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Abstract—In recent years, wearable sensor-based gesture
recognition is proliferating in the field of healthcare. It could be
used to enable remote control of medical devices, contactless navi-
gation of X-ray display and Magnetic Resonance Imaging (MRI),
and largely enhance patients’ daily living capabilities. However,
even though a few commercial or prototype devices are available
for wearable gesture recognition, none of them provides a com-
bination of (1) fully open API for various healthcare application
development, (2) appropriate form factor for comfortable daily
wear, and (3) affordable cost for large scale adoption. In addition,
the existing gesture recognition algorithms are mainly designed
for discrete gestures. Accurate recognition of continuous gestures
is still a significant challenge, which prevents the wide usage of
existing wearable gesture recognition technology. In this paper,
we present Gemote, a smart wristband-based hardware/software
platform for gesture recognition and remote control. Due to
its affordability, small size, and comfortable profile, Gemote is
an attractive option for mass consumption. Gemote provides
full open API access for third party research and application
development. In addition, it employs a novel continuous gesture
segmentation and recognition algorithm, which accurately and
automatically separates hand movements into segments, and
merges adjacent segments if needed, so that each gesture only
exists in one segment. Experiments with human subjects show
that the recognition accuracy is 99.4% when users perform
gestures discretely, and 94.6% when users perform gestures
continuously.

I. INTRODUCTION

Healthcare is one important application scenario of gesture

recognition technology. Lots of researchers and companies pay

much attention to this area. According to the report published

by MarketsandMarkets, the Healthcare application is expected

to emerge as a significant market for gesture recognition tech-

nologies over the next five years [1]. In medicine, the ability

of touch-free motion sensing input technology is particularly

useful, where it can reduce the risk of contamination and is

beneficial to both patients and their caregivers. For example,

surgeons may benefit from touch-free gesture control, since it

allows them to avoid interaction with non-sterile surfaces of

the devices in use and hence to reduce the risk of infection.

With the help of gesture control, the surgeons can manipulate

the view of X-ray and MRI imagery, take notes of important

information by writing in the air, and use hand gesture as

commands to instruct robotic mechanism to perform complex

surgical procedures. Wachs et al. [2] have developed a hand-

gesture recognition system that enables doctors to manipulate

digital images during medical procedures using hand gestures

instead of touch screens or computer keyboards. In their

system, a Canon VC-C4 camera and a Matrox Standard

II video-capturing device are used for gesture tracking and

recognition. The system has been tested during a neurosurgical

brain biopsy at Washington Hospital Center.

Gesture recognition technology in healthcare can be mainly

divided into two categories: computer-vision based gesture

recognition and wearable sensor-based gesture recognition.

The system developed by Wachs et al. [2] is an example of

computer-vision based gesture recognition system. Though the

system was tested in real-world scenarios, there still exists

some disadvantages. It is expensive, needs color calibration

before each use, and is highly influenced by lighting envi-

ronment. Compared with computer-vision based recognition,

wearable sensor-based gesture recognition technology is low

cost, low power, requires only lightweight processing, no color

calibration in advance, no violation of the privacy of the

users, and is not interfered by lighting environment. Several

wearable systems with gesture recognition technology have

been proposed for healthcare application scenarios, e.g., upper

limb gesture recognition for stroke patients [3] and for patients

with chronic heart failure [4], glove-based sign language

recognition for speech impaired patients, and for physical re-

habilitation [5]. However, most wearable healthcare devices do

not fit healthcare application scenarios well. There are mainly

three problems in current wearable healthcare systems. (1) Not

comfortable to wear. Many prototypes are too big which can

not be used in reality. (2) No open Application Programming

Interface (API). Most wearable healthcare prototypes do not

open their API to public. Other developers cannot build

applications based on their prototype. (3) Too expensive. Some

wearable healthcare systems are quite expensive, e.g., a E4

healthcare monitoring wristband charges for $1690 with open

API [6]. Additionally, most of gesture recognition prototypes

can only recognize hand gestures one by one. Retrieving the

meaningful gesture segments from continuous stream of sensor

data is difficult for most gesture recognition prototypes [7].

To answer these problems, we address two research ques-

tions: (1) How does one design a hardware platform for gesture

recognition and remote control, which is comfortable to wear,

with open API, and at an affordable price? (2) How does

one retrieve and recognize hand gestures from a continuous

sequence of hand movements?

In this paper, we present Gemote, a wristband-based ges-

ture recognition and remote control platform. The hardware

platform integrates an accelerometer, gyroscope and com-

pass sensor, providing powerful sensing capability for gesture

recognition. We open our data sensing and gesture recognition
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APIs to the public, so that developers and researchers can build

their applications or carry out research based on our wristband

platform. Because we only integrate hardware components

that are necessary for gesture recognition, our wristband is

small, comfortable, and affordable. We propose is a novel,

lightweight, and high-precision continuous gesture segmenta-

tion and recognition algorithm. First, we separate data from a

sequence of hand movements into meaningful segments. Next,

nearby segments are merged based on gesture continuity and

gesture completeness. The noise segments are then filtered out

so that each segment contains one single gesture. Finally, we

extract features from the acceleration and gyroscope data, and

apply the Hidden Markov Model to recognize the gesture for

each segment.

We summarize our contributions as follows:

1) We present Gemote, a wristband-based platform for ges-

ture control. We design our platform with the considera-

tion of user experience and practicality. It is comfortable

to wear, with open API, and at an affordable price.

2) We present a continuous gesture segmentation and

recognition framework. We propose a lightweight, and

effective data segmentation mechanism to segment po-

tential hand gestures from a sequence of hand move-

ments. Then, we apply Hidden Markov Model recognize

hand gestures.

3) Our experiment results show that our system can recog-

nize hand gesture with 99.4% accuracy when users per-

form gestures discretely. When users perform gestures

continuously, our system can segment hand gesture with

98.8% accuracy and recognize hand gesture with 94.6%

accuracy.

The remainder of this paper is organized as follows. First,

we discuss the related work in Section II. Then, we introduce

the system framework in Section III. The design of hard-

ware platform is introduced in Section IV. We present our

continuous gesture segmentation and recognition algorithm in

Section V. In Section VI, we evaluate the system performance.

Finally, we draw our conclusion in Section VII.

II. RELATED WORK

A. wristband-based platform

There have already been many wristband-based gesture

recognition platforms. Some are developed by researchers in

the university, while others are commercial products in the

market. There are some common problems in current gesture

recognition platforms. For example, most of current platforms

do not open their API to the public [8][9][10][11], so they

can not benefit other researchers and developers. Additionally,

most platforms are too large to wear on wrist [10] [12] [9].

Some researchers just attach one smart phone on their wrist,

which is inconvenient for daily wearing [13]. In the market,

several wearable devices provide open API and are comfort-

able to wear, such as smart watch [14] and E4 healthcare

monitoring wristband [6]. However, these products are either

not targeted at healthcare, or too expensive. Table I shows the

TABLE I
COMPARISON OF WRISTBAND-BASED GESTURE RECOGNITION PLATFORM

Platform Open API Wearable Affordable price

Dong et al. [8] × × ×
Junker et al. [9] × × √

eWatch [10] × × √
RisQ [11] × √ √

E-Gesture [12]
√ × √

E4 [6]
√ √ ×

Moto 360 (2nd Gen.) [14]
√ √ ×

Gemote
√ √ √

comparison of wristband-based gesture recognition platforms.

From the table, we find that the platforms developed by

researchers [8][9][10][11][12] usually do not provide open

API, and are awkward to wear. Products on the market [6][14]

are quite expensive, e.g., the price of Motorola Moto 360 (2nd

Gen.) is over $300 and the price of E4 wristband is $1690. The

motion sensors inside these platforms usually provide a high

frequency sampling rate, e.g., Motorola Moto 360 (2nd Gen.)

uses InvenSense MPU-6050 motion sensor which provides

up to 1 kHz sampling rate for accelerometer and 8 kHz for

gyroscope [15]. However, due to operating system and power

requirement, the sampling rate for smart watch is limited to

a lower frequency, e.g., 50 Hz [14]. This greatly limits the

gesture recognition and motion sensing study in healthcare.

Therefore, we are motivated to develop one wristband-based

platform for gesture recognition and control for healthcare,

which provides open API access, comfortable to wear, and at

an affordable price.

B. gesture recognition

Recently, smart wristband-based gesture recognition has

been studied in mobile and pervasive computing. Various

approaches dealing with the recognition of gestures or events

have been presented. RisQ applies motion sensors on the

wristband to recognize smoking gestures [11]. Xu et al.

classify hand/finger gestures and written characters from smart

watch motion sensor data [16]. Bite Counter utilizes a watch-

like device with a gyroscope to detect and record when an

individual takes a bite of food [17].

To recognize hand gestures, the first step is to extract

potential gesture samples from a sequence of hand movements.

A simple way to do this is to wear an external button on

their fingers or hold it in their hand, and press this button

to explicitly indicate the start and end of gestures [18][13].

In order to do this, users must wear an external button on

their fingers or hold it in their hand. Unlike a wristband,

wearing a button all day is burdensome and unnatural, limiting

the usability of a hand gesture system. Another way to do

this is to segment gestures automatically. The motion data

are automatically partitioned into non-overlapping, meaningful

segments, such that each segment contains one complete

gesture.

Compared with button-enabled segmentation, automatic

gesture segmentation provides a natural user experience. Park

et al. apply a threshold-based method to detect short pauses
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Fig. 2. Smart wristband

The capacity of the battery is a restriction for wearable

devices. Our smart wristband is powered by a coin-size Li-

Ion battery (3.7V, 90mAH). To account for the small ca-

pacity of the battery, we focus on the energy efficiency in

our design. In the sensing and recognition state, our smart

wristband consumes 10∼20mAH, depending on how many

computing functionalities are used. In the sleep state, our smart

wristband only consumes 1uAH, which greatly prolongs the

battery lifespan. Compared with existing gesture recognition

platforms, our wristband has three main advantages over other

wristband prototypes:

Open API. We open our data sensing and gesture recogni-

tion APIs to smart phone developers. Developers can use our

smart wristband as the data collector or gesture recognizer so

that they can build their applications on top of our Gemote

system. Table II shows the set of APIs currently supported by

Gemote. It contains four classes. ConnectionManager is used

to manage the Bluetooth connection to our smart wristband.

DataSensingManager is used to collect the sensor data from

our smart wristband, including acceleration, gyroscope, and

compass data. GestureRecognitionManager is used to obtain

the recognized gesture from our smart wristband. WidgetMan-

ager is used to get access to the widgets (battery level, button,

LEDs) in our wristband.

Comfortable to wear. We carefully design our smart

wristband to make it comfortable to wear. Fig. 2 shows the

appearance and the printed circuit board (PCB) design of our

smart wristband. The size of the PCB is very small with 26mm

length and 25mm width, which is much smaller than previous

wristband platforms [10] [12]. The size of the wristband shell

is: 50mm length, 30mm width, and 11.7mm thickness, which

is very easy to carry.

Affordable price. A practical, cheap, and open API plat-

form is always strongly demanded by the researchers and

developers in motion sensing. Some research groups use very

large and expensive sensors ($2,000) [8], while others use

generic smart watches (Motorola Moto 360 2nd Gen., over

$300 [14]), or complex healthcare monitoring devices (E4

wristband: $1690 [6]). All these products are quite expensive

for the motion sensing research and development. As our plat-

form is designed for the motion sensing and gesture control,

we only integrate necessary components into Gemote, e.g., one

9-axis motion sensor MPU9250 ($5), and one nRF52832 SoC

($5) that includes a Cortex-M4 processor and a BLE module.

Therefore, our platform provides an affordable price for the

customers to purchase and develop further.

V. CONTINUOUS HAND GESTURE RECOGNITION

The proposed continuous hand gesture recognition algo-

rithm mainly contains three modules: Sensing, Data Segmen-

tation, and Hand Gesture Recognition. The Sensing module

collects the accelerometer and gyroscope sensor readings from

IMU continuously, and outputs the sensor readings to the Data

Segmentation module. The sampling rate of each sensor is

set to be 20Hz with a balanced consideration of recognition

accuracy, and computation and energy cost of the wearable

device. The Data Segmentation module extracts individual

gesture segments from a sequence of hand movements. The

Hand Gesture Recognition module applies the HMM model

to classify each individual gesture segment into one of the

predefined gestures (Left, Right, Up, Down, Back&Forth,

Clockwise, and Counterclockwise) or noise. The recognized

gestures can be utilized to remotely control the medical instru-

ments or healthcare related devices. In the following section,

we first introduce the seven gestures defined in our system

(Sec. V-A). Then, the data segmentation module (Sec. V-B)

and the gesture recognition module (Sec. V-C) are presented

in more detail.

A. Gesture Definition

There has been substantial research on gesture recognition.

Some work defines gestures according to application scenar-

ios, such as gestures in daily life [9], or repetitive motions

in very specific activities [11], while others define gestures

casually [12]. In this paper, we turn user’s hand into a remote

controller. We carefully design the hand gestures that best

emulate a remote controller. Typically, a remote controller

includes the following functions: left, right, up, down, select,

play/pause, back. Therefore, we define the following seven

gestures corresponding to these functions. At the beginning,

the user extends his/her hand in front of his/her body. Then

he/she moves towards a certain direction and moves back to

the starting point again. We define the following gestures:

1) Left gesture: move left and then move back to the

starting point

2) Right gesture: move right and then move back to the

starting point

3) Up gesture: move up and then move back to the starting

point

4) Down gesture: move down and then move back to the

starting point

5) Back&Forth gesture: move to shoulder and then extend

again to the starting point

6) Clockwise gesture: draw a clockwise circle

7) Counterclockwise gesture: draw an counterclockwise

circle

These seven gestures are illustrated in Fig. 3. The defined

hand gestures are very similar to the hand gestures defined by

Wachs et al. [2]. Their gesture recognition system has been

tested during a neurosurgical brain biopsy, which shows that
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TABLE II
GEMOTE APIS

Class Gemote APIs Description

ConnectionManager
connect() connect to smart wristband by BLE
disconnect() disconnect from smart wristband

DataSensingManager

registerDataSensingListener(Sensors,CallbackListener, SamplingRate) register listener for given sensors with sampling rate
startDataSensing() start to collect sensor data from smart wristband
stopDataSensing() stop sensor data collection
unregisterDataSensingListener() unregister listener for sensors

GestureRecognitionManager

registerGestureRecognitionListener(CallbackListener) register listener for gestures recognized by wristband
startGestureRecognition() start to recognize gesture
stopGestureRecognition() stop gesture recognition
unregisterGestureRecognitionListener() unregister listener for gesture recognition

WidgetManager

getBatteryLevel() get the battery level of wristband
registerButtonListener(CallbackListener) register listener for push-button event
setLED(ID, state) set LED with certain ID as certain state (on/off)
unregisterButtonListener() unregister listener for push-button event

Fig. 3. Seven defined gestures for remote control

these gestures are suitable as a remote controller for healthcare

applications. To be noticed, each defined gesture ends at the

starting point. Therefore, each gesture is independent from the

others. Users can continuously perform the same or different

gestures, which enables continuous control.

B. Data Segmentation

A simple way to segment hand gestures from a sequence

of hand movements is to use a hand-controlled button to

clearly indicate the starting point and the end point of each

individual gesture. However, in order to do so, the user

must wear an external button on their fingers or hold it

in their hands, which is obtrusive and burdensome. Another

way is to segment gestures automatically. The motion data

are automatically partitioned into non-overlapping, meaningful

segments, such that each segment contains one complete ges-

ture. Automatic segmenting a continuous sensor data stream

faces a few challenges. First, the segmentation should extract

exactly one entire hand gesture, neither more nor less than

needed. Otherwise, the extracted segments contain non-gesture

noises, or miss useful gesture information, which leads to

inaccurate classification. In addition, when a user performs

multiple continuous gestures, the segmentation should not

split a single gesture into multiple segments, or put multiple

gestures into a single segment. To deal with these challenges,

a continuous gesture data segmentation method is proposed,

which contains three main steps: sequence start and end points

detection, within-sequence gesture separation, and merging

adjacent segments.

1) Sequence start and end points detection: A lightweight

threshold-based detection method is used to identify the start

and end points of hand movements. To characterize a user’s

hand movement (HM ), a detection metric is defined using the

gyroscope sensor readings as

HM =
√
Gyro2x +Gyro2y +Gyro2z, (1)

where Gyrox, Gyroy, Gyroz are the gyroscope readings

of the X-axis, Y-axis, and Z-axis. When the user’s hand is

stationary, the HM is very close to zero. The faster a hand

moves, the larger the HM is. When the HM is larger than

a threshold, i.e. 50 degree/second, we regard it as the start

point of hand movement. Once the HM is smaller than this

threshold for a certain period of time, i.e. 400ms, we regard it

as the end point of the hand movement. The time threshold is

necessary as, in one single gesture, the HM may fall below

this threshold occasionally, leading to unexpected splitting

of this gesture [22][23]. Because the HM only keeps the

magnitude of the vector sum of three axes and drops the

direction information, this threshold-based detection method is

independent of the device’s orientation and therefore simplifies

the gesture models.

Fig. 4 shows the gyroscope readings and the HM of one

Left gesture and one Clockwise gesture. From Fig. 4(c), we see

that the HM of the Left gesture falls below 50 degree/second

at 1.6s. The Left gesture begins from moving left, then pauses,

then moves right back to the original position. The low HM
comes from the short pause in the Left gesture. The 400ms

time frame prevents the Left gesture from being split into two

separate hand movements.

Fig. 5 shows data processing for one continuous hand move-

ment: raising hand horizontally→ performing Left gesture→
performing Back&Forth gesture→putting down hand. Raw

gyroscope readings are shown in Fig. 5(a). The corresponding

HM results for this hand movement sequence are shown in
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Fig. 4. HM based start and end points detection

Fig. 5(b).

2) Within-sequence gesture separation: After detecting the

start and end points of one sequence of hand movements,

we partition this sequence of hand movements into non-

overlapping, meaningful segments so that one hand gesture

lies in one or several consecutive segments.

The hand gestures we defined start from and end in static

positions that users feel comfortable with and choose accord-

ing to their own free will. At static positions, the magnitude

of hand rotation is relatively small. Therefore, the HM valley

is a good indicator of the connecting point between two

neighboring hand gestures. We employ a valley detection

algorithm with a sliding window to detect valleys of the

HM in the hand movement data. We utilize valleys’ positions

as the segment points to partition the hand movement data

into multiple and non-overlapping segments. Specifically, the

sample at time t(i) is a valley if it is smaller than all samples

in the time window of [t (i) − tw/2, t (i) + tw/2]. Since the

duration of one hand gesture is normally longer than 0.6

second, the window size tw is set to be 0.6s.

With the window size threshold, the proposed algorithm

is able to identify the HM valleys. However, sometimes

there are a few false valleys which are not real switches

of hand gestures. The reason is that the valley recognition

algorithm only compares the HM magnitude in the time

window, but does not take the absolute magnitude of the HM
into consideration. A false HM valley may have large value,

which indicates obvious and drastic rotation or movement.

We collected the gyroscope data of a set of the continuous

hand gestures which was conducted under supervision and the

magnitude of HM valleys was carefully checked. The results

show that, in general, the magnitude of the real HM valleys

is less than 100 degree/second. Therefore, another condition,

i.e. HM is less than 100 degree/second at the valleys, is

added into the valley detection algorithm to eliminate the false

valleys.

Fig. 5(c) shows the segmentation result based on the pro-

posed valley detection algorithm. In total, five HM valleys

are detected and six segments are generated. In this way, the
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Fig. 5. Data processing for one continuous hand movement

raw gyroscope readings can be partitioned into six segments,

as shown in Fig. 5(d). Each segment is one complete gesture

or part of one complete gesture.

One question here is why we use gyroscope readings in the

proposed segmentation method, rather than the accelerometer

readings. The accelerometer is mainly suitable for detection

of speed change. Comparatively, gyroscope is more power-

ful for detection of orientation change. For hand movement

during conducting hand gestures, the orientation change is

more significant than the speed change. Thus, gyroscope-

based segmentation method is more robust and accurate than

accelerometer-based segmentation method, and can provide

higher segmentation accuracy [12].

3) Merging adjacent segments: For one continuous gyro-

scope readings stream, after segmentation, we will get a series

of partitioned segments. One gesture may lie in one segment

or several continuous segments. In Fig. 5(d), segment 1 refers
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to “raise hand horizontally” movement, segment 2 and 3

belong to Left gesture, segment 4 and 5 are from Back&Forth

gesture, and segment 6 is “put down hand” movement. The

Left gesture and the Back&Forth gesture are both partitioned

into two segments. To merge the adjacent segments so that one

gesture only lies in one segment, we propose two measurement

metrics to decide whether two neighboring segments should be

merged: Gesture Continuity metric and Gesture Completeness

metric.

The Gesture Continuity metric measures the continuity

of data in two neighboring segments. When two segments

differ greatly in its signal shape at the connecting point, it

is less likely that these two segments belong to the same

single gesture. On the other hand, if two segments have similar

slopes near the connecting point, these two segments may

belong to one gesture. Based on this intuition, we compute the

slopes near connecting points for each segments. If two slopes

computed from two segments are similar, we say these two

neighbor segments have similar shapes. Fig. 6 illustrates the

computation of Gesture Continuity metric of a Right gesture:

For the sensor reading of each gyroscope axis, gx, gy and

gz (assume gi), we do the following:

1) In gi, we find the connecting point (t1) between two

segments [t0, t1] and [t1, t2], which is also a valley point

in HM curve;

2) We extract the data points near connecting point (t1)
within one time window of 600ms, which is the same

as the window size in valley detection algorithm. As

the sampling rate is 20Hz, we pick 6 points before the

connecting point (t1) as ta, tb, tc, td, te, tf and 6 points

after the connecting point (t1) as tg , th, ti, tj , tk, tl;
3) Twelve lines tat1, tbt1,· · · , tlt1 are formed. For any 2

lines among the 12 lines, the angle between them is

computed, and the maximum angle is defined as θgi ;
4) We compute the weight wgi as the area size of the curve

gi in the time window [t0, t2].

As there are three axes for gyroscope readings, we com-

pute the three angles (θgi , i ∈ {x, y, z}) and three weights

(wgi , i ∈ {x, y, z}) corresponding to the three axes. The Ges-

ture Continuity (Con) at the connecting point t1 is calculated

as:

Con (t1) =
∑
(wgi

·θgi)∑
wgi

(2)

The higher the angle θgi is, the bigger difference the signal

shape is, and the less likely for the two segments to belong

to the same gesture. In addition, a larger gyroscope reading

of one axis indicates greater hand rotation around this axis.

Accordingly, we add wgi as weights to three axes. Con is the

weighted version of the angle θgi . It ranges from 0 degree

to 180 degree. Small Con stands for similar signal shapes for

two neighbor segments. We merge two segments if the Gesture

Continuity metric Con is lower than a threshold.

In Fig. 6, the Right gesture is partitioned into two segments

[t0, t1] and [t1, t2]. From the figure, we see that angle θgz is

Fig. 6. Computation of Gesture Continuity and Gesture Completeness metric

quite small and weight wgz is very large. Therefore, the Con is

small, and two segments [t0, t1] and [t1, t2] should be merged.

The Gesture Completeness metric measures the complete-

ness of data in two neighboring segments if they belong to

one complete gesture. To achieve continuous control, each

gesture we chose to recognize starts from one user-chosen

random position and ends with the same position. Even though

the sensor readings vary during the procedure of a gesture,

the sum of sensor readings should be close to zero for a

complete gesture. Utilizing this gesture property, we calculate

the Gesture Completeness metric as follows:

Com (t1) =
|
∑t2

t0
gx|+|

∑t2
t0

gy|+|
∑t2

t0
gz|

∑t2
t0

|gx|+
∑t2

t0
|gy|+

∑t2
t0

|gz|
(3)

Here, gx, gy , gz are sensor readings of each gyroscope axis,

t1 is the connecting point between two segments [t0, t1] and

[t1, t2]. Com ranges from 0 to 1. Small Com stands for that

two neighboring segments belong to one gesture. We merge

two segments if Com is lower than a threshold. In Fig. 6, we

see that the sum of sensor readings for each axis is very close

to zero. Therefore, Com is small and two segments [t0, t1]
and [t1, t2] should be merged.

Fig. 7 shows the Con and Com values for 100 gestures

performed by one user continuously. In these 100 continuous

gestures, there are 177 connecting points. Of all these con-

necting points, 99 of them separate two gestures, which are

marked as blue stars; the other 78 connecting points are inside

gestures, which are marked as red circles. From Fig. 7 we find

that almost all red circles are distributed in the left bottom of

the figure, which indicates low gesture continuity and gesture

completeness. As most red circles are within 40 degree in Con
and 0.2 in Com, we set 40 degree as the threshold for Con and

0.2 as the threshold for Com. If Con and Com are smaller

than these thresholds, we merge two segments into one.

From Fig. 5(d) to Fig. 5(e), we find that segment 2 and 3 in

Fig. 5(d) are merged into segment 2 in Fig. 5(e), and segment 4

and 5 in Fig. 5(d) are merged into segment 3 in Fig. 5(e). Each

segment in Fig. 5(e) contains exactly one complete gesture.

4) Noise Segments Removal: We extract the following three

features from each segment to classify if it is a noise segment:

(1) Duration of segment. Usually, the duration of one gesture

is within a certain range. Among all the gesture data collected

by us, no gesture lasts longer than 3 seconds, or shorter than
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Fig. 7. Con VS Com

0.8 second. Therefore, if the duration of one segment is outside

of these boundaries, this segment is filtered out as noise.

(2) HM of segment. The user is not supposed to perform the

gesture too quickly. Therefore, HM , which measures the hand

movement, is limited in a certain range. In our gesture dataset,

we find that the max HM is 474 degree/second. Therefore,

segments with the HM value above 474 degree/second are

removed.

(3) Completeness of segment. The Gesture Completeness

metric is used for segments merging as defined in Eq. (3).

Here we use this metric again to remove noise segments. As

each gesture defined by us starts from and ends in the same

position, the Gesture Completeness metric (Com) for each

gesture segment should be a small value. For all the gesture

data collected, the Com values of more than 99% of gestures

are smaller than 0.3. Therefore, if the Com of one segment is

larger than 0.3, this segment is removed.

In Fig. 5(e), the Com value for Segments 1 to 4 are

0.98, 0.08, 0.04, 0.76, respectively. Therefore, Segment 1

and 4 are removed, Segment 2 and 3 are forwarded to the

Hand Gesture Recognition module. Notably, Segment 1 and

4 are the “raise hand horizontally” movement and “put down

hand” movement, which are not predefined gestures for our

application.

C. Hand Gesture Recognition

According to the data segmentation results, we extract 6

representative features for model training and testing from

the acceleration and gyroscope data of each segment: (1) raw

acceleration data, (2) first-derivative of acceleration data, (3)

the integral of the acceleration data, (4) raw gyroscope data,

(5) first-derivative of gyroscope data, and (6) the integral of

the gyroscope data. The first-derivative and the integral of

the data are shown to be effective in improving recognition

accuracy [12]. This is due to their ability to describe the main

characteristics of the gesture: absolute trending (raw data),

its relative change (first-derivative), and the cumulative effect

(integral).

We utilize the Hidden Markov Model (HMM) algorithm

to train classifiers for online hand gesture recognition, as it

has shown high accuracy in previous work [12][9][19]. For

each gesture, an HMM model is trained based on a set of

the same gesture data. We train the HMM models using

the standard Baum-Welch re-estimation algorithm [24]. To

filter out non-gestural movements or undefined gestures, a

noise HMM model is trained using the ergodic topology [19].

At runtime, each data segment is classified as one of the

predefined gestures or noise. We use the Viterbi algorithm [25]

to efficiently calculate the likelihood of the input data segment

for each gesture model. Then, the gesture model with the

highest likelihood is selected as the classified gesture. If the

noise model is classified, we reject the gesture.

VI. PERFORMANCE EVALUATION

The dataset for evaluating the hand gesture recognition

algorithm is collected using Motorola Moto 360 (2nd Gen.),

while our Gemote hardware platform was being completed.

The motion sensor chip in Motorola Moto 360 (2nd Gen.) is

InvenSense MPU-6050 [15], while the motion sensor chip in

Gemote is InvenSense MPU-6500 [26]. The only difference

between these two chips is that MPU-6500 has an on-board

digitally programmable low-pass filter and a Serial Peripheral

Interface, while MPU-6050 does not have those components.

In our experiment, the accelerometer and gyroscope data of

seven hand gestures are collected from five male human sub-

jects. The data collection experiment contains two independent

steps: (1) each participant performs each gesture 10 times; (2)

each participant randomly chooses 50 gestures and performs

these gestures continuously. We evaluate the performances

of the proposed algorithms on the non-continuous gestures

and the continuous gestures separately. First, we evaluate the

gesture recognition accuracy with five fold cross validation

on each participant when performing gestures separately. We

use gesture samples from four participants to train the HMM

models, and then apply these HMM models to classify the

gesture samples from the remaining participant. Second, we

use all the gesture samples collected in the first step to train

the HMM models, and evaluate the proposed algorithm on the

continuous hand gesture samples collected in the second step.

Based on the accelerometer and gyroscope data, 18 features

are extracted to train the HMM models. Each HMM model is

configured with 4 states and 2 Gaussian components.

Table III shows the confusion matrix for gesture classifica-

tion when only using the acceleration features. The average

accuracy is 95.4%. Table IV shows the confusion matrix for

gesture classification when only using the gyroscope features.

The average accuracy is 93.7%. Table V shows the confusion

matrix for gesture classification when using both the acceler-

ation features and gyroscope features. The average accuracy

is 99.4%. From these tables, we find that the HMM models

with the acceleration features as input perform a little better

than the HMM models with the gyroscope features as input.

We also find that HMM models with both the acceleration

features and gyroscope features have the best performance.

Fig. 8 demonstrates the segmentation accuracy, recognition

accuracy and overall accuracy of the continuous gesture recog-

nition. The overall accuracy is the product of the segmentation
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TABLE III
CONFUSION MATRIX FOR GESTURE RECOGNITION USING ACCELEROMETER FEATURES

Left Right Up Down Back&Forth Clockwise Counterclockwise

Left 50 0 0 0 0 0 0
Right 0 48 0 0 0 0 2

Up 0 0 50 0 0 0 0
Down 0 0 0 40 0 6 4

Back&Forth 0 0 0 0 50 0 0
Clockwise 0 0 4 0 0 46 0

Counterclockwise 0 0 0 0 0 0 50

TABLE IV
CONFUSION MATRIX FOR GESTURE RECOGNITION USING GYROSCOPE FEATURES

Left Right Up Down Back&Forth Clockwise Counterclockwise

Left 42 6 4 0 0 0 0
Right 0 40 0 0 10 0 0

Up 0 0 50 0 0 0 0
Down 0 0 0 48 2 0 0

Back&Forth 0 0 0 0 50 0 0
Clockwise 0 0 0 0 0 50 0

Counterclockwise 0 0 0 0 0 0 50

TABLE V
CONFUSION MATRIX FOR GESTURE RECOGNITION USING ACCELEROMETER AND GYROSCOPE FEATURES

Left Right Up Down Back&Forth Clockwise Counterclockwise

Left 50 0 0 0 0 0 0
Right 0 50 0 0 0 0 0

Up 0 0 48 0 2 0 0
Down 0 0 0 50 0 0 0

Back&Forth 0 0 0 0 50 0 0
Clockwise 0 0 0 0 0 50 0

Counterclockwise 0 0 0 0 0 0 50

accuracy and recognition accuracy. The average segmentation

accuracy is 98.8% (standard deviation: 1.83%), the average

recognition accuracy is 95.7% (standard deviation: 4.08%),

and the average overall accuracy is 94.6% (standard devia-

tion: 3.99%). Good experimental results demonstrate that the

proposed segmentation algorithm and recognition algorithm

are very promising. Table VI shows the composite confusion

matrices of the classification of the continuous hand gestures.

From the table, we see that six Left gestures are mistakenly

classified as Counterclockwise gestures, two Up gestures are

mistakenly classified as Back&Forth gestures, and two Clock-

wise gestures are mistakenly classified as Left gestures. These

misclassifications mainly come from the difference between

training gesture samples and test gestures samples. We utilize

gestures discretely performed by the users as the training

set, and gestures continuously performed by the users as the

test set. When users perform gestures continuously, sensor

readings include lots of motion noises, which lead to the lower

recognition accuracy.

Fig. 9 shows the classification accuracy of the continuous

hand gestures with different HMM models: HMM models

with the acceleration features, HMM models with the gyro-

scope features, and HMM models with both the acceleration

and gyroscope features. The average accuracy for the HMM

models with the acceleration features, the gyroscope features,

and both the acceleration and gyroscope features are: 86.01%
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Fig. 8. Segmentation and recognition accuracy of continuous hand gestures.
Sub1 means human subject one.

(standard deviation: 16.63%), 81.95% (standard deviation:

7.38%), and 94.6% (standard deviation: 3.99%), respectively.

HMM models with the acceleration features achieve 100%

recognition accuracy for Subject 1 and Subject 4. However,

these models do not perform well for Subject 3 and Subject

5. Statistically, HMM models with both the acceleration and

gyroscope features are more accurate (the highest average

accuracy), and more stable (the lowest standard deviation).

We plan to collect more data to further test the performance

of our algorithm.

VII. CONCLUSION

In this paper, we present the wristband platform Gemote for

gesture recognition for future remote control use in healthcare
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TABLE VI
CONFUSION MATRIX FOR CONTINUOUS GESTURE RECOGNITION

Left Right Up Down Back&Forth Clockwise Counterclockwise

Left 28 0 0 0 0 0 6
Right 0 40 0 0 0 0 0

Up 0 0 36 0 2 0 0
Down 0 0 0 29 0 0 0

Back&Forth 0 0 0 0 44 0 0
Clockwise 2 0 0 0 0 23 0

Counterclockwise 0 0 0 0 0 0 23
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Fig. 9. Classification accuracy of continuous hand gestures with different
HMM models. Sub1 means human subject one.

settings. It is comfortable to wear, with open API, and at an

affordable price. Gemote employs a novel continuous gesture

segmentation and recognition algorithm. For a sequence of

hand movement, Gemote separates data into meaningful seg-

ments, merges segments based on gesture continuity and ges-

ture completeness metrics, removes noise segments, and finally

recognizes hand gestures by HMM classification. Evaluation

results show that Gemote can achieve 94.6% recognition

accuracy when users perform gestures continuously.
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