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ABSTRACT People prefer to store important, private, and sensitive information on smartphones for con-
venient storage and fast access, such as photos and emails. To prevent information leakage and smartphone
illegal access, we propose a novel sensor-based continuous authentication system, SensorCA, for continu-
ously monitoring users’ behavior patterns, by leveraging the accelerometer, gyroscope, and magnetometer
ubiquitously built-in smartphones. We are among the first to exploit the data augmentation approach of the
rotation, which creates additional data by applying it on the collected raw data and improves the robustness
of the proposed system. With the augmented data, SensorCA extracts sensor-based features in both time and
frequency domains within a time window, then utilizes the kernel ridge regression with truncated Gaussian
radial basis function kernel (KRR-TRBF) to train the classifier, and finally authenticates the current user as a
legitimate user or an impostor. We evaluate the authentication performance of SensorCA in terms of different
classifiers including KRR-TRBF, KRR-POLY, and SVM-RBF, and the data augmentation approach rotation
on KRR-TRBF6 and SVM-RBF. The experimental results show that under the KRR-TRBF6 classifier,
SensorCA reaches the lowest median equal error rate of 3.0% with dataset size 8000 and consumes the
shortest training time of 0.054 seconds with dataset size 1000.

INDEX TERMS Continuous authentication, rotation, KRR-TRBF, accelerometer, gyroscope and magne-
tometer, equal error rate (EER).

I. INTRODUCTION
Most of people prefer to store their important, private, and
sensitive information in smartphones, because smartphones
have become personal computing platforms that provide con-
venient storage and fast access to stored valuable informa-
tion, such as photos, emails, online banking and Android
pay. However, information leakage and smartphone illegal
access become severe concerns for smartphone users since
the abuse of leaked personal information in smartphones has
caused great adverse effects [1]–[3]. To prevent the critical
information in smartphones from leaking or being accessed
by other people, use authentication mechanisms have been
researched and developed, and some have been deployed
on smartphones, such as one-time user authentication
mechanisms.

One-time user authentication mechanisms have been
widely applied to current smartphone operating systems, such

as Android OS and iOS. The most popular and important
authentication mechanism is passcode, which is required
when users initiate their cell phones. This authentication
mechanism can prevent people who have no idea about the
passcode from getting access to the phone. Then, when it
comes to a smartphone, the user authentication mechanisms
evolve to graphical patterns, fingerprints (such as Touch ID)
and even face patterns (such as Face ID). However, these one-
time authenticationmechanisms authenticate users only at the
time of initial login. Since they do not perform authentication
after login, unauthorized users can easily gain access to unat-
tended smartphones.

Continuous authentication has been a promising mecha-
nism to alleviate the above security issues, by frequently
authenticating users via biometrics-based approaches. These
authentication approaches can be broadly categorized into
physiological biometrics based approaches and behavioral
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biometrics based approaches. Within behavioral biometrics
based approaches, we briefly categorize these approaches
into sensor-based smartphone continuous authentication,
touchscreen-based smartphone continuous authentication,
and continuous authentication with wearable devices. More
specifically, continuous authentication based on sensor data
has been significantly investigated [4]–[14]. Continuous
authentication based on touch gestures on smartphone
screens has been deeply researched [15]–[24]. Continuous
authentication based on contexts has been well developed
[25]–[29]. However, most of the above studies highly rely
on the originally collected data, which requires more time on
data collection. We are different in that we are among the first
to apply the data augmentation approach of the rotation to
the raw data, which creates additional data and improves the
robustness of the system.

In this paper, we propose a novel sensor-based continuous
authentication system, SensorCA, for continuously monitor-
ing users’ behavior patterns. More specifically, SensorCA
consists of modules of the data collection, data rotation, fea-
ture extraction, classifier, and authentication. The operation
of SensorCA includes the enrollment phase for data and clas-
sifier training (including Data Rotation, Feature Extraction,
and Classifier training) and the continuous authentication
phase for testing (involving Feature Extraction, Classifier
testing, and Authentication). Data collection captures users’
behavioral patterns by leveraging three ubiquitously built-in
sensors of the accelerometer, gyroscope and magnetometer
on smartphones. We are among the first to apply the data
rotation augmentation approach on a continuous authentica-
tion system, which creates additional data based on the raw
data from data collection and improves the robustness of the
system. Then, 135 sensor-based features are extracted in both
time and frequency domains within a time window on the
augmented data. From these features, the most discriminable
ones are selected by the minimum-Redundancy Maximum-
Relevance (mRMR), and with the selected features, we use
the kernel ridge regression with truncated Gaussian radial
basis function kernel (KRR-TRBF) to train the classifier in
the enrollment phase. With the trained classifier and testing
features, SensorCA classifies the current user as a legiti-
mate user or an impostor in the continuous authentication
phase. We evaluate the authentication performance of Sen-
sorCA in terms of different classifiers including KRR-TRBF,
KRR-POLY and SVM-RBF, and the data augmentation
approach rotation on KRR-TRBF6 and SVM-RBF, respec-
tively. For the different classifiers, we evaluate the EER
of KRR-POLY and KRR-TRBF across various degrees,
EER comparison between KRR-TRBF and SVM-RBF, train-
ing time for KRR-TRBF and KRR-POLY with various
degrees, training time comparison between KRR-TRBF and
SVM-RBF. Based on the rotation, we evaluate the EER
of KRR-POLY and KRR-TRBF across various degrees,
EER comparison between KRR-TRBF and SVM-RBF, train-
ing time for KRR-TRBF and KRR-POLY with various
degrees, training time comparison between KRR-TRBF

and SVM-RBF. The experimental results show that under the
KRR-TRBF6 classifier, SensorCA reaches the lowest median
equal error rate (EER) of 3.0% with dataset size 8000 and
costs the shortest training time of 0.054 seconds with dataset
size 1000.

The main contributions of this work are summarized as
follows:
• We design SensorCA, a novel sensor-based authenti-

cation system that continuously monitors users’ behavior
patterns using the accelerometer, gyroscope, and magne-
tometer in smartphones. SensorCA is composed of the data
collection, data rotation, feature extraction, classifier, and
authentication.
•We are among the first to exploit the data augmentation

approach of the rotation, which creates additional data by
applying it on the collected raw data and improves the robust-
ness of SensorCA. We explore the KRR-TRBF to train the
classifier of SensorCA in the enrollment phase and the trained
classifier classifies the current user as a legitimate user or an
impostor in the continuous authentication phase.
•We evaluate the authentication performance of SensorCA

in terms of different classifiers including KRR-TRBF,
KRR-POLY and SVM-RBF, and the data augmentation
approach rotation on KRR-TRBF6 and SVM-RBF. The
experimental results show that under the KRR-TRBF6 classi-
fier, SensorCA reaches the lowest median EER of 3.0% with
dataset size 8000 and consumes the shortest training time of
0.054 seconds with dataset size 1000.

The remainder of this paper is organized as follows:
Section II reviews the background and the existing literature
on the behavioral biometrics based continuous authentica-
tion. We present the detailed SensorCA architecture con-
sisting of data collection, data rotation, feature extraction,
classifier, and authentication in Section III. In Section IV,
we elaborate the learning algorithm of KRR-TRBF. Then,
we describe our experiment setup in terms of dataset, param-
eter selection, classifier training and testing, and metrics in
Section V. In Section VI, we evaluate the authentication
performance of SensorCA on different classifiers and on the
data augmentation approach rotation, and conclude this work
in Section VII.

II. BACKGROUND AND RELATED WORK
User authentication mechanisms can be broadly organized
into three principles: (i) ‘‘what you know’’ approaches (such
as PINs and graphical patterns), (ii) ‘‘what you have’’
approaches (such as cards, tokens, and keys), and (iii) ‘‘what
you are’’ approaches (such as biometric characteristics
[15], [30]). The former two principles are susceptible to
guessing and device theft while biometric-based approaches
utilize users’ personal traits that are hard to repro-
duce or mimic. Within the ‘‘what you are’’ category, there
are two classes of biometrics-based approaches: physiolog-
ical biometrics (such as fingerprints [31] and voices [28])
and behavioral biometrics (such as touch gestures [29], [32]
and gait [4], [5]). The former class that relies on static
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physical attributes has some defects. These physiological
characteristics are prone to duplicate (fingerprints are eas-
ily recreated in plastic [6]), are easily distorted or changed
(scars or burns can change the fingerprints [33]), and need
special hardware supports (accelerometer chip and Bluetooth
transmitter are applied to the wearable [28]). In addition,
it requires user direct participation in the process of the
authentication. Behavioral biometrics based approaches aim
at identifying invariant features of human behaviors during
different activities, which show a promising research area and
have been widely investigated [34]. Within behavioral bio-
metrics based approaches, we briefly review previous studies
on smartphone continuous authentication based on sensors,
touchscreens, and wearable devices, respectively.

A. SENSOR-BASED SMARTHPONE CONTINUOUS
AUTHENTICATION
Continuous authentication based on sensor data has been
significantly investigated. In [4], Mantyjarvi et al. present
an identification method for personal devices using the
acceleration signal characteristics produced by walking.
Nickel et al. [5] propose an accelerometer-based biometric
gait recognition to authenticate users on their mobile devices
by extracting several features from the gait data. In [6],
Tanviruzzaman et al. provide an adaptive solution to secure
the authentication of cellular phone users by using gait and
location tracks. Buthpitiya et al. [7] present an n-gram based
model for learning a user’s movement pattern using the GPS
sensor to detect abnormal activities by analyzing historical
GPS tracks. In [8], Conti et al. propose a biometric measure
to authenticate the movement of the user when answering
(or placing) a phone call, which leverages commercial fea-
tures of the accelerometer and orientation sensors in smart-
phones. The authors of [10] present a probabilistic approach
to model user’s gesture patterns using passive sensory data
from the accelerometers, gyroscopes and magnetometers.
In [11], Lee and Lee propose a multi-sensors-based system to
achieve continuous and implicit authentication by leveraging
sensor data collected by the accelerometer, orientation sensor
and magnetometer on smartphones. Yang et al. [12] provide a
handwaving biometric-based authentication to lock or unlock
the smartphones by utilizing the accelerometer. In [13],
Centeno et al. propose an approach based on a deep learning
autoencoder, relying on accelerometer data. Chen et al. [14]
propose a framework and performance analysis of using
onboard-sensor behavior for continuous user authentication
on smartphones, which can implicitly and continuously veri-
fies the presence of a smartphone user.

B. TOUCHSCREEN-BASED SMARTPHONE
CONTINUOUS AUTHENTICATION
Continuous authentication based on touch gestures on smart-
phone screens has been deeply researched. Chen et al. [15]
propose a continuous authentication system with behavioral
biometrics from six types of touch gestures (single-tap, swipe
forward, swipe backward, swipe down, two-finger swipe

forward, and two-finger swipe backward). In [17], Feng et al.
introduce a finger gesture authentication system using touch-
screen by extracting touch data from touchscreen equipped
smartphones. Trojahn and Ortmeier [18] develop a mixture
of a keystroke-based and a handwriting-based authentication
method using capacitive displays. In [20], Frank et al. propose
a foundational work for continuous authentication schemes
that rely on the data source of touchscreen input. Li et al. [21]
provide a re-authentication system that utilizes the finger
movement as a biometric characteristic to authenticate a
smartphone user. Xu et al. [22] present a continuous and
passive authentication mechanism based on a user’s touch
operations on the touchscreen. In [23], Zheng et al. propose
a non-intrusive user verification mechanism to substantiate
whether an authenticating user is the true owner of the smart-
phone or an impostor who happens to know the passcode.
Zhang et al. [24] present an approach for active user authen-
tication using screen touch gestures by building linear and
kernelized dictionaries based on sparse representations and
associated classifiers.

C. CONTINUOUS AUTHENTICATION WITH
WEARABLE DEVICES
Continuous authentication based on contexts has been well
developed. In [25], Mare et al. propose a zero-effort bilateral
recurring authentication with the user wearing a bracelet on
the wrist. Feng et al. [28] provide a continuous authentica-
tion system for voice assistants, consisting of the wearable
device and the voice assistant extension, where the wear-
able device is responsible for collecting and uploading the
accelerometer data. In [29] and [26], the authors design an
implicit authentication system by combining a user’s sensor
information recorded in the smartphone and the wearable
device smartwatch, which continuously monitors the user’s
behavior and authenticates the user in an stealthy manner.
Song et al. [27] present a secure and trustworthy continuous
user authentication scheme via non-contact cardiac motion
sensing based on the smart DC-coupled continuous-wave
radar.

III. SYSTEM DESIGN
In this section, we elaborate the architecture of our continu-
ous authentication system, SensorCA, as depicted in Fig. 1.
As illustrated in Fig. 1, SensorCA comprises five mod-
ules: Data Collection, Data Rotation, Feature Extraction,
Classifier, and Authentication. To learn and classify users’
behavioral patterns, SensorCA operates in two phases: the
enrollment phase (including Data Rotation, Feature Extrac-
tion, and Classifier training) and the continuous authentica-
tion phase (involving Feature Extraction, Classifier testing,
and Authentication). In this way, SensorCA learns a profile of
the legitimate user in the enrollment phase and then authen-
ticates users in the continuous authentication phase.

A. DATA COLLECTION
Data Collection module collects all users’ sensor data
from the accelerometer, gyroscope, and magnetometer
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FIGURE 1. Architecture of SensorCA.

on smartphones. When a user starts using the smartphone,
the accelerometer records larger motion patterns of the user
such as how to move the arms or how to walk, the gyro-
scope records fine-grained motions of the user such as how
to hold the smartphone, and the magnetometer records the
ambient geomagnetic filed of the user. The three sensors
do not require root permissions when requested by mobile
applications, which makes them useful for background mon-
itoring. In the system, the Data Collection module cap-
tures every subtle movements during the user’s operation
on the smartphone, and records the instantaneous readings
of the three sensors when the screen is on. Since the raw
readings may contain abnormal values or missing values,
the module processes outliers and fills missing values. More
specifically, the values of a time window from the first to
the fourth quartiles are removed in the training or testing
data, and the missing values will be replaced by the latest
previous values. Then, the collected data are either stored
in a protected buffer for data rotation in the enrollment
phase or used for Feature Extraction in the authentication
phase.

B. DATA ROTATION
Users may prefer their own ways holding the smartphones,
and the sensors may generate non-diverse data for each
user. By simulating different smartphone holding gestures for
users, we apply rotation to the collected raw data to achieve
data augmentation.

In our Data Collection, the collected data are stored in a
format of a matrix in smartphone buffers, and the readings of
the accelerometer, gyroscope and magnetometer are saved as
n× 3 matrices Ma and Mg, respectively:

Ma =


xa1 ya1 za1
xa2 ya2 za2
...

...
...

xan yan zan



Mg =


xg1 yg1 zg1
xg2 yg2 zg2
...

...
...

xgn ygn zgn



Mm =


xm1 ym1 zm1
xm2 ym2 zm2
...

...
...

xmn ymn zmn


We use rotation matrices to perform a rotation in Euclidean

space. A basic rotation is a rotation about one of the axes of a
coordinate system. In three dimensions, there are three basic
rotation matrices as illustrated as Rx(α), Ry(β) and Rz(γ ),
where Rx(α) can rotate our matrix (Ma or Mg) by an angle
α about the x-axis, Ry(β) can rotate our matrices by an angle
β about the y-axis, and Rz(γ ) can rotate our matrices by an
angle γ about the z-axis, respectively.

Rx(α) =

1 0 0
0 cosα − sinα
0 sinα cosα


Ry(β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ


Rz(γ ) =

cos γ − sin γ 0
sin γ cos γ 0
0 0 1


We use matrix multiplication to realize rotations in three

dimensions, as shown in Eq. (1):

R = Rz(γ )× Ry(β)× Rx(α) (1)

where R is a 3× 3 rotation matrix.
We take accelerometer matrix Ma as an instance to illus-

trate the data augmentation by rotation. By premultipling
Ma with rotation matrix R, we generate the augmented data
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matrix M rt
a , as shown in Eq. (2):

M rt
a = R×MT

a (2)

where ‘‘T ’’ indicates the transpose of matrix Ma, and M rt
a is

a 3× n data matrix.
Then, after data augmentation by rotation, we obtain the

new data matrix of accelerometer readings, as shown in
Eq. (3)

Mart
a =

[
Ma

(M rt
a )

T

]
(3)

whereMart
a is a 2n× 3 data matrix with double data amount.

C. FEATURE EXTRACTION
The Feature Extraction module is composed of feature con-
struction and feature selection. We first propose sensor-based
features extracted in both time and frequency domains, and
then describe how to conduct feature selection.

1) FEATURE CONSTRUCTION
We first segment the signals of the sensor data into a series
of discrete time windows. In each time window, we extract
sensor-based features from the time domain and the fre-
quency domain, respectively. Let x, y, and z be the three-axis
sensor readings of the accelerometer, gyroscope or magne-
tometer. We extract our features sequentially based on sensor
readings from each axis of each sensor.
Time domain features depict the users’ motion patterns

with meaningful statistics during the operation of the smart-
phones. In the time domain, we extract ten statistical features
for each axis of each sensor in a time window, involving
the mean, standard deviation, maximum, minimum, range,
kurtosis, skewness, and 25%, 50%, 75% quartiles of sensor
readings. In particular, the range of the sensor readings in a
time window indicates the difference between the maximum
sensor reading value and the minimum sensor reading value,
which can differentiate users with different range of the sen-
sor readings. The kurtosis feature represents the width of peak
for sensor readings in a timewindow and the skewness feature
indicates the orientation of peak for sensor readings.
Frequency domain features characterize the frequency

domain information of user actions in the process of oper-
ating the smartphones, and frequency domain information is
obtained by implementing the Fast Fourier Transform (FFT)
on sensor readings. In the frequency domain, we extract five
features, including energy, entropy, P1, P2f, P2.

Combining the features from the time domain and the
frequency domain, we have 135 sensor-based features (3 sen-
sors × 3 axes × 15 features) in total. In order to save
space, we only list the 15 features based on one axis of the
sensor readings for one sensor data (accelerometer, gyro-
scope or magnetometer) in Table 1.

2) FEATURE SELECTION
Given the extracted 135 features based on the sensor read-
ings of the accelerometer, gyroscope, and magnetometer,

TABLE 1. Sensor-based features.

Feature Extraction then conducts feature selection to remove
poor features and selects features with high discrim-
inability. We exploit minimum-Redundancy Maximum-
Relevance (mRMR) to do feature selection in the
enrollment phase. The ultimate goal of mRMR is tomaximize
the correlation between feature subsets and category tags
while minimizing the redundancy of the feature subsets.
In our experiment, we conduct mRMR by FEAST, which
provides implementations of common mutual information
based filter feature selection algorithms.

D. CLASSIFIER
After features are extracted and selected, they are passed
to Classifier training and testing. We apply kernel ridge
regression with truncated Gaussian radial basis function ker-
nel (KRR-TRBF) for classification, since it offers com-
putational advantages over the traditional Support Vector
Machine with Gaussian radial basis function (SVM-RBF)
kernel, while retains similar, even lower error-rate perfor-
mances. In the enrollment phase, the classifier is estab-
lished by using training feature vectors. In the continuous
authentication phase, the trained classifier projects the testing
feature vectors onto the same high-dimensional space, and
classifies the testing feature vectors. The learning algorithm
KRR-TRBF is detailed in Section IV.

E. AUTHENTICATION
Based on the testing feature vectors and the trained
KRR-TRBF classifier, Authentication classifies the current
user as a legitimate user or an impostor. If the current user is
classified as an impostor, SensorCA will require initial login
inputs; otherwise, it will authenticate the user continuously.

IV. LEARNING ALGORITHM
In this section, we first describe the kernel ridge
regression with truncated Gaussian radial basis function
kernel (KRR-TRBF) in terms of KRR and TRBF kernel
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that is a simple Taylor expansion approximation of Gaussian
radial basis function (RBF). Then, we introduce a comparable
classifier Support Vector Machine with Gaussian radial basis
function (SVM-RBF).

In this work, we consider the authentication task as a
two-class classification problem (a legitimate user and an
impostor). Therefore, the positive (the legitimate user) class
comprises of samples from the owner, while the negative (the
impostor) class is composed of samples from all users other
than the owner.

Given a set of labeled training data D = {(x1, y1),
(x2, y2), . . . , (xi, yi), . . . , (xn, yn)} where n is the number of
samples, xi ∈ RP is the feature vector and yi ∈ {±1} is the
label, indicating that the sample either belongs to the positive
class (yi = +1) or negative class (yi = −1).

A. KRR-TRBF
Kernel ridge regression is to learn a model that assigns the
correct label to an unseen testing sample. The optimal classi-
fier can be obtained analytically according to Eq. (4):

ω∗ = arg min
ω∈Rd

ρ ‖ω‖2 +

n∑
i=1

(
ωT xi − yi

)2
(4)

where N is the data size, xPk is the selected features, and
P is the dimension of the feature vector. ρ is a penalty
parameter and ‘‘‖.‖’’ is the Euclidian distance measure.
Let Eφ(xi) denote a kernel function, which maps the origi-
nal data xi into a higher-dimensional (J) space. We define
8 = [ Eφ(x1), Eφ(x2) . . . Eφ(xN )] and K = 8T8. The objective
function has an analytic optimal solution as shown in Eq. (5):

ω∗ = 8 [K + ρIN ]−1 y (5)

Kernel methods are able to nonlinearly transform patterns
into some high-dimensional feature space, where various
learning methods apply. The high-dimensional feature space
and the nonlinear mapping are determined by a kernel func-
tion that describes the similarity between pairwise samples,
where the kernel function should satisfy Mercer condition.
By Mercer’s Theorem [35], a kernel function that satisfies
Mercer condition can be represented as the inner product in
a kernel-induced feature space H: k(x, x′) ≤ 〈φ(x), φ(x′)〉H,
where φ(x) is some fixed mapping to H. The Gaussian RBF
kernel can be expressed as in Eq. (6):

kRBF (x, x′) = exp

(
−

∥∥x− x′
∥∥2

2σ 2

)
(6)

and the ploynomial kernel can be written as in Eq. (7):

kPOLY_P(x, x′) =

(
1+

xTx′

σ 2

)P
(7)

In our experiment, we denote the pth order polynomial
kernel as POLY_P, and the basis function is shown as in

Eq. (8):

φ(j)(x) =

√
p!

(p− `)!

M∏
m=1

1
√
dm!

(
x(m)

σ

)dm
0 ≤ ` ≤ p, ` = d1 + . . .+ dM (8)

There are J = J (p) = (M+p)!
M !p! different combinations.

Based on RBF, the TRBF kernel [36] can be defined as in
Eq. (9):

kTRBF (x, x′)

= exp

(
−
‖x‖2

2σ 2

)( p∑
`=1

1
`!

(
xTx′

σ 2

))
exp

(
−
‖x‖2

2σ 2

)
= φ(x)Tφ(x′) (9)

where each basis function has the form as shown in Eq. (10):

φ(j)x = exp

(
−
‖x‖2

2σ 2

)
M∏
m=1

1
√
dm!

(
x(m)

σ

)dm
0 ≤ d1 + . . .+ dM ≤ p (10)

The tradeoff between accuracy performance and compu-
tation efficiency highly depends on order p and its intrinsic
dimension J = J (p), which is identical to that of polyno-
mial kernels. Note that TRBF is simply a Taylor expansion
approximation of RBF [36]–[40].

B. SVM-RBF
For comparison, we select another popular classifier
Support Vector Machine with Gaussian radial basis
function (SVM-RBF), to train the user’s model. The SVM
finds a hyperplane in the training data matrix to separate
the positive (the legitimate user) class and the negative (the
imposter) class such that the margin is maximized [41]–[43].
The regularized empirical risk function can be written as:

minimize
ω,b,ξ∈Rn

{
ρ

2
‖ω‖2 +

n∑
i=1

ξi

}
subject to yiε + ξ ≥ 0.

where εi ≡ ωTφ(xi)+ b− yi, and ξ ≥ 0

V. EXPERIMENTS
In this section, we first describe the dataset used by Sen-
sorCA. Then, we discuss how to select parameters, and how
to train the classifier. Finally, we introduce the metrics for
evaluating the proposed SensorCA.

A. DATASET
To demonstrate the effectiveness of the proposed system,
we exploit sensor data from a publicmulti-modal dataset [44].
The dataset included sensor readings of the accelerome-
ter, gyroscope and magnetometer with the sampling rate
of 100Hz and the screen touching data collected by an
Android-based software system from 100 subjects typing
on a virtual keyboard (53 male, and 47 female) on ten
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Samsung Galaxy S4 smartphones. Each subject devoted to
approximately 2 to 6 hours of behavior traits. The data were
recorded and stored on smartphones according to three usage
scenarios involving document reading, text production, and
navigation. In this work, we only exploit the sensor data of
the accelerometer, gyroscope andmagnetometer from 98 sub-
jects to perform user authentication, since the data of 2 sub-
jects were extremely abnormal. Specifically, among all the
98 users, to ensure that every user provides the same amount
of data, we select the first 100 minutes of sensor data for
each user with an approximately 1-second time window size
(exactly 1.28 seconds). According to the sensor sampling rate
of 100Hz, a 1-second time window should have 100 samples
(exactly 128 samples). To create inputs with the same length
and calculate the frequency domain feature conveniently,
we use 128 samples for each timewindow in our experiments.

B. PARAMETER SELECTION
We use the five-fold cross validation on training data to
select the appropriate parameter values for different classi-
fiers. More specifically, for the SVM-RBF classifier, we con-
duct a grid search to find the parameters σ and ρ with the
best performance, by searching through [3, 4, 5, 6]. For the
KRR-TRBF andKRR-POLY classifiers, we use the same grid
search to find the parameters σ and ρ with the best perfor-
mance, where we search through [2−19, 2−18, 2−17, 2−16] for
σ , and [2, 3, 4, 5] for ρ. Note that the grid search scope is very
small, because we first conduct a coarse-grained search in a
relatively large range, and then perform a fine-grained grid
search after a suitable range of parameters is obtained.

C. TRAINING AND TESTING
We first specify one of the 98 users as the legitimate user
and the remaining 97 users as impostors; Thus, we have
positive feature samples from one legitimate user and neg-
ative feature samples from 97 impostors. To keep samples
balanced, we randomly select the same number of samples
from 97 impostors as the legitimate user. Based on these
samples, we use 90% of the total amount of the data to
train the classifiers in the enrollment phase and 10% of the
data to test the classifiers in the authentication phase. We
then repeat the above procedure until each of the subjects is
designated as a legitimate user once. We also utilize five-fold
cross validation to tune the parameters of the classifiers. Note
that 10% of the data are approximately 800 samples in the
experiments (without data augmentation).

D. METRICS
We explore three representative metrics FAR, FRR, and ERR
to quantify the accuracy of authentication performance of
SensorCA:
• FAR (False Acceptance Rate): the ratio of the number

of false acceptance of unauthorized users to the total number
of invalid requests made by impostors trying to access the
system. A lower FAR is preferred in cases where security is
very important [45].

FIGURE 2. EER of KRR-POLY and KRR-TRBF across different degrees.

• FRR (False Rejection Rate): the ratio of the number of
false rejection of requests to the total number of valid requests
made by legitimate users trying to access the system. A lower
FRR is preferred for user convenience [46], [47].
• EER (Equal Error Rate): the point where FAR equals to

FRR. The FAR or FRR cannot provide the whole picture,
because there is a trade-off between them. We use the EER
as a metric to evaluate the accuracy of SensorCA [48]–[50].

VI. EXPERIMENTAL RESULTS
In this section, we present the performance evaluation of
SensorCA in terms of the accuracy on different classifiers
including the KRR-TRBF, KRR-POLY and SVM-RBF, and
the accuracy with the data augmentation approach of the
rotation on the KRR-TRBF6 and SVM-RBF, respectively.

A. EVALUATION ON DIFFERENT CLASSIFIERS
In this section, we evaluate the performance of SensorCA
on different classifiers, in terms of the EER of KRR-POLY
and KRR-TRBF across various degrees, EER compari-
son between KRR-TRBF and SVM-RBF, training time for
KRR-TRBF and KRR-POLY with various degrees, training
time comparison between KRR-TRBF and SVM-RBF.

1) EER OF KRR-POLY AND KRR-TRBF ACROSS
VARIOUS DEGREES
Fig. 2 shows the box plots of the EER of KRR-POLY and
KRR-TRBF across different degrees. As illustrated in Fig. 2a,
the EER decreases from POLY2 to PLOY3 and increases
from POLY4. The reason is that it may be over-fitting in
POLYkernel functionwith larger degrees. In Fig. 2b, the EER
gradually decreases with the increase of TRBF degrees and
becomes saturated. This trend shows that the authentica-
tion accuracy comes close to an optimum. Table 2 lists the
EER, mean (with standard deviations (SDs) in parentheses)
and median value of the two classifiers KRR-POLY and
KRR-TRBF across different degrees. From Table 2, the best
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TABLE 2. EER of KRR-POLY and KRR-TRBF across different degrees.

FIGURE 3. EER comparison between the classifiers KRR and SVM.

mean EER in various degrees of KRR-POLY is greater
than 11% while the worst mean EER in various degrees of
KRR-TRBF is less than 11%, which indicates that
KRR-TRBF can be a promising authentication classi-
fier in continuous authentication area. Moreover, the
KRR-TRBF7 classifier shows the best performance (3.3%
mean EER) among all the classifiers.

2) EER COMPARISON BETWEEN THE KRR AND SVM
Fig. 3 illustrates the box plots of EER between KRR with
kernels of TRBF5, TRBF6, and TRBF7, and SVM-RBF.
As shown in Fig. 3, KRR-TRBF6 (3.5% mean EER) and
KRR-TRBF7 (3.3% mean EER) shows better accuracy than
SVM-RBF (3.7% mean EER).

3) TRAINING TIME FOR THE KRR-TRBF AND KRR-POLY WITH
VARIOUS DEGREES
We describe how to calculate the training time for different
classifiers: let t (i)train be the time required to train the samples
from legitimate user i, and then the average training time can
be expressed as: Ttrain_avg = 1

N

∑N
i=1 t

(i)
train, whereN indicates

the total number of the users.

FIGURE 4. Training time for KRR-TRBF and KRR-POLY over various
degrees.

TABLE 3. Training time for KRR-TRBF and KRR-POLY over various degrees.

Fig. 4 and Table 3 show the training time of the KRR
classifier with TRBF kernel and POLY kernel over various
degrees, respectively. As illustrated in Fig. 4, the training
time for both KRR-TRBF and KRR-PLOY grows with their
degrees increase. The higher the degree is, the more training
time the classifier takes. In particular, the training time of
KRR-TRBF is a little bit higher than that of KRR-PLOY
on each degree. However, the performance of KRR-TRBF is
relatively better than that of KRR-PLOY, as shown in Fig 2.

4) COMPARISON OF THE TRAINING TIME BETWEEN
THE KRR-TRBF AND SVM-RBF
Fig. 5 illustrates the training time for the KRR classifier
with TRBF5, TRBF6 and TRBF7 kernels, and the SVM-RBF
classifier. As shown in Fig. 5, both KRR-TRBF5 and
KRR-TRBF6 take significantly less training time than
SVM-RBF, while KRR-TRBF7 has a slightly higher training
time than SVM-RBF. Considering that both KRR-TRBF6
and KRR-TRBF7 show relatively higher accuracy than
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FIGURE 5. Comparison of the training time between KRR-TRBF and
SVM-RBF.

FIGURE 6. EER of the KRR-TRBF6 and SVM-RBF with rotation on different
data sizes.

SVM-RBF as demonstrated in Fig. 3, we choose
KRR-TRBF6 as our training and testing classifier in
SensorCA.

B. EVALUATION ON THE ROTATION
In this section, we evaluate the performance of SensorCA
on the data augmentation approach rotation with different
dataset sizes, in terms of the EER of KRR-TRBF6 and
SVM-RBF, training time of KRR-TRBF6 and SVM-RBF,
and EER for KRR-TRBF6 and SVM-RBF on different rota-
tion angles. In the experiments, we choose the rotation angle
as 1 or−1 degree, which indicates thatα = β = γ = 1 or −1
in the three basic rotation matrices.

1) EER OF KRR-TRBF6 AND SVM-RBF WITH
DIFFERENT DATASET SIZES
Fig. 6 shows box plots of the EER of the KRR-TRBF6 and
SVM-RBF with rotation approach on different dataset sizes.
For the rotation approach, we vary the dataset size ranges

TABLE 4. EER of the KRR-TRBF6 with (without) rotation on different data
sizes.

TABLE 5. EER of the SVM-RBF with (without) rotation on different data
sizes.

from 2000 to 8000. For each dataset size, we plot boxes
of the EER with no augmentation (red box plot) and the
EER with the rotation approach (blue box plot), respec-
tively, for comparison. In particular, Fig. 6a illustrates box
plots of the EER of the KRR-TRBF6 on different dataset
sizes. More specially, with the increase of the dataset size,
the EER decreases. Moreover, the EER with the rotation
approach shows significantly lower values than that without
rotation. Fig. 6b demonstrates box plots of the EER of the
SVM-RBF on different dataset sizes, which exhibit the same
trend with the EER of the KRR-TRBF6. However, the KRR-
TRBF6 shows lower EERs than the SVM-RBF on different
dataset sizes. Table 4 and 5 list the mean, SD, and median of
EERs for the KRR-TRBF6 and SVM-RBF with and without
rotation approach on different dataset sizes, respectively. For
both the classifiers, the mean, SD, and median of the EERs
with the rotation approach are less than that without the rota-
tion, which ensures the advantage of the rotation approach
and motivates us to apply this approach to our authentica-
tion system. More specifically, comparing Tables 4 with 5,
the KRR-TRBF6 classifier performs a better median
EER of 3.0% than the SVM-RBF classifier with dataset
size 8000.

It is worth noting that the performance of SVM-RBF on a
small dataset is still acceptable. However, as the dataset size
increases, the EER of KRR-TRBF6 gradually shows more
competitive advantages. In the following time performance
comparison, the advantages of the KRR-TRBF6 will be more
prominent.

2) TRAINING TIME OF KRR-TRBF6 AND SVM-RBF
WITH DIFFERENT DATASET SIZES
Fig. 7 and Table 6 show the training time of the
KRR-TRBF6 and SVM-RBF with rotation approach on dif-
ferent dataset sizes ranging from 1000 to 16000. As shown
in Fig. 7, the training time increases as the dataset
size increases for both the KRR-TRBF6 and SVM-RBF.
However, the KRR-TRBF6 takes less training time than
the SVM-RBF on each dataset size. In particular, the
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FIGURE 7. Training time of KRR-TRBF6 and SVM-RBF with rotation on
different dataset sizes.

TABLE 6. Training time of KRR-TRBF6 and SVM-RBF with rotation on
different dataset sizes.

FIGURE 8. EER of the KRR-TRBF6 and SVM-RBF under different rotation
degrees.

KRR-TRBF6 costs the shortest training time of 0.054 seconds
with dataset size 1000. More specifically, with the increase of
the dataset size, the training time of the KRR-TRBF6 grows
slower than that of the SVM-RBF. When dataset size
comes to 16000, the KRR-TRBF6 just takes 4.801 seconds
which are significantly less than 10.989 seconds SVM-RBF
does.

TABLE 7. EER of the KRR-TRBF6 and SVM-RBF under different rotation
degrees.

3) EER OF KRR-TRBF6 AND SVM-RBF UNDER DIFFERENT
ROTATION DEGREES
To further understand the impact of the rotation on the pro-
posed system, we discuss the effect of the rotation angle
on the EER performance. Fig. 8 shows box plots of the
EER with the KRR-TRBF6 and SVM-RBF on different
range of the rotation angles (such as no rotation, 1 degree,
5 degrees and 10 degrees). As illustrated in Fig. 8, for both the
KRR-TRBF6 and SVM-RBF, the EER increases with the
increase of the rotation degree. The reason is that a large rota-
tion anglemay cause the augmented sensor data to have a very
different distribution from the raw sensor data, complicating
the entire dataset and resulting in an increased EER. Hence,
we choose rotation degree as 1 or −1 in the experiments.

Table 7 lists the mean, SD, median of the EER for the
KRR-TRBF6 and SVM-RBF under different rotation angles.
As shown in Table 7, the EER of the KRR-TRBF6 is less than
that of the SVM-RBF under any rotation degree.

VII. CONCLUSION
In this paper, we propose a novel sensor-based contin-
uous authentication system, SensorCA, for continuously
monitoring users’ behavior patterns, by leveraging the
accelerometer, gyroscope, and magnetometer ubiquitously
built-in smartphones. We are among the first to exploit the
data augmentation approach of the rotation, which creates
additional data by applying it on the collected raw data and
improves the robustness of the proposed system. With the
augmented data, SensorCA extracts sensor-based features in
the time and frequency domains, then utilizes the KRR-TRBF
to train the classifier, and finally authenticates the current
user as a legitimate user or an impostor. We evaluate the
authentication performance of SensorCA in terms of the
different classifiers including KRR-TRBF, KRR-POLY and
SVM-RBF, and the data augmentation approach rotation on
KRR-TRBF6 and SVM-RBF. The experimental results show
that under the KRR-TRBF6 classifier, SensorCA reaches the
lowest median EER of 3.0% with dataset size 8000 and
costs the shortest training time of 0.054 seconds with dataset
size 1000.

REFERENCES
[1] Y. Kim, T. Oh, and J. Kim, ‘‘Analyzing user awareness of privacy data leak

in mobile applications,’’Mobile Inf. Syst., vol. 2015, pp. 1–12, Nov. 2015,
Art. no. 369489.

[2] Y. Li, F. Xue, X. Fan, Z. Qu, and G. Zhou, ‘‘Pedestrian walking safety
system based on smartphone built-in sensors,’’ IET Commun., vol. 12,
no. 6, pp. 751–758, Apr. 2018.

VOLUME 6, 2018 32563



Y. Li et al.: Sensor-Based Continuous Authentication Using Cost-Effective Kernel Ridge Regression

[3] Y. Li and X. Li, ‘‘Chaotic hash function based on circular shifts with
variable parameters,’’ Chaos, Solitons Fractals, vol. 91, pp. 639–648,
Oct. 2016.

[4] J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S.-M. Makela, and
H. A. Ailisto, ‘‘Identifying users of portable devices from gait pattern
with accelerometers,’’ in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), Philadelphia, PA, USA, Mar. 2005, pp. II973–II976.

[5] C. Nickel, T. Wirtl, and C. Busch, ‘‘Authentication of smartphone users
based on the way they walk using k-NN algorithm,’’ in Proc. 8th Int. Conf.
Intell. Inf. Hiding Multimedia Signal Process. (IIH-MSP), Piraeus, Greece,
Jul. 2012, pp. 16–20.

[6] M. Tamviruzzaman, S. I. Ahamed, C. S. Hasan, and C. O’Brien, ‘‘ePet:
When cellular phone learns to recognize its owner,’’ in Proc. ACM Work-
shop Assurable Usable Secur. Configuration, Chicago, IL, USA, 2009,
pp. 13–18.

[7] S. Buthpitiya, Y. Zhang, A. K. Dey, and M. Griss, ‘‘n-gram geo-trace
modeling,’’ in Proc. Int. Conf. Pervasive Comput., San Francisco, CA,
USA, Jun. 2011, pp. 97–114.

[8] M. Conti, I. Zachia-Zlatea, and B. Crispo, ‘‘Mind how you answer me!:
Transparently authenticating the user of a smartphone when answer-
ing or placing a call,’’ in Proc. ACM Symp. Inf., Comput. Commun.
Secur. (ASIA CCS), Hong Kong, Mar. 2011, pp. 249–259.

[9] Q. Zhang, L. T. Yang, Z. Chen, P. Li, and M. J. Deen, ‘‘Privacy-
preserving double-projection deep computationmodel with crowdsourcing
on cloud for big data feature learning,’’ IEEE Intnet Things J., Jul. 2017,
doi: 10.1109/JIOT.2017.2732735.

[10] J. Zhu, P. Wu, X. Wang, and J. Zhang, ‘‘SenSec: Mobile security through
passive sensing,’’ in Proc. Int. Conf. Comput. Netw. Commun. (ICNC),
San Diego, CA, USA, Jan. 2013, pp. 1128–1133.

[11] W.-H. Lee and R. B. Lee, ‘‘Multi-sensor authentication to improve smart-
phone security,’’ in Proc. Int. Conf. Inf. Syst. Secur. Privacy (ICISSP),
Angers, France, Feb. 2015, pp. 1–11.

[12] L. Yang et al., ‘‘Unlocking smart phone through handwaving biometrics,’’
IEEE Trans. Mobile Comput., vol. 14, no. 5, pp. 1044–1055, May 2015.

[13] M. P. Centeno, A. van Moorsel, and S. Castruccio, ‘‘Smartphone continu-
ous authentication using deep learning autoencoders,’’ in Proc. Int. Conf.
Privacy, Secur. Trust (PST), Calgary, AB, Canada, Aug. 2017, pp. 1–9.

[14] Y. Chen, C. Shen, Z. Wang, and T. Yu, ‘‘Modeling interactive sensor-
behavior with smartphones for implicit and active user authentication,’’
in Proc. IEEE Int. Conf. Identity, Secur. Behav. Anal. (ISBA), New Delhi,
India, Feb. 2017, pp. 1–6.

[15] G. Peng, G. Zhou, D. T. Nguyen, X. Qi, Q. Yang, and S. Wang, ‘‘Continu-
ous authentication with touch behavioral biometrics and voice on wearable
glasses,’’ IEEE Trans. Human-Mach. Syst., vol. 47, no. 3, pp. 404–416,
Jun. 2017.

[16] W. Zhu et al., ‘‘Co-occurrence feature learning for skeleton based action
recognition using regularized deep LSTM networks,’’ in Proc. 13th AAAI
Conf. Artif. Intell. (AAAI), Phoenix, AZ, USA, Feb. 2016, pp. 3697–3703.

[17] T. Feng et al., ‘‘Continuous mobile authentication using touchscreen ges-
tures,’’ in Proc. IEEE Conf. Technol. Homeland Security (HST), Waltham,
MA, USA, Nov. 2012, pp. 451–456.

[18] M. Trojahn and F. Ortmeier, ‘‘Towardmobile authenticationwith keystroke
dynamics on mobile phones and tablets,’’ in Proc. Int. Conf. Adv. Inf. Netw.
Appl. Workshops (WAINA), Barcelona, Spain, Mar. 2013, pp. 697–702.

[19] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, ‘‘PPHOPCM: Privacy-
preserving high-order possibilistic c-means algorithm for big data clus-
tering with cloud computing,’’ IEEE Trans. Big Data, May 2017,
doi: 10.1109/TBDATA.2017.2701816.

[20] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, ‘‘Touchalytics:
On the applicability of touchscreen input as a behavioral biometric for
continuous authentication,’’ IEEE Trans. Inf. Forensics Security, vol. 8,
no. 1, pp. 136–148, Jan. 2013.

[21] L. Li, X. Zhao, and G. Xue, ‘‘Unobservable re-authentication for smart-
phones,’’ in Proc. 20th Annu. Netw. Distrib. Syst. Secur. Symp. (NDSS),
San Diego, CA, USA, Feb. 2013, pp. 1–16.

[22] H. Xu, Y. Zhou, and M. R. Lyu, ‘‘Towards continuous and passive authen-
tication via touch biometrics: An experimental study on smartphones,’’
in Proc. Symp. Usable Privacy Secur. (SOUPS), Menlo Park, CA, USA,
Jul. 2014, pp. 187–198.

[23] N. Zheng, K. Bai, H. Huang, and H. Wang, ‘‘You are how you touch:
User verification on smartphones via tapping behaviors,’’ in Proc. IEEE
Int. Conf. Netw. Protocols (ICNP), Raleigh, NC, USA, Oct. 2014,
pp. 221–232.

[24] H. Zhang, V. M. Patel, M. Fathy, and R. Chellappa, ‘‘Touch gesture-based
active user authentication using dictionaries,’’ in Proc. IEEE Winter Conf.
Appl. Comput. Vis. (WACV), Waikoloa, HI, USA, Jan. 2015, pp. 207–214.

[25] S. Mare, A. M. Markham, C. Cornelius, R. Peterson, and D. Kotz,
‘‘ZEBRA: Zero-effort bilateral recurring authentication,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), San Jose, CA, USA, May 2014, pp. 705–720.

[26] W.-H. Lee and R. B. Lee, ‘‘Sensor-based implicit authentication of smart-
phone users,’’ in Proc. IEEE Int. Conf. Dependable Syst. Netw. (DSN),
Denver, CO, USA, Jun. 2017, pp. 309–320.

[27] C. Song, F. Lin, Y. Zhuang, W. Xu, C. Li, and K. Ren, ‘‘Cardiac scan:
A non-contact and continuous heart-based user authentication system,’’ in
Proc. IEEE Int. Conf. Mobile Comput. Netw. (Mobicom), Snowbird, UT,
USA, Oct. 2017, pp. 315–328.

[28] H. Feng, K. Fawaz, and K. G. Shin, ‘‘Continuous authentication for
voice assistants,’’ in Proc. 23rd Annu. Int. Conf. Mobile Comput.
Netw. (MobiCom), Snowbird, UT, USA, Oct. 2017, pp. 343–355.

[29] W.-H. Lee and R. Lee, ‘‘Implicit sensor-based authentication of smart-
phone users with smartwatch,’’ in Proc. Hardw. Archit. Support Secur.
Privacy (HASP), Seoul, South Korea, Jun. 2016, Art. no. 9.

[30] S. Eberz, K. B. Rasmussen, V. Lenders, and I. Martinovic, ‘‘Evaluating
behavioral biometrics for continuous authentication: Challenges and met-
rics,’’ in Proc. ACM Asia Conf. Comput. Commun. Secur. (ASIA CCS),
Abu Dhabi, United Arab Emirates, Apr. 2017, pp. 386–399.

[31] N. Shabrina, T. Isshiki, and H. Kunieda, ‘‘Fingerprint authentication on
touch sensor using Phase-Only Correlationmethod,’’ inProc. 7th Int. Conf.
Inf. Commun. Technol. Embedded Syst. (IC-ICTES), Bangkok, Thailand,
Mar. 2016, pp. 1–5.

[32] W.-H. Lee and R. B. Lee, ‘‘Implicit smartphone user authentication with
sensors and contextual machine learning,’’ in Proc. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Denver, CO, USA, Jun. 2017, pp. 297–308.

[33] A. K. Jain, A. Ross, and S. Prabhakar, ‘‘An introduction to biometric
recognition,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 1,
pp. 4–20, Jan. 2004.

[34] V. M. Patel, R. Chellappa, D. Chandra, and B. Barbello, ‘‘Continuous user
authentication on mobile devices: Recent progress and remaining chal-
lenges,’’ IEEE Signal Process. Mag., vol. 33, no. 4, pp. 49–61, Jul. 2016.

[35] J. Mercer, ‘‘Functions of positive and negative type, and their connection
the theory of integral equations,’’ Philos. Trans. Roy. Soc. London A, Math.
Phys. Sci., vol. 209, pp. 441–458, Jan. 1909.

[36] S. Y. Kung and P.-Y. Wu, ‘‘On efficient learning and classification kernel
methods,’’ in Proc. ICASSP, Kyoto, Japan, Mar. 2012, pp. 2065–2068.

[37] P.-Y. Wu, C.-C. Fang, J. M. Chang, and S.-Y. Kung, ‘‘Cost-effective kernel
ridge regression implementation for keystroke-based active authentication
system,’’ IEEE Trans. Cybern., vol. 47, no. 11, pp. 3916–3927, Nov. 2016.

[38] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, ‘‘A survey on deep learning for
big data,’’ Inf. Fusion, vol. 42, pp. 146–157, Jul. 2018.

[39] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, and P. Li, ‘‘Energy-efficient
scheduling for real-time systems based on deep Q-learning model,’’
IEEE Trans. Sustain. Comput., Aug. 2017, doi: 10.1109/TSUSC.2017.
2743704.

[40] T.-T. Frieß and R. F. Harrison, ‘‘A kernel-based adaline,’’ in Proc. 7th
Eur. Symp. Artif. Neural Netw. (ESANN), Bruges, Belgium, Apr. 1999,
pp. 245–250.

[41] Y. Engel, S. Mannor, and R. Meir, ‘‘The kernel recursive least-squares
algorithm,’’ IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2275–2285,
Aug. 2004.

[42] J. Kivinen, A. J. Smola, and R. C. Williamson, ‘‘Online learning with
kernels,’’ IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2165–2176,
Aug. 2004.

[43] A. N. Tikhonov, ‘‘On the stability of inverse problems,’’Doklady Akademii
Nauk SSSR, vol. 39, no. 5, pp. 195–198, 1943.

[44] Z. Sitová et al., ‘‘HMOG: New behavioral biometric features for con-
tinuous authentication of smartphone users,’’ IEEE Trans. Inf. Forensics
Security, vol. 11, no. 5, pp. 877–892, May 2016.

[45] S. P. Banerjee and D. L. Woodard, ‘‘Biometric authentication and identi-
fication using keystroke dynamics: A survey,’’ J. Pattern Recognit. Res.,
vol. 7, no. 1, pp. 116–139, 2012.

[46] C. Shen, T. Yu, S. Yuan, Y. Li, and X. Guan, ‘‘Performance analysis of
motion-sensor behavior for user authentication on smartphones,’’ Sensors,
vol. 14, no. 3, pp. 1–21, Mar. 2016.

[47] C. Shen, Y. Li, Y. Chen, X. Guan, and R. A. Maxion, ‘‘Performance analy-
sis of multi-motion sensor behavior for active smartphone authentication,’’
IEEE Trans. Inf. Forensics Security, vol. 13, no. 1, pp. 48–62, Jan. 2018.

32564 VOLUME 6, 2018

http://dx.doi.org/10.1109/JIOT.2017.2732735
http://dx.doi.org/10.1109/TBDATA.2017.2701816
http://dx.doi.org/10.1109/TSUSC.2017.2743704
http://dx.doi.org/10.1109/TSUSC.2017.2743704


Y. Li et al.: Sensor-Based Continuous Authentication Using Cost-Effective Kernel Ridge Regression

[48] Q. Zhang and Z. Chen, ‘‘A distributed weighted possibilistic c-means
algorithm for clustering incomplete big sensor data,’’ Int. J. Distrib. Sensor
Netw., vol. 10, no. 5, pp. 1–8, 2014.

[49] A. Mosenia, S. Sur-Kolay, A. Raghunathan, and N. K. Jha, ‘‘CABA: Con-
tinuous authentication based on bioaura,’’ IEEE Trans. Comput., vol. 66,
no. 5, pp. 759–772, May 2017.

[50] N. Neverova et al., ‘‘Learning human identity frommotion patterns,’’ IEEE
Access, vol. 4, pp. 1810–1820, 2016.

YANTAO LI received the Ph.D. degree from the
College of Computer Science, Chongqing Univer-
sity, China, in 2012.

He is currently an Associate Professor with the
College of Computer and Information Sciences,
Southwest University, China, and has been a Post-
doctoral Research Associate with the Department
of Computer Science, College of William and
Mary, USA, since 2016. From 2010 to 2012, he
was a Visiting Scholar supported by China Schol-

arship Council with the College of William and Mary under the supervision
of Prof. G. Zhou . His research area includes wireless communication and
networking, sensor networks and ubiquitous computing, and information
security.

Dr. Li was a recipient of the Outstanding Master’s Thesis Award in
Chongqing in 2011 and the Outstanding Ph.D. Thesis Award in Chongqing
in 2014. He has served as a TPC member for several international confer-
ences, such as the IEEE BigDataService from 2015 to 2018, and a Reviewer
for several international journals, such as ACM Transactions on Sensor
Networks, the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, the IEEE
INTERNET OF THINGS, Elsevier Computer Networks, and Springer Multimedia
Tools and Applications.

HAILONG HU received the B.S. degree from the
College of Computer and Information Sciences,
Southwest University, China, in 2016.

He is currently pursuing the master’s degree
with the College of Computer and Information Sci-
ences, Southwest University, China. His research
interests include ubiquitous sensing and mobile
computing.

GANG ZHOU (M’07–SM’13) received the
Ph.D. degree from the University of Virginia
in 2007 under the supervision of Prof. John
A. Stankovic. He served as the Graduate Pro-
gram Director of this department from 2015 to
2017. He is currently an Associate Professor
with the Computer Science Department, College
of William and Mary. He has published over
90 papers in the areas of wireless networks, sensor
systems, Internet of Things, smart health, and

ubiquitous and mobile computing. There are in total 7070 citations of his
papers per Google Scholar. He also has 11 papers each of which has been
cited over 200 times since 2004. He served as NSF, NIH, and GENI proposal
review panelists multiple times. He received an award for his outstanding
service to IEEE Instrumentation and Measurement Society in 2008. He was
a recipient of the Best Paper Award of the IEEE ICNP 2010. He received NSF
CAREER Award in 2013. He received the 2015 Plumeri Award for Faculty
Excellence. He is an ACM/IEEE CHASE 2018 TPC Co-Chair. He serves
on the Journal Editorial Board of ACM Transactions on Sensor Networks,
the IEEE INTERNET OF THINGS, Elsevier Computer Networks, and Elsevier
Smart Health.

SHAOJIANG DENG received the Ph.D. degree
from the College of Computer Science, Chongqing
University, in 2005.

He is currently a Professor with the College
of Computer Science, Chongqing University,
China. In 2007, he was a Visiting Scholar
with the Institute of Applied Computer Science,
Dresden University of Technology, Germany. His
research interest focuses on digital chaotic cryp-
tography, information security, and hash function
construction.

VOLUME 6, 2018 32565


	INTRODUCTION
	BACKGROUND AND RELATED WORK
	SENSOR-BASED SMARTHPONE CONTINUOUS AUTHENTICATION
	TOUCHSCREEN-BASED SMARTPHONE CONTINUOUS AUTHENTICATION
	CONTINUOUS AUTHENTICATION WITH WEARABLE DEVICES

	SYSTEM DESIGN
	DATA COLLECTION
	DATA ROTATION
	FEATURE EXTRACTION
	FEATURE CONSTRUCTION
	FEATURE SELECTION

	CLASSIFIER
	AUTHENTICATION

	LEARNING ALGORITHM
	KRR-TRBF
	SVM-RBF

	EXPERIMENTS
	DATASET
	PARAMETER SELECTION
	TRAINING AND TESTING
	METRICS

	EXPERIMENTAL RESULTS
	EVALUATION ON DIFFERENT CLASSIFIERS
	EER OF KRR-POLY AND KRR-TRBF ACROSS VARIOUS DEGREES
	EER COMPARISON BETWEEN THE KRR AND SVM
	TRAINING TIME FOR THE KRR-TRBF AND KRR-POLY WITH VARIOUS DEGREES
	COMPARISON OF THE TRAINING TIME BETWEEN THE KRR-TRBF AND SVM-RBF

	EVALUATION ON THE ROTATION
	EER OF KRR-TRBF6 AND SVM-RBF WITH DIFFERENT DATASET SIZES
	TRAINING TIME OF KRR-TRBF6 AND SVM-RBF WITH DIFFERENT DATASET SIZES
	EER OF KRR-TRBF6 AND SVM-RBF UNDER DIFFERENT ROTATION DEGREES


	CONCLUSION
	REFERENCES
	Biographies
	YANTAO LI
	HAILONG HU
	GANG ZHOU
	SHAOJIANG DENG


