsburg, United States

gzhou@cs.wm.edu

Leslie Cloud
Department of Neurology

Virginia Commonwealth University
Richmond, United States

leslie.cloud@vcuhealth.org

Ingrid Pretzer-Aboff
School of Nursing

Virginia Commonwealth University
Richmond, United States

iaboff@vcu.edu

Abstract—Parkinson’s Disease (PD) hand tremors are common
symptoms in all stages of PD. PD tremors have a severe influence
on patients’ daily quality of life. Wearable technology can be used
to help detect, quantify, and mitigate these PD tremors. Among
the wearable technology, PD tremor detection is the primary step
for further analysis and treatment using wearable devices. Some
researchers have explored PD rest tremor detection. However,
less research has been done concerning postural tremor and
action tremor detection, which are difficult to classify only using
frequency-domain features. In this paper, we propose TremorS-
ense, a PD tremor detection system to classify Parkinson’s
Disease hand tremors. TremorSense utilizes accelerometers and
gyroscopes as wearable sensors on patients’ wrists to collect
data from 30 PD patients. We develop the TremorSense Android
application that connects the sensors via Bluetooth to save the
data. Furthermore, we design an 8-Layer Convolutional Neural
Network (CNN) to classify PD rest, postural, and action tremors.
We evaluate the CNN model with self-evaluation, cross-evaluation
and leave-one-out evaluation, and the accuracies for all three
evaluations are greater than 94%.

Index Terms—Parkinson’s Disease, Tremor Detection, Wear-
able Device, Convolutional Neural Networks

I. INTRODUCTION

Parkinson’s Disease (PD) currently affects more than 10
million people worldwide, and the number of people afflicted
is expected to increase each year [1]. PD is marked by a
continuous degeneration of the central nervous system (CNS)
and has four main motor symptoms: postural instability,
rigidity, bradykinesia, and frequent tremors [2]. PD tremors
are involuntary rhythmic oscillations [3], usually occurring in
the hands and/or fingers of PD patients. Consequently, these

tremors cause general motor difficulties resulting in a reduced
quality of daily life for PD patients.

Before we can design a system to quantify or mitigate
tremor symptoms, we must first accurately detect tremor
events in PD patients. There are three types of PD tremors:
resting, postural, and action tremors [4]. Each type of tremor
has unique characteristics: rest tremors happen when patients
are relaxed and stable; postural tremors occur when patients
are static with specific poses; action tremors appear when
patients perform daily activities. Currently, PD tremors cannot
be completely cured, but several methods exist to reduce
the severity of tremors in PD patients. Conventional clinical
approaches that treat PD and PD tremors are drug treatments,
such as Levodopa [5], as well as brain surgery called deep
brain stimulation [6]. Less invasive methods, such as psy-
chological treatments, are meant to reduce patient stress [7],
and simple vibration devices [8] have been shown to reduce
the severity of PD tremors as well. Wearables, such as other
different vibration devices, have also been explored to mitigate
the tremors [9]. PD vibration devices can be easily integrated
and are less invasive than the two common clinical treatments.

Researchers have investigated different sensors such as
accelerometers [10]–[13], gyroscopes [14], EMG [15], and
other sensors [16], [17] for use in tremor detection. Also,
researchers explored threshold-based algorithms [18]–[24] and
machine learning algorithms [10]–[13] in tremor detection.
Existing research cannot simultaneously classify all three types
of tremors accurately since most of them only use frequency-
domain features. However, the frequency-domain features of



some daily activities are similar to the features of PD tremors.
This makes it hard to detect and classify tremor accurately.
Furthermore, the moving time window for the tremor classifi-
cation of existing works is typically greater than two seconds,
with more time delay when detected in real-time. In this paper,
we will address the following research questions:

RQ1: How can we detect three types of tremors accu-
rately?

RQ2: Can we use a shorter time window size to reduce
the time delay?

In this paper, we proposed TremorSense to accurately detect
the three types of PD tremors using an 8-Layer Convolutional
Neural Network (CNN). We collected data from 30 PD pa-
tients via accelerometer and gyroscope sensors on both wrists
and the TremorSense Android application. We divided the
sensor data with a window size of 1.28 seconds and a sliding
window size of 0.64 second. In total, we used 20,226 tremor
instances and 20,226 no tremor instances, and fed them into
an 8-Layer CNN model. The TremorSense CNN model can
accurately classify instances as ‘tremor’ or ‘no tremor’. Our
contributions are summarized as follows:

• We used Ultigesture (UG) sensors and developed the
TremorSense Android application to collect tremor data
from 30 PD patients in a clinical user study.

• We designed an 8-Layer CNN model to classify all types
of PD tremor events. We evaluated the CNN model
with self-evaluation, cross-evaluation and leave-one-out
evaluation, and the accuracies for all three evaluations
are greater than 94%.

• We used 1.28 seconds as window size and 0.64 second
as a sliding window to divide data, which is shorter than
what was used in current PD tremor detection research.
This allows for the classification of shorter tremor events.
It can also potentially reduce the detection time delay
with real-time classification in future work.

This paper is organized as follows. First, in Section 2,
we present data collection, including sensors that we use,
TremorSense application development, and parameters and
demographics of our dataset. In Section 3, we discuss how we
process the sensor data and our CNN model design, and show
the evaluation performance of our CNN model. In Section 4,
we introduce related works about tremor detection. In Section
5, we present the discussion and future work. Lastly, we
summarize our conclusions in Section 6.

II. DATA COLLECTION

We collected the sensing data and video ground truth
for the tremor activities from 30 PD patients with the help
of the medical professionals from Virginia Commonwealth
University (VCU). Our study is part of a tremor vibration
study conducted by VCU. The sensing data was collected
from a single three-axis accelerometer and a single three-axis
gyroscope. For data collection, we employed the commonly
used tremor rating scales: UPDRS and Fahn-Tolosa-Marin,
to collect three types of PD tremor events. Specifically, we

used 11 UPDRS activities and 3 Fahn-Tolosa-Marin scale
activities as shown in Table I. During data collection, we used
an Android smartphone to record the ground truth video for
tremor events labeling. In this section, we present the details
of the tremor rating scales and the activities we use in the
study. We also describe the equipment and application that
we utilized to collect tremor data, and explain the parameters
and demographics of our dataset.

TABLE I: Scales and Activities

Number Scale Activity
1 UPDRS Finger Tapping
2 UPDRS Hand Movements
3 UPDRS Pronation-Supination
4 UPDRS Toe Tapping
5 UPDRS Leg Agility
6 UPDRS Arising From Chair
7 UPDRS Gait
8 UPDRS Postural Stability
9 UPDRS Postural Tremor of the Hands
10 UPDRS Kinetic Tremor of The Hands
11 UPDRS Rest Tremor Amplitude
12 Fahn-Tolosa-Marin Handwriting
13 Fahn-Tolosa-Marin Drawing
14 Fahn-Tolosa-Marin Pouring Water

A. Activities
Tremor Rating Scales are frequently used clinical methods

to assess PD tremor severity. Among them, Unified Parkin-
son’s Disease Rating Scale (UPDRS) [25], [26] and Fahn-
Tolosa-Marin Scales [27] are currently the most selected
approaches in clinical facilities to quantify the PD tremors. The
UPDRS has four parts: non-motor experiences of daily living,
motor experiences of daily living, motor examination, and
motor complications. The professionals assess each activity
and apply a score between 0 and 4 for the patient. The scores
represent different tremor severities: Normal (0), Slight (1),
Mild (2), Moderate (3), and Severe (4). In our study, we
choose the activities from UPDRS that are most closely related
to tremor quantification. The Fahn-Tolosa-Marin rating scale
includes daily activities such as handwriting, drawing, pouring
water, etc. PD patients commonly suffer hand tremors during
daily activities. Thus, we choose 11 activities from the motor
examination portion of UPDRS and three activities from Fahn-
Tolosa-Marin scales, as shown in Figure 2. The following
introduces the details of these 14 activities that are employed
in our study:

1) Finger Tapping: The patient taps the index finger on
the thumb ten times as quickly and as far as possible.
Note that this is done on the same hand, and the patient
performs it on the right hand and left hand separately.

2) Hand Movements: The patient makes a tight fist with
the arm bent at the elbow so that the palm faces the
examiner. The patient opens the hand ten times as fully
and as quickly as possible. Note that this is done on the
same hand, and the patient performs it on the right hand
and left hand separately.

3) Pronation-Supination Movements of Hands: The patient
extends the arm out in front of his/her body with the
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Fig. 2: Data Collection: (a) Finger Tapping; (b) Hand Movements; (c)Pronation-Supination Movements of Hands; (d)
Toe Tapping; (e) Leg Agility; (f) Arising From Chair; (g) Gait (Freezing of Gait); (h) Postural Stability; (i) Postural
Tremor of the Hands; (j) Kinetic Tremor of the Hands; (k) Rest Tremor Amplitude; (l) Handwriting; (m) Drawing;
(n)Pouring Water.

palms down. The patient turns the palm up and down
alternately ten times as fast and as fully as possible.
Note that this is done on the same hand, and the patient
performs it on the right hand and left hand separately.

4) Toe Tapping: The patient places the heel on the ground
in a comfortable position while sitting, and then taps the
toes ten times as big and as fast as possible. Note that
this is done on the same foot, and the patient performs it
on the right foot and left foot separately.

5) Leg Agility: The patient places the foot on the ground in
a comfortable position while sitting, and then raises and
stomps the foot on the ground ten times as high and as
fast as possible. Note that this is done on the same leg,
and the patient performs it on the right leg and left leg
separately.

6) Arising From Chair: The patient crosses his/her arms
across the chest, and then stands up from the chair.

7) Gait: The patient walks at least ten meters (30 feet), and
then turns around and returns to the examiner.

8) Postural Stability: Examiner stands behind the patient
and pulls the patient briskly towards the examiner with
enough force to displace the center of gravity so that
patient must take a step backwards.

9) Postural Tremor of the Hands: The patient stretches the
arms out in front of his/her body with palms down for
ten seconds.

10) Kinetic Tremor of the Hands: With the arm starting from
the outstretched position, the patient performs at least
three finger-to-nose maneuvers with each hand reaching
as far as possible to touch the examiner’s finger. Note that
this is done on the same hand, and the patient performs
it on the right hand and left hand separately.

11) Rest Tremor Amplitude: This has been placed purpose-
fully at the end of the examination to allow the rater to
gather observations on rest tremors that may appear at
any time during the exam. This includes when quietly
sitting, during walking and during activities when some
body parts are moving but others are at rest. The patient
is scored the maximum amplitude that is seen at any time
as the final score.

12) Handwriting: The patient uses his/her dominant hand to
write his/her name and several other sentences.

13) Drawing: The patient uses both hands to draw a straight
line and traces a circle maze with a pencil.

14) Pouring Water: The patient uses both hands to pour water
from a cup to another cup.

Fig. 3: UG Sensor band: A combination of accelerometer,
gyroscope, magnetometer

B. Sensors and Tremor-Band Application

We deployed two UG sensors [28], as shown in Figure 3,
one on each of the patient’s wrists to record tremor data. We
developed an Android application denoted PAT and implement
it on a Google Pixel 3 to record our UG sensor data. The
sampling rate of PAT is 100Hz. PAT collected the data from
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Fig. 4: TremorSense Application

UG sensors via Bluetooth in real-time, and we transfer our
data to a PC for offline analysis. Our app has two states: Main
Screen (4a), and Recording Screen (4b).

Main Screen: When the application is launched, the user
can see the home screen. On this screen, the user can enter the
patient ID number, and select which UG bands pertain to each
wrist used in the study. Then, they can start the individual data
collection and view the location where the data file is saved.

Recording Screen: The user can see this screen once they
have begun recording data. On this screen, the user can view
live data streaming from the UG wristbands and stop the data
recording after completing data collection for a patient.

In our study, we use a camera to record all activities and
tremor events for each patient. UG sensors can record data
using UNIX time. Therefore, the data saved by PAT App has
UNIX time labels. We label each activity start and end time,
tremor event start and end time, and whether an activity has
a tremor on right or left hand. We label these tremor events
using UNIX time, which synchronizes with sensor data.

C. Dataset

Parameters: We conducted our data collection in a clinical
environment. Before the patient took the UPDRS test, we
asked them to fill out their demographical information in
a questionnaire, which we present in demographics later.
Following this, we asked the patients to wear our UG sensor on
both wrists, and perform UPDRS activities and Fahn-Tolosa-
Marin activities. We repeated this process three times for each
patient. After each repetition, the doctor assessed a rating
score to evaluate the tremor severity. The tremors occurred
during testing activities and transition times. We labeled the
data based on the video ground truth for the occurrence of
tremors and the duration of tremor. The labels are used to

extract the tremor instances to feed into our CNN model for
tremor classification.

TABLE II: Patient Demographics

Characteristics Details
Number of Patients 30
Gender Proportion 18 Males / 12 Females
Range of Patient Current Age 45 - 84 Years old
Average of Patient Current Age 67.43 Years old
Range of PD Symptom Onset Age 35 - 82 Years old
Average of PD Symptom Onset Age 58.63 Years old
Range of PD Diagnosed Age 38 - 82 Years old
Average of PD Diagnosed Age 60.73 Years old
Range of Disease Duration 0 - 24 Years
Average of Disease Duration 8.80 Years
Range of UPDRS Score 0 - 3

Demographics: We administered a questionnaire before
the study for the following basic statistics: age, gender, PD
symptom onset age, PD diagnosis age, and years since PD
Diagnosis, as shown in Table II. We recruited 30 patients in
our study, including 18 males and 12 females. On average, our
patients are 67.43 years old, with the youngest being 45 years
old to the oldest being 84 years old. The average age of PD
symptom starting age is 58.63 years old, with the youngest
from 35 years old to the oldest 82 years old. The average PD
diagnosis age is 60.73 years old, and the range is from 38
years old to 82 years old. Based on the above information,
we calculated the average PD duration since PD symptoms
start, which is 8.80 years old, and the range of PD duration,
which is from 0 years to 24 years. The range of the tremor
severity score is from 0 to 3. This shows that the PD patients
in our dataset have different ages, PD symptom durations, and
different PD severity stages.

III. TREMOR DETECTION MODEL & EVALUATION
RESULTS

The TremorSense overview is shown in Figure 5. TremorS-
ense collects accelerometer and gyroscope data from UG
sensors and the TremorSense Android application. Based on
the ground-truth labeling, we use a sliding window to divide
the data into instances of ‘tremor’ and ‘no tremor’. Both the
‘tremor’ and ‘no tremor’ instances are fed into the 8-Layer
CNN for tremor classification. This CNN model is designed
for a binary classification problem, and the output is ‘tremor’
or ‘no tremor’. In this section, we introduce signal processing,
CNN classification model design, and its evaluation results.

TABLE III: Data Segmentation Instances

Label Rest Postural Action Total
Tremor 15049 1206 4011 20226

No Tremor 17705 504 2017 20226

A. Signal Processing

The raw data collected from UG sensors includes three-axis
accelerometer data, three-axis gyroscope data, and the UNIX
timestamp labels of each data point. We manually labelled the
ground truth videos and transformed the time labels into UNIX



Fig. 5: TremorSense Overview

timestamps, which can be synchronized with sensor data. The
tremor events consist of rest tremors, postural tremors, and
action tremors. Since the duration of tremor events is from
below three seconds to several minutes, we decide to use a
1.28 second time window and a 0.64 second sliding window
to divide the raw data into instances. Each instance includes
128*6 data points. The columns consist of the accelerometer
x-axis, accelerometer y-axis, accelerometer z-axis, gyroscope
x-axis, gyroscope y-axis, and gyroscope z-axis, respectively.
The columns have 128 data points for each axis of sensors.
We extracted the ‘tremor’ instances and ‘no tremor’ instances
based on ground truth labeling. The total number of instances
of the different types is shown in Table III. In total, we
have 20,226 ‘tremor’ instances, including 15,049 rest tremor
instances, 1,206 postural tremor instances, and 4,011 action
tremor instances.. To balance the dataset, we also have 20,226
‘no tremor’ instances, including random selected 17,705 rest
instances, all 504 postural activity instances, and all 2,017
other activity instances.

B. CNN Classification Model Design

In this section, we present our 8-Layer CNN design for
tremor classification. We use a CNN to classify tremor in-
stances because it learns parameters and features effectively
for complex problems. Because action and postural tremors
have similar frequency domain features as activities performed
in our study, tremor classification becomes difficult. Our CNN
efficiently solves this problem by training the parameters and
learning features directly from the time-domain.

Note, in the TremorSense CNN model, each instance is a
two-dimensional six-axis accelerometer and gyroscope data.
Therefore, we use two-dimensional data as the input to our
CNN model. In the following subsections, we present In-
put Layer, Convolution Layer, Batch Normalization Layer,
Rectified Linear Unit (ReLu) Layer, Fully Connected Layer,
Softmax Layer, and Classification Output Layer, respectively.

1) Input Layer: The Input Layer takes the instances that we
described in the previous subsection. The size of each input to

the CNN model is (128∗6), and each instance consists of 768
data points. The goal of our CNN model is to classify whether
each instance is ‘tremor’ or ‘no tremor’. The Input Layer does
not learn parameters and features. This Layer mainly prepares
data input for the other following CNN Layers.

2) Convolutional Layer: In our CNN model, we use one
convolution Layer, which can work efficiently with our dataset
without consuming many computing resources. Convolutional
Layer substitutes matrix multiplications with convolution com-
putations. TremorSense employs two-dimensional convolu-
tion:

S(i, j) = (I ∗K)(i, j) = ΣmΣnI(m,n)K(i−m, j−n) (1)

Where I is the input, and K is the Kernel. [29]
In image classification with CNNs, researchers typically

use more kernels to extract more features from all pixels
to enhance classification accuracy. Our input instances are
similar to two-dimensional images. Thus, TremorSense uses
32 two-dimensional kernels with a size of 3 ∗ 3 and a stride
of one in both horizontal and vertical directions. Stride means
the number of data points that a kernel shifts over for each
convolution. For each input instance, the Convolutional Layer
creates a feature map by adding a bias term along with the
kernel. The kernels generate the same number of feature maps
in the Convolutional Layer output. As the Convolutional Layer
shares the same feature maps for all input instances, the
training and testing computation overhead decrease signifi-
cantly. Therefore, CNNs are effective in dealing with complex
problems such as image classification, autopilot, etc..

3) Batch Normalization Layer: We employ a Batch Nor-
malization Layer to improve CNN training speed and apply
feature maps to an activation function in the ReLU Layer.
The Batch Normalization Layer can reduce the sensitivity to
network initialization, which helps avoid overfitting. Eq. 2
shows the normalized activation. The function normalizes the



Fig. 6: Convolutional Neural Network Layers

input xi over a mini-batch for each input instance. And the
output of the batch normalization Layer is Eq. 3.

x̂i =
(xi − µB)

(
√
σ2
B + ε)

(2)

where µB and σB are the mean and variance of the mini-
batch [30].

yi = κx̂i + ρ (3)

where κ is the scale factor, ρ is the offset, and x̂i is the
normalized activation in Eq. 3 [30].

4) Relu Layer: The Rectified Linear Unit (ReLU) layer is a
widely used non-linear activation function following the Batch
Normalization Layer [29]. The ReLU Layer uses a threshold
function to set all the negative input values to zero as Equation
4:

f(x) =

{
x if x ≥ 0

0 if x < 0
(4)

The ReLU layer does not change the size of the input.
Since negative inputs are set to zero, only a certain number
of neurons are activated. It is more computationally efficient
compared with traditional activation methods like Sigmoid and
Tanh functions.

5) Max Pooling Layer: The Max Pooling Layer is mainly
for down-sampling the output of the ReLU Layer. Max Pooling
Layer returns the max value of the inputs within a pooling
rectangular filter. TremorSense uses 2∗2 pooling size and 1∗1
stride size. The goal of the Max pooling Layer is to decrease
learning parameters in the following Layer and reduce over-
fitting. Typically, Convolutional Layer, Batch Normalization
Layer, ReLU Layer, and Max pooling Layer are combined
as one unit. Multiple units may be needed in more complex
classification problems.

6) Fully-connected Layer: The Fully-connected layer is an
essential component of our CNN model that classifies the input
with all the features from previous layers. The Fully-connected
layer of our CNN model goes through its backpropagation
process to decide the most accurate weights. Each neuron
determines weights that prioritize the most relevant label and
votes for the classification decision. The output of the Fully-
connected layer generates the final probability for each class,
which is ‘tremor’ and ‘no tremor’ in our CNN model.

7) Softmax Layer: The Softmax Layer performs the soft-
max function to the output from the Fully-connected Layer.
The function returns the probability for each instance belong-
ing to each class, ‘tremor’ and ‘no tremor’. The classification
results are based on the probability that the Softmax Layer
generates.

8) Classification Output Layer: Our Classification Output
Layer consists of two classes, which are ‘tremor’ and ‘no
tremor’. Since researchers mainly care about whether tremors
events happen or not when they are doing daily activities,
the input instances are classified into binary categories. In
the next section, we discuss the classification results of the
TremorSense CNN model.

C. Evaluation Results

In this subsection, we perform self-evaluation, cross-
evaluation, and leave-one-out evaluation to demonstrate the
performance of our TremorSense CNN model. We use the
30 patients data that we introduced in Section 2. We employ
Precision, Recall, F1 Score, and Accuracy to validate our CNN
model performance.

1) Self-Evaluation: For self-evaluation, we trained and
tested our model using the data from each patient. We run
5-fold cross-validation for each round of training and testing.
Since we trained and tested our model using the same data for
each patient, the classification results were supposed to achieve
the best score among all evaluation results. As expected, the
overall precision, recall, F1 score, and accuracy are 93.31%,



Fig. 7: Overall Self-Evaluation Results

100%, 96.54%, and 96.65%, respectively. The overall standard
deviation for precision, recall, F1 score, and accuracy are 0,
0.03, 0.02, and 0.02, respectively. Figure 7 shows the overall
average with standard deviation error bars and the individual
self-evaluation results for 30 patients.

Fig. 8: Confusion Matrix of the Cross-Evaluation Test

2) Cross-Evaluation: For cross-evaluation, we trained and
tested our model on using the data from all patient data. We
also run 5-fold cross-validation for each round of training and
testing. The overall precision, recall, F1 score, and accuracy
are 90.64%, 100%, 95.09%, and 95.35%, respectively. Figure
8 shows the confusion matrix of cross-evaluation results.

3) Leave-One-Out-Evaluation: For leave-one-out-
evaluation, we trained our model using data from 29
patients and tested our model with the data from the single
remaining patient. The overall precision, recall, F1 score,

and accuracy are 88.58%, 100%, 93.95%, and 94.29%,
respectively. Even though the leave-one-out evaluation
accuracy is around 2% worse than self-evaluation, and 1%
worse than cross-evaluation, the performance is still strong
with an accuracy above 94%. The overall standard deviation
for precision, recall, F1 score, and accuracy are 0, 0.02,
0.02, and 0.02, respectively. Figure 9 shows the overall
average with standard deviation error bars and the individual
leave-one-out-evaluation results for 30 patients.

4) Comparison with Existing Work: In our CNN evaluation
results, the accuracy is above 94%, and the F1 score is above
93%. Compared with existing research in PD tremor detection,
TremorSense achieves a higher accuracy greater than 94%,
while Zhang et al. [12] reach 75% and Fraiwan et al. [11]
reach 81%. Moreover, TremorSense uses 1.28 seconds as the
window size, while Zhang et al. [12] utilize multiple windows
with sizes greater than 30 seconds. TremorSense has a shorter
delay in tremor detection. It shows the robust and convincing
results of our CNN model.

IV. RELATED WORK

In recent years, there are increasing research topics in PD
tremor detection and quantification. Researchers have explored
different sensors in tremor detection such as accelerome-
ters and Electromyography (EMG), and algorithms in tremor
classification such as Support Vector Machine (SVM) and
Neural Network (NN). Existing works mainly collected data
on randomly selected daily activities that are not as clinically
relevant as TremorSense. Also, the accuracies of existing
tremor detection models are lower than 90%.

In 2017, Zhang et al. [12] used accelerometers and machine
learning algorithms to detect tremors in PD patients’ daily
activities. They collected data based on six UPDRS activities
and nine daily activities. The accuracies of their classification
models are around 75%. They also used multiple windows
with sizes greater than 30 seconds to segment their data. Com-
pared with them, TremorSense provides more comprehensive



Fig. 9: Overall Leave-one-out Evaluation Results

TABLE IV: Related Work Parkinson’s Disease Tremor Detection

Reference Year Sensor* Patients Time Window Classifier** Performance
[16] 2016 Laser 18 NaN Threshold NaN
[14] 2018 Acc & Gyro NaN NaN Threshold NaN
[10] 2015 Electrodes 8 2s NN/Clustering 89.5%
[15] 2017 EMG 10 2s HMM 82.0%
[17] 2018 Electrodes 12 2s ML 70.0%
[11] 2016 Accelerometer 21 NaN ANN 81.0%
[12] 2017 Accelerometer 5 30s SVM/NN 75.0%
[13] 2018 Accelerometer 6 3s RF/MLP 88.7%

TremorSense 2021 Acc & Gyro 30 1.28 seconds CNN >94%
* Acc: Accelerometer; Gyro: Gyroscope.
** RF: Random Forest; MLP: Multi-Layer Perceptron; SVM:Support Vector Machine; NN: Neural Network; HMM:

Hidden Markov Model; ML: Machine Learning; ANN: Artificial Neural Network; CNN: Convolutional Neural
Network.

evaluations by employing 11 clinically relevant UPDRS ac-
tivities and 3 Fahn-Tolosa-Marin activities, and TremorSense
achieves the accuracies above 94% with different evaluation
methods. The window size of TremorSense is 1.28 seconds,
which classifies shorter tremor events. Fraiwan et al. [11] used
the accelerometer in a smartphone to detect PD tremor events
based on daily activities. They used Artificial Neural Networks
(ANNs) as a classifier to distinguish tremors with an accuracy
of 81%. They collected 30 seconds of data for 21 patients
with a sampling rate of 9-11 Hz, which indicated that they
only had around 6,300 data points in total. Compared with
them, TremorSense is more clinically relevant and accurate.
Also, TremorSense has 31,067,136 (40452*128*6) data points
used for training and testing. In 2018, Zhang et al. [13] utilized
CNNs and Mel-frequency cepstral coefficients (MFCCs) to ex-
tract the frequency-domain features and fed them into Random
Forest (RF) and Multi-Layer Perceptron (MLP) models. They
briefly introduced their methods in a two-page paper, which
provide little details on implementation and evaluation.

Some existing works [10], [15], [17] focus on recognizing
only PD rest tremors. Camara et al. [10] employed electrodes
to measure local field potentials (LFPs which are signals from

a large group of cells in the brain) and NN to detect the
PD rest tremor with an accuracy of 89.5%. Hirschmann et
al. [15] utilized EMG signals and Hidden Markov Models
(HMMs) to recognize PD rest tremor events with an accuracy
of 82%. Yao et al. [17] also used LFP signals and machine
learning algorithms to classify PD rest tremors with an ac-
curacy of 70%. Compared with them, these works collect
data when patients were only rest while TremorSense uses
clinical UPDRS and Fahn-Tolosa-Marin activities to collect
tremor events. TremorSense can also classify three types of
tremors: rest tremors, postural tremors, and action tremors with
higher accuracy. In addition, some researchers used threshold-
based methods to recognize hand tremor events [14], [16].
These works collected the data of daily activities from non-
PD patients. They did not evaluate the performance of their
models. In comparison, TremorSense evaluates its model on
30 real PD patients with 14 clinical relevant activities. We
summarize and compare tremor detection related research with
TremorSense, as shown in Table 4. The table includes the
papers published in recent years with different tremor types,
sensors or signals, patient numbers, time windows, classifiers,
and performance.



Researchers have also employed sensing methods to detect
and quantify PD hand tremors such as electromagnetic mo-
tion trackers [31], [32], electromyography (EMG) [33], [34],
accelerometers [10]–[13], gyroscopes [35], [36], and touch
sensors [37]–[39]. Based on the data from the sensors, several
works have been done on tremor severity quantification such
as tremor frequency analysis [40], [41], tremor amplitude
analysis [36], [42] and tremor severity assessment [19], [24].
These works use conventional methods to detect the tremors
with a certain frequency range. Some researchers [18]–[24]
use 3.5 Hz - 7.5 Hz to extract rest tremors and 4 Hz -
12Hz extract postural tremors. However, the main frequency
components of some activities are in the same range as the
frequency of tremor events. For example, the frequency of
UPDRS (3.4) Finger Tapping without tremors are typically
in the range of 2Hz - 5Hz, which overlaps with the range
of tremors and lead to misclassifications. TremorSense can
avoid these misclassifications by using both accelerometer and
gyroscope time-domain features.

V. DISCUSSION AND FUTURE WORK

TremorSense uses the CNN model and time domain data to
classify the tremor events. The features that the CNN used are
not so manifest as frequency-domain features, which may not
be friendly to domain researchers. However, only frequency
domain features may not be enough to classify the tremors
when PD patients perform daily activities. The frequency of
some daily activities is in the same range as as the frequency
of tremors, which are very hard to classify when only using
frequency-domain features. TremorSense classifies three types
of PD tremors, and most misclassifications come from action
tremors. To further address this research question, we intend to
explore more on both the time-domain and frequency-domain
features of some specific misclassified action tremors in future
work.

TremorSense uses accelerometers and gyroscopes as sensors
to collect data. Both sensors are unintrusive and portable
wearable devices that are best for tremor detection in the home
environment and clinical environment. However, other sensors
such as EMG, EEG, etc. can be further explored in the future.
Theses clinical sensors can provide better features for domain
researchers and have the potential to find tremor treatment and
mitigation approaches.

PD tremor detection is a necessary procedure in PD tremor
quantification and treatment, especially for wearable devices.
Researchers need to automatically detect all three types of
PD tremors accurately when patients participate in PD tremor
severity quantifications. Some wearable devices, such as vi-
bration devices, demand accurate tremor detection to provide
appropriate mitigations and treatments. We propose to use
TremorSense in our tremor assessment and quantification
system in future work.

VI. CONCLUSION

In this paper, we proposed TremorSense, a PD tremor
detection system, to classify PD tremor events when PD

patients perform daily activities. We employed UG sensors
and develop the TremorSense Android application to collect
data from 30 PD patients in a clinical user study. We divided
the time domain sensor data with 1.28 seconds and design
an 8-Layer Convolutional Neural Network (CNN) classifier.
We evaluated our CNN model with self-evaluation, cross-
evaluation and leave-one-out evaluation, and the accuracies
for all three evaluations are greater than 94%. The results
validated that TremorSense can accurately classify PD rest
tremors, postural tremors, and action tremors.
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