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In this paper, we propose to model and optimize the communication 
energy consumption of devices in BSN and WiFi (BSN-WiFi) networks 
by using a method of joint data rate adaptation. First, we detail the BSN-
WiFi network system in four consecutive phases. Then, we analyze the 
communication energy consumption, illustrate throughput and time delay 
constraints, and derive mappings of signal-to-noise ratio to packet delivery 
ratio (SNR-PDR) of BSN and WiFi networks. Next, we build an energy 
optimization model with constraints of SNR-PDR mappings, throughput, 
and time delay, which minimizes the communication energy consumption. 
With cvx, we solve this model with inputs of SNR values to obtain optimal 
data rates, which are used for online data rate adaptation. Finally, from a 
specific BSN-WiFi network system, we collect 20-minute traces for per-
formance evaluation, and our results demonstrate that our solution achieves 
up to 86% energy savings compared to solutions using fixed data rates, and 
saves 10% energy than the optimal packet size solution.

Keywords: Energy consumption, modeling and optimization, joint data rate 
adaptation, BSN and WiFi networks.

1 INTRODUCTION

In our daily life, wireless devices are becoming more and more important 
and indispensable by providing an array of practical applications, such as 
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elder fall detection [1], personal health care monitor [2], smartphone upload 
and download, and more. However, in most of these applications, the rapid 
depletion of batteries on wireless devices is a crucial problem. For instance, 
energy-constrained motes collecting and transmitting data rapidly deplete 
the battery in personal health care system, and smartphones connecting to 
the Internet via WiFi for downloading files or watching videos excessively 
consume battery. There are a lot of approaches provided to reduce the 
energy consumption of wireless devices, such as transmission power and 
rate control [3], which have been investigated in the context of network 
stability [4], average throughput [5], average delay [6] and packet drop 
probability [7]. In these approaches, data rate adaptation not only reduces 
energy consumption, but also meets time delay and avoids congestion. 
More concretely, data rate can dynamically switch data rate to adapt chan-
nel conditions, thereby optimizing energy consumption [8]. Therefore, data 
rate adaptation is increasingly attracted to pursue energy efficiency in wire-
less networks.

Two types of wireless networks have been widely studied and deployed: 
wireless sensor networks (WSNs) especially body sensor networks (BSNs), 
and WiFi networks. To pursure energy efficiency, we build a BSN and WiFi 
(BSN-WiFi) network system that consists of a BSN and a WiFi network. 
More specifically, a BSN is typically composed of an array of small and low 
power sensors and a resource-rich data aggregation device (referred to as an 
aggregator) [9]. There are a wide range of applications of BSNs, such as 
physical fitness assessment [10], and emergency response [11]. On the 
other hand, a WiFi network typically consists of an aggregator, and a wire-
less access point (AP). For instance, people browse web sites or send/
receive emails with smartphones [12]. The BSN-WiFi network system has 
been deployed for many applications, such as battle field monitoring and 
real-time healthcare. For these scenarios, it typically starts from the aggre-
gator for data transfer over BSN-WiFi networks. With current channel con-
dition, the aggregator broadcasts a polling message carrying required 
information. Then the corresponding mote responds to the aggregator with 
a packet. After receiving a number of packets, the aggregator combines 
them into a bigger packet which is then transferred to the AP over WiFi 
networks. As for real-time patient health care, the state of the patient can be 
monitored by on-body motes, and then be transmitted to the aggregator by 
ZigBee, and finally be delivered to the doctors’ patient information man-
agement system via WiFi. It is greatly efficient and useful for the doctor to 
adjust his treatments. As for battle field monitoring, motes are deployed in 
the battle field to track the position of moving targets. Motes first transmit 
the gathered information to a base station via ZigBee, and then the base 
station transfers them to a military control center by WiFi. Therefore, the 
extensive practical and useful applications motivate us to investigate the 
BSN-WiFi network system. Since wireless devices are usually powered by 
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energy-constrained batteries, how to improve energy efficiency has become 
more and more important.

A wide range of works focus on data rate adaptation in WSNs or WiFi 
networks, but not both. On the one hand, some energy-efficiency based algo-
rithms are proposed [13-15] and PHY-metric based algorithms are provided 
as well [16-18] in WSNs. In particular, the authors in [13] present an addition 
to 802.15.4 specification adding three data rates to the existing rate with a 
minor hardware modification. The addition to 802.15.4 specification makes 
variable data rates available in BSN. On the other hand, some statistics based 
algorithms are provided [19-22] and several PHY-metric based algorithms 
are proposed as well [8,23-26] in WiFi networks. In addition, some works 
consider BSN-WiFi network coexistence [27-30], but they are not for energy 
efficiency. The authors in [31,53] propose an adjustable packet size solution 
for energy efficiency, but we are different in that we adopt data rate adapta-
tion solution for energy optimization in BSN-WiFi networks.

As we discussed earlier, data rate adaptation can reduce energy consump-
tion, meet time delay and avoid congestion. Hence, we adopt the joint data 
rate adaptation solution to optimize the communication energy consumption 
of BSN-WiFi networks [32]. In this paper, we first describe a BSN-WiFi net-
work system that consists of a BSN and a WiFi network, and then regard the 
system as four consecutive phases. Next, we analyze the energy consump-
tion, illustrate throughput and time delay constraints, and derive SNR-PDR 
mappings of the BSN and the WiFi networks. Then, we build an energy opti-
mization model with constraints of SNR-PDR mappings, throughput and 
time delay. With cvx [46], we solve this model with inputs of SNR and obtain 
optimal data rates. Then, we tabulate SNR values and associated data rate 
values for online data rate adaptation. Finally, we collect 20-minute traces 
from a specific BSN-WiFi network system for performance evaluation, and 
the results demonstrate that our solution can save up to 86% energy, com-
pared to the solutions that use fixed data rates, and 10% energy than the opti-
mal packet size solution.

Our main contributions can be summarized as follows:

 • We are among the first to present a joint data rate adaptation approach to 
optimize the total communication energy consumption in BSN-WiFi net-
works.

 • We analyze the communication energy consumption, throughput, time 
delay, and SNR-PDR mappings for BSN and WiFi networks, respectively, 
and then build an energy optimization model with constraints of SNR-
PDR mappings, throughput, and time delay, which is then solved by the 
software of cvx.

 • We collect 20-minute traces for performance evaluation and the results 
demonstrate that the optimal data rate solution can achieve up to 86% 
energy savings comparing with the solutions using fixed data rates.
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The rest of this paper is organized as follows: Section 2 details the BSN-WiFi 
network system, and Section 3 analyzes the communication energy consump-
tion, illustrates the throughput and time delay constraints, and derives SNR-
PDR mappings. Then, Section 4 builds an energy optimization model with 
constraints of SNR-PDR mappings, throughput and time delay for the BSN-
WiFi network system. In Section 5, we evaluate the joint data rate adaptation 
solution and conclude the paper in Section 6.

2 BSN-WIFI NETWORK SYSTEM

In this section, we first interpret the notations used in this paper in Table 1. 
Then, we illustrate the BSN-WiFi network system with data flow diagram as 
shown in Fig. 1. As shown in Fig. 1, the BSN-WiFi network system consists 
of a BSN, and a WiFi network. We focus on how to coordinate the communi-
cation between the BSN and WiFi networks. In the system, each sensor on 
motes generates data packets and sends them to the aggregator (referred to as 
a sink mote) in BSN under IEEE 802.15.4 standard (ZigBee) [40]. Then the 
aggregator (the smartphone) reforms the received data and forwards them to 
the AP via WiFi under IEEE 802.11 standard (WiFi) [34]. In particular, the 
aggregator is constructed by a smartphone connected with a sink mote through 
a USB [33]. As for the aggregator, the sink mote is responsible for communi-
cating with all the motes and sending data to the smartphone, while the smart-
phone is in charge of delivering data to the AP. To elaborate the BSN-WiFi 
network system, we regard the data flow as four consecutive phases: Data 
Generation, BSN Transmission, Data Aggregation, and WiFi Transmission.

2.1 Data Generation
All sensors on motes generate data in this phase. We use bn to represent data 

generation rate of mote n n N( , ,..., )∈{ }1 2 . Then, bnn

N

=∑ 1
 is the data genera-

tion rate for all motes and b Nnn

N

=∑ 1
/  denotes the average data generation 

rate. Therefore, the expected time for a mote generating one bit data can be 

calculated as N bnn

N
/ .

=∑ 1

2.2 BSN Transmission
In this phase, all the sensors on motes in BSN attempt to send the sampled 
data to the aggregator [54,55]. For data transmission, the aggregator first 
broadcasts a polling message, and then the associated mote responds a BSN 
data packet. The polling message carries mote ID and data rate information, 
where mote ID is to identify which mote that can transmit BSN packets and 
data rate is used by mote to transmit BSN packet. Denote a BSN data packet 
length by lm, header length for both polling message and BSN data packet by 
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Notations Meanings

N The number of motes used in BSN

M-1 The number of potential contenders sharing the same AP with the aggregator

R The maximum number of backoff retries

D The required time delay by real time application

bn The data generation rate of mote n

lm The length of a BSN packet

la The length of a WiFi packet

lp The length of a polling message

hm The header length of a polling message or a BSN data packet

ha The header length of a WiFi packet

rm The data rate in BSN

ra The data rate in WiFi network

cw The backoff time period

tcw The expected backoff time period for a packet transmission

prm
The PDR of data transmission between all the motes and the aggregator in both 
directions when using data rate rm

pra
The PDR of data transmission from the aggregator to the AP when using data rate ra

Srm
The current SNR under the data rate rm

Sra
The current SNR under the data rate ra

e11 The total energy consumed by N motes to receive polling messages from the aggre-
gator and to transmit BSN data packets to the aggregator, including retransmissions 
of polling messages and packets, over any time period t

e12 The total energy consumed by the aggregator to broadcast polling messages to all 
the motes and receive BSN data packets from the assigned mote, including the 
retransmission, over any time t

e21 The energy spent for carrier sensing, including the situation of WiFi packet trans-
mission failure, over any time period t

e22 The energy spent by the aggregator, including retransmission, over any time period t

Pmr The power needed by the mote to receive polling messages

Pmt The power needed by the mote to transmit BSN data packets

Pas The power of the aggregator for carrier sensing

Pat The power of the aggregator to transmit WiFi data packets

EBSN The total energy consumed by all the motes and the aggregator over any time period t

EWiFi The total energy consumption of the aggregator to transmit WiFi data packets to the AP

θBSN The throughput of BSN

θWiFi The throughput of WiFi networks

rBSN The set of data rate rm in BSN

rWiFi The set of data rate ra in WiFi networks

τBNS-WiFi The total time period from the time when data is generated to the time when a WiFi 
data packet is delivered to the AP

TABlE 1
Notations and their semantic meanings
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hm, and the data rate in BSN by rm. Furthermore, we let lp denote a polling 
message length, which consists of information of hm-byte header, 1-byte 
mote ID, and 2-byte data rate, namely, lp = hm + 1 +2 (bytes). Thus, the time 
needed by the aggregator broadcasting a polling message is lp / rm , while the 
time required by the mote to send a BSN data packet back is lm / rm. In addi-
tion, we let prm

 indicate data transmission PDR between motes and the aggre-
gator in both directions under data rate rm. Since packet transmission in BSN 
is one polling message for one BSN data packet, the failure of either a polling 
message itself or BSN data packet will trigger polling message retransmis-
sion, while the failure of a BSN data packet only causes the BSN data packet 
retransmission. Hence, expected retransmission number of a polling message 
delivery is 1 2/ prm

 while expected retransmission number of a BSN data packet 
delivery is 1 / prm

. Therefore, the expected time delay of a BSN data packet 
delivery from the assigned mote to an aggregator can be calculated as

l

r p

l

r p
p

m r

m

m rm m

× + ×
1 1
2

.

2.3 Data Aggregation
In this phase, the aggregator will collect multiple BSN data packets from 
motes, remove these packet headers, and then aggregate the payloads into a 
WiFi data packet with a new header. If we let la and ha indicate the length and 
header of a WiFi data packet, then a WiFi data packet can be constructed by

l h

l h
a a

m m

-
-

 BSN data packets. Since transmissions in BSN and data aggregation 

in WiFi network are processed in parallel, the net delay in aggregation is the 

transmission time of the remaining 
l h

l h
a a

m m

-
-

-1  BSN data packets after the 

first. Therefore, the time delay in data aggregation phase can be given by

l h

b

l h

l h
m m

nn

N
a a

m m

−
×

−
−

−






=∑ 1

1 .

FIGURE 1
The BSN-WiFi network system.
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2.4 WiFi Transmission
In this phase, the aggregator in WiFi network transmits the reorganized WiFi 
data packets to an AP under IEEE 802.11 standard [34]. The aggregator first 
carrier senses the channel condition and then sends a WiFi data packet to the 
AP until the channel is clear. The AP will reply an ACK when the channel is 
clear, after receiving the packet.

We first briefly introduce the CSMA protocol used in existing WiFi devices 
[56]. Based on default settings on commercial WiFi devices, we simply turn 
off the RTS-CTS exchange in CSMA protocol. In the protocol, the aggregator 
first carrier senses the conditions of wireless channels. If the channel is idle, 
it sends out the WiFi data packet immediately; otherwise, it randomly selects 
a time interval within [0, cw] as a backoff time counter before transmission, 
where cw indicates the backoff time. The backoff time counter decrements as 
long as the channel is sensed idle, stops when a transmission is detected, and 
reactivates when it is sensed idle again. The aggregator sends out WiFi data 
packets when the backoff counter reaches zero and the channel is idle. Other-
wise, it backs off again. Therefore, the expected backoff time for a packet 
transmission can be computed as t cw M Rcw = × −/ min{( ) / , }2 1 2  [35], 
where M-1 denotes the number of potential contenders that share the AP with 
the aggregator, and R indicates the maximum number of backoff retries.

Then, if let ra denote the data rate in WiFi network, the time the aggregator 
needed to transmit a WiFi data packet to the AP until the channel is clear is 
la / ra. Since the ACK message is tiny compared with the WiFi data packet, we 
assume there is no ACK failure. If we let pra

 indicate the PDR from the aggre-
gator to the AP under data rate ra, the expected retransmission number of a 
WiFi data packet delivery is 1 / pra

. Therefore, the expected time delay of a 
WiFi data packet delivery from the aggregator to the AP can be given by

( ) .t
l

r pcw
a

a ra

+ ×
1

3 SYSTEM MODELING

Energy efficiency is a critical issue in energy-constrained wireless devices. In 
this section, we first detail the communication energy consumption, then 
illustrate throughput and time delay constraints, and finally derive the SNR-
PDR mappings.

3.1 Energy Consumption

Communication consumes major battery energy in wireless devices. In this 
section, we formulate communication energy consumption issues of BSN 
and WiFi networks, respectively.
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3.1.1 BSN energy consumption
In BSN, energy is consumed by motes and the aggregator, where motes trans-
mit BSN data packets and receive polling messages, and the aggregator 
broadcasts polling messages and receive BSN data packets. If let EBSN indi-
cate the energy consumed by motes and the aggregator over time period t, we 
obtain:

 E e eBSN = +11 12  (1)

where e11 denotes the energy consumed by motes and e12 represents the 
energy consumed by the aggregator. The total energy consumed by N motes 
that receive polling messages and transmit BSN data packets, including 
retransmissions, over time period t can be formulated as:

 e N
l

r p
P

l

r p
P

b t

l h
p

m r
mr

m

m r
mt

nn

N

m mm m

11 2
11 1

= × × × + × × ×
×

−
=∑

( )  (2)

where Pmr and Pmt denotes the power by the mote receiving polling messages 

and transmitting BSN data packets, respectively. Furthermore, 
l

r p
p

m rm

×
1
2  rep-

resents the expected time for a mote successfully receiving a polling mes-

sage, while 
l

r p
m

m rm

×
1

 indicates the expected time required by a mote 

successfully transmitting a BSN data packet. Hence, the sum of energy con-
sumption for both reception and transmission in the parentheses is that of a 
BSN data packet delivery. In addition, if we let lm - hm indicate the payload 

of a BSN data packet, then 
b t

l h
nn

N

m m

×

−
=∑ 1  denotes packet number generated by 

the N motes over time t.
On the other hand, the energy consumed by the aggregator broadcasting 

polling messages and receiving BSN data packets, including the retransmis-
sion, over time t, is computed as:

 e
l

r p
P

l

r p
P

b t

l h
p

m r
mt

m

m r
mr

nn

N

m mm m

12 2
11 1

= × × + × ×








 ×

×

−
=∑  (3)

where Pmt and Pmr denote the power of the sink mote on the aggregator broad-
casting polling messages and receiving BSN data packets, respectively. Since 
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motes are unable to communicate with the smartphone directly, we explore 
the sink mote broadcasting and receiving packets instead of a smartphone. As 
a result, we connect a sink mote with a smartphone through a USB [33] as the 
aggregator.

3.1.2 WiFi energy consumption
After AP receives a WiFi data packet, it will reply an ACK, according to IEEE 
802.11. Since the ACK is tiny, we assume the aggregator does not consume 
any energy to receive it. In WiFi network, energy is consumed by the aggre-
gator carrier sensing the channel condition and transmitting WiFi data pack-

ets to the AP. The aggregator should receive b tnn

N
×

=∑ 1
 payload from BSN 

data packets, which is then delivered to the AP in the form of WiFi data 
packets. If we let EWiFi represent the energy consumption of the aggregator 
transmitting WiFi data packets to the AP, we have:

 E e eWiFi = +21 22  (4)

where e21 and e22 denote the energy consumed for carrier sensing and trans-
mitting WiFi data packets, respectively.

Before each packet transmission, the aggregator will carrier sense the 
channel condition for an expected time period tcw. Thus, the energy spent for 
carrier sensing, including WiFi packet failures, over any time period t, can be 
calculated as:

 e t
p

P
b t

l hcw
r

as

nn

N

a aa

21
11

= × × ×
×

−
=∑

 (5)

where Pas represents the power consumed by the aggregator carrier sens-

ing. Furthermore, t
pcw

ra

×
1

 
denotes the expected carrier sensing time for a 

WiFi data packet delivery, and la - ha indicates the payload of a WiFi data 
packet. 

Once the channel is clear, the aggregator sends out a WiFi data packet 
immediately. Thus, the energy consumed by the aggregator, including retrans-
mission, over any time period t, can be computed as:

 e
l

r p
P

b t

l h
a

a r
at

nn

N

a aa

22
11

= × × ×
×

−
=∑

 (6)
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where Pat represents the power of the aggregator transmitting WiFi data pack-

ets, and l

r p
a

a ra

×
1

 
indicates the expected time for a WiFi data packet delivery.

3.2 Throughput Constraint
In this section, we make sure that the data throughput is less than or equal to 
the optimal data rate [36-38]. We analyze the throughput for BSN (θBSN) and 
WiFi network (θWiFi), respectively.

3.2.1 BSN throughput constraint
Over a unit time period (e.g., 1 second), polling messages and BSN data 
packets are transmitted in the BSN. Hence, the throughput constraint of BSN 
can be expressed as:

 l
b

l h p
b

l

l h p
rp

nn

N

m m r
n

n

N
m

m m r
m

m m

×
−

× + ×
−

× ≤=

=

∑ ∑1
2

1

1 1
 (7)

where 
b

l h
nn

N

m m

=∑
−

1

 
indicates the number of polling messages from the aggrega-

tor, and l
b

l hp

nn

N

m m

×
−

=∑ 1

 
denotes the data amount in polling messages, and

b
l

l hn
n

N
m

m m=
∑ ×

−1  
represents the total amount of data in BSN data packets, 

including the header data of each packet. Taking the retransmission of polling 
message and BSN data packets into account, the total amount of data trans-
mitted per unit time should be less than or equal to the current data rate rm, 
namely, θBSN mr≤ .

3.2.2 WiFi throughput constraint
Over a unit time period, WiFi data packets are delivered in the WiFi net-
works; therefore, the throughput constraint of WiFi network can be formu-
lated as:

 b
l

l h p
rn

n

N
a

a a r
a

a
=

∑ ×
−

× ≤
1

1
 (8)

where b
l

l hn
n

N
a

a a=
∑ ×

−1

 indicates the amount of WiFi data packet. The data 

amount delivered including retransmissions per unit time should be less than 
or equal to the current data rate ra, that is, θWiFi ar≤ .
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3.3 Time Delay Constraint
Time delay is a rigorous requirement for some real time applications [39], 
such as Voice over IP (VoIP). Therefore,  time delay constraint of BSN-WiFi 
networks can be calculated as:

 

l h

b N

l

r p

l

r p

l h

b

l h

l

m m

nn

N

p

m r

m

m r

m m

nn

N
a a

m

m m

−
+ × + × +

−
×

−
−

=

=

∑

∑

/

(

1

2

1

1 1

hh
t

l

r p
D

m
cw

a

a ra

− + + × ≤1
1

) ( )

 (9)

where D indicates the required time of a real time application. We regard the 
total time delay of BSN-WiFi networks τBSN WiFi−  as a pipelined data flow: (i) 
first, since all motes spend time on generating packets, the average time 

needed to generate a BSN data packet is 

l h

b N

m m

nn

N

−

=∑ /
.

1
; (ii) then, within time 

l

r p

l

r p
p

m r

m

m rm m

× + ×
1 1
2  under data rate rm, a BSN data packet is transmitted to 

the aggregator; (iii) next, the aggregator collects 
l h

l h
a a

m m

-
-

-1  BSN data pack-

ets from motes and then composes a WiFi data packet within the time

l h

b

l h

l h
m m

nn

N
a a

m m

−
×

−
−

−




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=∑ 1

1 ;  (iv) finally, the aggregator delivers the WiFi data 

packet to AP within time  t
l

r pcw
a

a ra

+






×
1

.

3.4 SNR-PDR Mappings
We attempt to find a map of one SNR for one optimal data rate through 
analyzing SNR-PDR mappings of BSN and WiFi networks, respectively, in 
this section.

3.4.1 SNR-PDR mapping in BSN
Through a minor hardware changes, data rates 500kbps, 1000kbps and 
2000kbps are added to the existing data rate 250kbps in IEEE 802.15.4 spec-
ification [13,57]. Hence, the data rate rm in BSN can be valued in set
r kbps kbps kbps kbpsBSN : , , , ,250 500 1000 2000{ }  that is, r rm BSN∈ . Based on 

[13], we obtain SNR to PDR map under data rate rm in BSN:

 p u
S

r

k
r v

m

m= −
−

× − ×( exp( ( )))1
2 1

2 2
 (10)
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where Srm
 indicates SNR under data rate rm and prm

 denotes PDR under 
data rate rm. The exponent v is a BSN data packet length in symbols. k  
and u are parameters in coding scheme, which indicates that k bits are 
encoded together into a u chip signal. We define SNR-PDR mappings in 
BSN as p f Sr rm m

= ( ), and just list the parameters under different data rates 
in Table 2.

The SNR in BSN typically range in [1dB, 30dB] [13,41], therefore, 
based on Eq. 10 and Table 2, we plot Fig.2 to show the correlation between 
SNR and PDR under rBSN. As illustrated in Fig.2, PDRs of data rates rise 
when SNR increases. Hence, we can deduce that p f Sr rm m

= ( ), is a mono-
tonically increasing function. The other observation is that a lower data 
rate grows faster than a higher one as SNR increases. The reason is that 
when the link quality is poor (low PDR or small SNR), a lower data rate is 
preferred; while when it is good, a higher data rate has priority. In 
particular, for a specific SNR value, there are rBSN = 4  PDR values associ-

ated with rBSN = 4  data rates, where rBSN = 4 indicates the number of elements 

in set rBSN.

k(bit) u(chip) rm(kbps)

4 32    250

4 16    500

4    8 1000

1    1 2000

TABlE 2
Parameters for SNR-PDR Model in BSN

FIGURE 2
SNR-PDR mapping of BSNs.
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3.4.2 SNR-PDR mapping in WiFi network
The available values of data rate ra in WiFi networks lie in set rWiFi : {6Mbps,  
12Mbps, 18Mbps, 24Mbps, 35Mbps, 48Mbps, 54Mbps [23,42], that is, 
r ra WiFi∈ .  The SNR in WiFi networks usually lie in [1dB, 40dB] and based on 
the values in Fig. 5 of [42], we replot a color Fig. 3 that demonstrates the cor-
relation between SNR and PDR under rWiFi. We define the PDR-SNR map-
ping of WiFi networks as a function of pra 

= f(Sra
). As illustrated in Fig. 3, 

PDRs for all the data rates increase as SNR grows. Thus, we deduce pra 
= 

f(Sra
)is a monotonic increasing function. The other observation is that with 

the increase of SNR, PDRs of lower data rates grow faster than that of higher 
ones. In particular, there are rWiFi = 7  PDR values associated with rWiFi = 7  

data rates for each SNR value, where rWiFi = 7 indicates the number of elements 
in set rWiFi.

3.4.3 SNR measurements
For BSN, we refer to a method in [41]: each mote is equipped with an IEEE 
802.15.4 compliant Chipcon CC2420 radio, and the received signal strength 
indicator (RSSI) of CC2420 on the aggregator contains the measurement of 
signal power Psm in dBm, if there is no incoming packet. RSSI value is the 
signal power of environmental noise Pnm in dBm. Therefore, the SNR in BSN 

can be calculated as: S
P P

PBSN
sm nm

nm

=
−

.

On the other hand, for WiFi networks, we refer to an approach provided in 
[43,47]: RSSI values reported by network interface cards (NICs) give an esti-
mate of the signal power denoted as Psa in dBm for each received packets. If 
there is no incoming packet, the signal power of environmental noise can be 

FIGURE 3
SNR-PDR mapping of WiFi networks.
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expressed as Pna in dBm. Thus, the SNR in WiFi networks can be computed 

as: S
P P

PWiFi
sa na

na

=
−

.

Next, we discuss combinations of SNRs as well as data rates in BSN and 
WiFi network, respectively. Since Srm

 falls in the range [1dB, 30dB] while Sra 
lies in [1dB, 40dB], there will be 30 × 40 combinations of (Srm

,
 
Sra

). On the 
other hand, rm lies in set rBSN with 4 elements and ra falls in set rWiFi with 7 
elements. Therefore, each combination of (Srm

,
 
Sra

) associates with 4 × 7 
combinations of (rm,

 
ra). Next, we try to obtain one out of 28 combinations of 

(rm,
 
ra) for each SNR combination (Srm

,
 
Sra

) through solving a communication 
energy optimization model with constraints of SNR-PDR mappings, through-
put, and time delay.

4 ENERGY OPTIMIZATION

Energy efficiency is also a critical issue in energy-constrained BSN-WiFi 
networks. In this section, we optimize the communication energy in BSN-
WiFi networks via a method of joint data rate adaptation. Through the model, 
we attampt to input the SNR values (Srm

,
 
Sra

) and output the corresponding 
optimal data rates (rm,

 
ra). More concretely, we build an energy optimization 

model for BSN-WiFi networks with constraints of SNR-PDR mappings, 
throughput, and time delay. Then, we solve it by a software cvx and tabulate 
the offline results for online usage.

4.1 Energy Optimization Modeling
We build an energy optimization model with constraints of SNR-PDR map-
pings, throughput, and time delay for BSN-WiFi networks. With inputs of 
SNR values and outputs of optimal data rates through solving the model, we 
aim to obtain a map of SNR values (Srm

,
 
Sra

) and optimal data rate (rm,
 
ra), 

meanwhile minimize communication energy consumption:

 Minimize E E EBSN WiFi= +  (11)

Subject to

 p f Sr rm m
= ( )  (12)

 p f Sr ra a
= ( )  (13)

 θBSN mr≤   (14)
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 θWiFi ar≤  (15)

 τBSN WiFi D− ≤  (16)

 r r r rm BSN a WiFi∈ ∈,  (17)

where rm and ra are optimal variables. 
Eq. 11 is an objective function, and Eqs. 12-17 are constraints. For objec-

tive function (Eq. 11), inputs are one SNR combination (Srm
,
 
Sra

) associated 
with 28 combinations of (rm,

 
ra) while outputs are optimal data rates (rm,

 
ra)

exactly associated with (Srm
,
 
Sra

).
For constraints, Eq. 12 is a map of SNR Srm

 associated with data rate rm 

and PDRs prm
 in BSN, while Eq. 13 is a map of SNR Sra

 associated with data 
rate ra and PDRs pra

 in WiFi networks. Eqs. 14 and 15 are throughput con-
straints in BSN and WiFi networks, respectively. Eq. 16 is time delay required 
by a specific application, where τBSN-WiFi indicates the time period from the 
time data is generated to the time a WiFi data packet is delivered. Eq. 17 
denotes data rates rm and ra are discrete values in sets of rBSN and rWiFi, respec-
tively.

4.2 Offline Solution and Online Usage
We set up parameters in the model, then solve it by a software cvx, and finally 
tabulate the offline results for online dynamic data rate adaptation. 

Based on BSN-WiFi network system, we exploit three TelosB motes with 
MSP430F1611 micro controller and CC2420 radio [44,48-50], use a Sprint 
HTC Hero smartphone connected with a sink mote via a USB as an aggrega-
tor, and employ a router connected to Internet through cables as an AP. The 
parameters in the model are presented in Table 3. Note that the parameters in 
the table are just a specific application setup, therefore, the model is not con-

Parameter Value Parameter Value Parameter Value

N 3 la 272B Pas 1.15W

M 5 hm 20B cw 640μs

R 5 ha 46B D 177ms

t 1s Pmt 35mW b1 4kbps

lp 23B Pmr 38mW b2 5kbps

lm 133B Pat 1.65W b3 5kbps

TABlE 3
Parameter Setup
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fined to these parameters, and the corresponding results are just used to vali-
date the model.

From the table, lp consists of fields of hm-byte header, 1-byte mote ID, and 
2-byte data rate. We set the length of WiFi data packet payload as la - ha = 226 
bytes, so that it is in multiple length of BSN data packet payload lm - hm = 113 
bytes. We assign the time delay D = 177ms, from a specific application of 
VoIP [51-52].

Then, we solve the energy optimization model. We rewrite the standard 
form of energy optimization model as:

 

Minimize E E E

P t

p l h
b t

Nl p l P

BSN WiFi

as cw

r a a
n

n

N
p r m

a

m

= +

=
−( ) +

+( )
=

∑
1

mmr p r m mt

r m m

n
n

N

m
a at

r a a

l p l P

p l h

b t r
l P

p l h
b

m

m

a

+ +( )
−( )

× +
−( )=

−∑

2

1

1
nn

n

N

at r
=

−∑ ×
1

1

  
  (18)

Subject to

 
l p l

p l h
b r

p r m

r m m
n

n

N

m
m

m

+

−( ) × ≤
=

−∑2
1

1 1  (19)

 
l

p l h
b ra

r a a
n

n

N

a

a
−( ) × ≤

=

−∑
1

1 1  (20)
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(21)

where rm and ra are optimization variables, and t is any time period. Accord-
ing to [45], the model is a GP problem if its standard form satisfies: (i) the 
coefficients of the functions are any positive numbers; and (ii) the expo-
nents are any real numbers. All coefficients of the objective function (Eq. 
18) and all constraint inequalities (Eqs. 19-21) are positive numbers, and all 
exponents of the optimization variables belong to {-1, 0} that are real num-
bers, and the objective function and the left side of constraint inequalities 
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are all polynomial functions. Therefore, we conclude that the model is a GP 
problem. We exploit an efficient solution for a GP problem cvx [46] to solve 
the energy optimization model, and we can obtain the offline results of opti-
mal data rates rm for motes in the BSN and ra for the aggregator in WiFi 
networks for all combinations of (Srm

,
 
Sra

). We plot Fig. 4 to illustrate opti-
mal data rates rm and ra with all SNR combinations (Srm

,
 
Sra

), that shows 
data rates increase as both SNRs increase. More concretely, optimal data 
rate rm in BSN increases when SNR Srm

 increases as depicted in Fig. 4(a). 
This is because when SNR Srm

 increases, that is, PDR prm
 is increasing, a 

higher data rate is adapted, which consumes less power. However, there is 
an exception that when Srm

 is extremely low, the data rate is the highest one 
2000kbps. The reason is the mote tries its best to send data out in the 
extreme condition. On the other hand, the optimal data rate ra in WiFi net-
works increases when SNR Sra

 rises, as illustrated in Fig. 4(b). The same 
exception is that when Sra

 is extremely low, the data rate is the highest one 
64Mbps.

FIGURE 4
The optimal data rate solution. (a) optimal data rate rm; (b) optimal data rate ra.
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We tabulate the optimal results with 4 columns and 30 × 40 rows. The 
columns are composed of Srm

, Sra
, rm and ra  and the rows are the correspond-

ing combinations of Srm
 and Sra

. The offline optimal solution table can be 
loaded on the aggregator for online data rate adaptation. More specifically, 
according to real-time SNRs, the aggregator assigns data rate for motes in 
BSN via polling messages and specifies the data rate for itself in WiFi net-
work. Note that the optimal solutions are solved on a laptop offline, and then 
we install the results on the aggregator for online usage. That is why we say 
the solution is offline and the usage is online.

5 PERFORMANCE EVALUATION

We first specify the evaluation setup that collects traces, and then evaluate our 
solution in terms of energy savings, throughput and time delay, cost analysis, 
and comparison with optimal packet size solution, respectively.

5.1 Evaluation Setup
Our BSN-WiFi network system mimics a typical assisted living facility, 
where the BSN is in charge of monitoring a patient’s physiological readings 
and transmitting these data to a portable device (such as a smartphone), 
then the WiFi network is responsible for delivering these data to an AP, and 
the AP finally transmits the data to a data center in a hospital by Internet. In 
the experiment, we use one TelosB mote, a laptop connected with a TelosB 
mote through a USB as an aggregator, and an AP connected to Internet via 
cables. We collect about 20-minute PDR traces where the aggregator polls 
every 20ms and computes PDR every 5s. Then, we convert PDR traces into 
SNR traces based on SNR-PDR mappings to evaluate our optimal data rate 
solution.

5.2 Energy Savings
We compare the optimal solution with solutions of fixed data rate to demon-
strate energy savings. According to SNR traces, our solution operates on the 
aggregator that selects optimal data rates from the table for motes and itself, 
while fixed data rate solutions work on the mote and aggregator delivering 
packets with prefixed data rates.

Since available data rates are rBSN : {250kbps, 500kbps, 1000kbps, 
2000kbps}, in BSN and are rWiFi : {6Mbps, 12Mbps, 18Mbps, 24Mbps, 
35Mbps, 48Mbps, 54Mbps} in WiFi network, we randomly select 250kbps 
for BSN and 24Mbps for WiFi network, and 1000kbps and 54Mbps, respec-
tively, as two fixed data rate solutions for comparison. Based on SNR traces, 
we plot the energy consumption for our solution and the two fixed data rate 
solutions. As shown in Fig. 5, our solution consumes the least energy com-
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pared with the other two solutions. In addition, the combination (250kbps, 
24Mbps) consumes more energy than the combination (1000kbps, 54Mbps). 
For comparison, our solution saves 36% energy than solution I (250kbps, 
24Mbps) and 30% than solution II (1000kbps, 54Mbps).

To be general, we compare our solution with more solutions of fixed data 
rate in terms of mean energy consumption and energy savings, as listed in 
Table 4. In Table 4, we have columns of data rates rm in BSN, ra in WiFi net-
works, the Mean(E) energy consumption and Energy Savings, where energy 
savings are calculated by the energy our solution saves over the energy the 
fixed data rate solution consumes. Compared to all fixed data rate solutions, 
our solution consumes the least energy 22.6mJ and achieves up to 86% energy 
savings. We note that fixed data rate solutions with higher ra consume less 

rm(kbps) ra(Mbps) Mean(E)(mJ) Energy Savings

250 6 39.1 42%

250 24 35.4 36%

250 54 34.6 35%

500 18 57.7 61%

500 54 56.6 60%

1000 12 34.2 34%

1000 48 32.4 30%

2000 54 171.6 86%

Optimal Data Rate 22.6 N/A

TABlE 4
Performance Comparison

FIGURE 5
Energy consumption comparison.
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energy for the same rm, and energy savings of our solution decreases with 
increase of ra. For instance, the mean and energy savings in the first three 
rows decrease gradually with increase of ra. This is because the same data 
amount sent by motes consumes less energy if ra is higher. The fixed data rate 
solutions with higher rm consume more energy, and energy savings of our 
solution increases with the increase of rm, for the same ra value. For example, 
the mean and energy savings in the third, fifth and eighth rows increase with 
increase of rm. The reason is that more data with higher data rate rm consumes 
more energy to transmit. Therefore, we conclude that our solution saves 
energy by dynamically adjusting the joint data rates of BSN and WiFi net-
works to current SNR.

5.3 Throughput and Time Delay
To evaluate the performance of throughput and time delay, we explore two 
metrics: (i) delivered throughput ratio, that is, the timely delivered data 
throughput over the needed data throughput; and (ii) time delay miss ratio, 
that is, the number of data packets that miss their deadlines over the number 
of data packets requested to send [36]. We select eight representative fixed 
data rate solutions, and compute delivered throughput ratios and time delay 
miss ratios. As shown in Table 5, the delivered throughput ratio of BSN 
increases as data rate rm increases. The bigger the data rate is, the higher the 
throughput ratio is. Throughput supported by IEEE 802.11 is large enough, 
so WiFi network has a full delivered throughput ratio. Then, the time delay 
miss ratio relies heavily on the transmission rate rm in BSN. That is, the faster 
the rm is, the less time it takes. Therefore, comparing with fixed packet size 
solutions, our solution provides a full delivered throughput ratio and zero 
time delay miss ratio.

rm

(kbps)
ra

(Mbps)
Delivered Throughput Ratio Time Delay

Miss RatioBSN WiFi network

250  6 91% 100% 5%

250 24 91% 100% 5%

250 54 91% 100% 5%

500 18 94% 100% 0%

500 54 94% 100% 0%

1000 12 97% 100% 0%

1000 48 97% 100% 0%

2000 54 100% 100% 0%

Optimal Data Rate 100% 100% 0%

TABlE 5
Delivered Throughput Ratios and Time Delay Miss Ratios



 enerGY modeLinG and oPtimiZation for BSn and Wifi netWorkS 169

5.4 Cost Analysis
In this section, we discuss the cost of BSN-WiFi network system in terms of 
computation, storage of the lookup table, and networks. The computation 
cost is the time cost required to generate the optimal data rate lookup table. 
Our solution takes about 82 minutes to generate a 1200 × 4 lookup table on a 
desktop with Intel Core quad 2.8G processor and 2G Memory. The optimal 
data rate lookup table is generated before loading on the aggregator and once 
it is loaded, it will work for all the data transmission. Second, the aggregator 
has a storage of 512MB and supports flash memory cards as well, while the 
size of the optimal data rate lookup table is only 25.1KB on disk, therefore, 
the storage cost is too less. At last, network cost is the extra packets to send 
to make sure the data can be directly transmitted. Thus, network cost of the 
system is the transmission of polling messages and ACK messages. In BSN, 

a data packet delivery to the aggregator needs 
l

r p
p

m rm

×
1
2 -byte extra data trans-

mission. In WiFi network, since ACK message is tiny and communication is 
stable and efficient, we do not count the cost of ACK message. Therefore, the 
cost of computation, storage and networks in BSN-WiFi network system is 
much less.

5.5 Comparison with Optimal Packet Size Solution
A prior work [31,53] presents an optimal packet size solution to optimize the 
energy consumption in BSN-WiFi networks, which transmits data packets with 
optimal packet size according to current PDR, but with fixed data rate. We 
compare our solution with the packet size solution on energy consumption.  As 
illustrated in Fig.6, obviously, our solution consumes less energy than optimal 

FIGURE 6
Comparison of two solutions in energy consumption.
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packet size solution. On the other hand, our solution can save 10% energy than 
the other solution. In addition, the mean energy consumption of our solution is 
22.6mJ, while it is 23.2mJ for optimal packet size solution. Therefore, our solu-
tion consumes less energy than the optimal packet size solution.

6 CONCLUSIONS

In this work, we consider the communication energy consumption optimiza-
tion for BSN- WiFi networks by using joint data rate adaptation. More con-
cretely, we first detail the BSN-WiFi network system in four consecutive 
phases. Then, we analyze the communication energy consumption, illustrate 
throughput and time delay, and derive SNR-PDR mappings for BSN and 
WiFi networks, respectively. Next, we build an energy optimization model 
with constraints of SNR-PDR mappings, throughput, and time delay thereby 
minimizing the energy consumption in BSN-WiFi networks, which is then 
demonstrated to be a GP problem. With a software cvx, we solve the model 
with inputs of SNRs, and outputs of optimal data rates, which are tabulated 
for online data rate adaptation. For performance evaluation, we collect 
20-minute traces from a specific BSN-WiFi network system, and our results 
demonstrate that the solution achieves up to 86% energy savings compared 
with the solutions using fixed data rates, and saves 10% energy than the opti-
mal packet size solution.
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