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Abstract—Accurate recognition of hand gestures while moving
is still a significant challenge, which prevents the wide use of
existing gesture recognition technology. In this paper, we propose
a novel mobility-aware hand gesture segmentation algorithm to
detect and segment hand gestures. We also propose a Convo-
lutional Neural Network (CNN) to classify hand gestures with
mobility noises. Based on the segmentation and classification algo-
rithms, we develop MobiGesture, a mobility-aware hand gesture
recognition system for healthcare. For the leave-one-subject-out
cross-validation test, experiments with human subjects show that
the proposed segmentation algorithm achieves 94.0% precision,
and 91.2% recall when the user is moving. The proposed hand
gesture classification algorithm is 16.1%, 15.3%, and 14.4% more
accurate than state-of-the-art work when the user is standing,
walking and jogging, respectively.

Index Terms—Mobility-Aware, Gesture Recognition, Gesture
Segmentation, Convolutional Neural Network

I. INTRODUCTION

Regular mobility, such as walking or jogging, is one of
the most effective ways to promote health and well-being. It
helps improve overall health and reduces the risk of many
health problems, such as diabetes, cardiovascular disease, and
osteoarthritis [1] [2] [3]. In addition, regular mobility can
also improve depression, cognitive function, vision problems,
and lower-body function [4] [5]. According to the evidence-
based Physical Activity Guidelines released by World Health
Organization [6] and the U.S. government [7], adults aged 18-
64 should do at least 150 minutes of moderate-intensity or 75
minutes of vigorous-intensity aerobic activity per week, or an
equivalent combination of both to keep healthy.

Nowadays, lots of people like to listen to music on their
smartphones while they do aerobic activity, such as walking
or jogging. Many smartphone apps track users’ workouts, play
music, and even match the tempo of the songs to users’ paces,
such as Nike+ Run Club [8], RunKeeper [9], MapMyRun [10].
However, it is inconvenient for the users to interact with
these apps while walking or jogging. To change the music,
users need to slow down, take out the smartphone, and then
change the music. This is troublesome. Instead, it is more
convenient for users to use gestures to control the music.
Unlike traditional touchscreen-based interaction, hand gestures
can simplify the interaction with a smartphone by reducing the
need to take out the smartphone and slow down the pace.

When a user is moving, gesture recognition is difficult. The
first reason is that hand swinging motions during walking or
jogging are mixed with the hand gestures. It is hard to classify

if a hand movement comes from hand swinging motions or
a hand gesture. In addition, when the user performs a hand
gesture while moving, the hand movement is a combination
of the hand gesture and the body movement. The mobility
noise caused by the body movement reduces the accuracy of
the hand gesture recognition. Therefore, it is hard to recognize
hand gestures when the user is moving. To solve the gesture
recognition problem when the user is walking or jogging, two
research questions need to be answered: (1) How to segment
the hand gestures when the user is moving? (2) How to
accurately classify the hand gestures with mobility noises?

In order to answer the first research question, we first apply
an AdaBoost Classifier to classify the current body movement
into moving or non-moving. If the user is not moving, we
apply a threshold-based segmentation algorithm to segment
the hand gestures. If the user is moving, the sensor readings
are periodic and self-correlated. So, we propose a novel self-
correlation metric to evaluate the self-correlation of the sensor
readings. If the sensor readings are not self-correlated at the
moving frequency, we regard it as a potential gesture sample.
Then, a moving segmentation algorithm is applied to segment
the hand gestures.

In order to answer the second research question, we design a
CNN model to classify the hand gestures with mobility noises.
We apply a batch normalization layer, a dropout layer, a max-
pooling layer and L2 regularization to overcome overfitting
and handle mobility noises.

In addition, we integrate the gesture segmentation and clas-
sification algorithms into a system called, MobiGesture. For
the leave-one-subject-out cross-validation test, experiments
with human subjects show that the proposed segmentation
algorithm accurately segments the hand gestures with 94.%
precision and 91.2% recall when a user is moving. The pro-
posed hand gesture classification algorithm is 16.1%, 15.3%,
and 14.4% more accurate than state-of-the-art work when a
user is standing, walking and jogging, respectively.

As far as we know, two efforts have been made to study
the gesture recognition problem when a user is moving. Park
et al. [11] propose a Multi-situation HMM architecture. They
train a HMM model for each pair of hand gesture and mobility
situation. As the authors define 8 hand gestures and 4 mobility
situations, 32 HMM models are trained in total. Given a hand
gesture, they apply the Viterbi algorithm [12] to calculate the
likelihood of each HMM model. The HMM model with the
highest likelihood is selected as the classified gesture. As the



number of the hand gestures and/or the number of the mo-
bility situations increases, their computational cost increases
dramatically. Different from their work, we only train one
CNN model, which consumes much less computational power
and time. In addition, evaluation results show that our CNN
model performs better than Multi-situation HMM on gesture
classification under leave-one-subject-out cross-validation test.
The second effort comes from Murao et al. [13]. They propose
a combined-activity recognition system. This system first
classifies user movement into one of three categories: postures
(e.g., sitting), behaviors (e.g., walking), and gestures (e.g., a
punch). Then, Dynamic Time Warping (DTW) is applied to
recognize hand gestures for the specific category. However,
their system requires five sensors to be attached to the human
body for gesture recognition. Instead, we only use one sensor,
and hence are less intrusive.

We summarize our contributions as follows:
1) We propose a novel mobility-aware gesture segmenta-

tion algorithm to detect and segment hand gestures.
2) We design a CNN model to classify hand gestures.

This CNN model conquers mobility noises and avoids
overfitting.

3) We integrate the gesture segmentation and classification
algorithms into a system, MobiGesture. Our experiments
results show that the proposed segmentation algorithm
achieves 94.0% precision and 91.2% recall when the
user is moving. The proposed hand gesture classification
algorithm is 16.1%, 15.3%, and 14.4% more accurate
than state-of-the-art work when the user is standing,
walking and jogging, respectively.

The remainder of this paper is organized as follows. First,
we present the motivation in Section II. Then, we introduce
the system architecture in Section III. We present our mobility-
aware segmentation algorithm in Section IV, and CNN model
in Section V. In Section VI, we evaluate the system per-
formance. We summarize the related works in Section VII.
Finally, we draw our conclusion in Section VIII.

II. MOTIVATION

Hand gestures can help users interact with various mobile
applications on smartphones in mobile situations. One com-
mon scenario is to control a music app while walking or
jogging. We define our hand gestures to be suitable for music
control in Section II-A. Based on these defined gestures, we
introduce the challenge of gesture recognition when the user
is walking or jogging in Section II-B. Finally, we present our
data collection and the data set in Section II-C. This data set is
used for performance evaluation during the rest of the paper.

A. Gesture Definition

There has been substantial research on gesture recognition.
Some works define gestures according to application scenarios,
such as gestures in daily life [14], or repetitive motions
in very specific activities [15], while others define gestures
casually [11]. In this paper, we carefully define the hand
gestures that are suitable for controlling a music app. Typically,
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Fig. 2. Accelerometer readings of a Right gesture when a user is jogging

a music app provides the following functions to control the
music: next track, previous track, volume up, volume down,
play/pause, repeat on/off, shuffle on/off. Therefore, we define
seven gestures corresponding to these seven functions. At the
beginning, the user extends his/her hand in front of his/her
body. Then he/she moves towards a certain direction and
moves back to the starting point again.

These seven gestures are illustrated in Fig. 1 and are defined
as follows: (1) Left gesture: move left and then move back to
the starting point; (2) Right gesture: move right and then move
back to the starting point; (3) Up gesture: move up and then
move back to the starting point; (4) Down gesture: move down
and then move back to the starting point; (5) Back&Forth
gesture: move to shoulder and then extend again to the starting
point; (6) Clockwise gesture: draw a clockwise circle; (7)
Counterclockwise gesture: draw an counterclockwise circle.
In addition, we define 10 number gestures as shown in Fig. 1
to select a specific song in the music app.

B. Challenge of Gesture Recognition under Mobility

To recognize hand gestures, a typical gesture processing
pipeline consists of three steps: (1) detect a hand gesture from
a sequence of hand movements; (2) segment the hand gesture;
(3) classify the segmented hand gesture. When it comes to
a mobile situation, the noises caused by body movements
present several practical challenges for these three steps.

First, it is hard to detect gestures while a user is moving.
While the user is standing without performing any gesture, the



TABLE I
CHARACTERISTICS OF FIVE PARTICIPANTS

Human Subject No. Gender Age Height(cm) Weight(kg)
1 male 29 174 62
2 female 27 167 55
3 male 28 180 73
4 male 39 170 87
5 male 30 171 68

accelerometer readings keep stable. When the user performs a
gesture such as the Right gesture, the accelerometer readings
change dramatically. Therefore, it is easy to detect a gesture by
measuring the amplitude or deviation of the sensor readings.
However, when it comes to a jogging scenario, a Right gesture
and hand swinging motions are mixed together as shown in
Fig. 2. Therefore, it is hard to tell whether a hand movement
comes from the hand swinging motions or a hand gesture.

The second challenge is that it is hard to segment hand
gestures while the user is moving. To perform a hand gesture
while walking or jogging, the user needs to raise his/her hand,
perform a gesture, and then put down his/her hand. To segment
hand gestures while the user is moving, we need to not only
filter out hand swinging motions caused by body movements,
but also accurately exclude the hand-raising and hand-lowering
movements. If the starting point and end point of a hand
gesture is not precisely determined, it is hard to classify hand
gestures accurately. As shown in Fig. 2, it is difficult to find the
starting point and end point of a Right gesture while jogging.

The third challenge is that it is hard to classify hand
gestures when a user is moving. After gesture segmentation, a
segmented hand gesture sample includes not only the gesture
the user performs, but also the noises caused by the body
movements. Additionally, when the user performs a hand
gesture while walking or jogging, (s)he needs to keep the
walking/jogging pace while performing this gesture. The effort
to keep the moving pace influences the shape of the hand
gesture that the user performs. Therefore, the hand gesture
performed when the user is standing is slightly different from
the same type of hand gesture performed when the user is
walking or jogging. Both the mobility noises and the gesture
differences reduce the accuracy of gesture classification.

C. Dataset

We used a UG wristband [16] to collect 17 hand gestures
from 5 human subjects, which is shown in Fig. 3. The UG
wristband sampled the accelerometer and gyroscope readings
at 50 Hz. The data collection experiment contained three
independent steps. (1) Each participant performed each gesture
10 times while standing. (2) Each participant performed each
gesture 10 times while walking on a treadmill. (3) Each
participant performed each gesture 10 times while jogging on
a treadmill. In total, 2550 hand gestures were collected. While
walking or jogging on a treadmill, different participants tended
to walk or jog at different speeds. In our experiment, the speed
of walking ranged from 2 miles/hour to 3 miles/hour, and the
speed of jogging ranged from 4 miles/hour to 6 miles/hour. We
took video of each participant as they completed these tasks to

serve as ground truth. The characteristics of our participants
are shown in Table I.

III. SYSTEM ARCHITECTURE

The system architecture of the MobiGesture is shown in
Fig. 4. We apply a novel mobility-aware segmentation module
to partition the raw accelerometer and gyroscope readings
into segments so that each segment contains one complete
hand gesture. In the mobility-aware segmentation module, we
first detect whether or not the user is moving. We extract a
series of time-domain and frequency-domain features from
accelerometer readings and apply an AdaBoost Classifier to
classify the current body movement into moving or non-
moving. If the user is not moving, sensor readings are clean
and do not contain any mobility noise. In this case, we apply
a simple threshold-based segmentation algorithm to segment
the hand gestures.

On the other hand, if the user is walking or jogging, the
sensor readings are periodic and self-correlated. We perform
Fast Fourier Transform (FFT) on accelerometer readings and
compute the dominant frequency, which is the frequency
of walking or jogging. Based on the dominant frequency,
we propose a novel self-correlation metric, SC. This metric
represents the self-correlation characteristics of accelerometer
readings at the given frequency. When the user is walking
or jogging, the sensor readings are self-correlated at the
dominant frequency. Once the sensor readings are no longer
self-correlated at the dominant frequency, we regard it as a
potential gesture sample. Then, a moving segmentation algo-
rithm is applied to partition the accelerometer and gyroscope
readings into segments based on SC metric.

As the 17 predefined gestures are different from each other
and users tend to perform the gestures at different speeds, the
duration of each gesture is different. Therefore, the size of each
segment is different. We apply a Cubic Spline Interpolation
algorithm [17] to rescale the size of each segment so that
each segment contains the same data points. Finally, we design
a 9-layer Convolutional Neural Network to recognize hand
gestures. The Convolutional Neural Network is designed to
be anti-overfitting and robust to mobility noises.

IV. MOBILITY-AWARE SEGMENTATION

A simple way to segment hand gestures from a sequence of
hand movements is to use a hand-controlled button to clearly
indicate the starting point and the end point of each individual
gesture. However, in order to do so, the user must wear an
external button on their fingers or hold it in their hands,
which is obtrusive and burdensome. Another way is to segment
gestures automatically. The motion data are automatically
partitioned into non-overlapping, meaningful segments, such
that each segment contains one complete gesture. Automatic
segmentation when a user is moving faces a few challenges.
First, when the user is moving, the hand gestures are mixed
with the mobility noises, which leads to inaccurate segmen-
tation. In addition, the segmentation should extract the hand
movement caused by the hand gestures rather than the hand
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movement caused by the body movement. Otherwise, the
extracted segments contain non-gesture noises, or miss useful
gesture information, which leads to inaccurate classification.
To deal with these challenges, we propose a mobility-aware
segmentation algorithm. we first classify the body movement
into non-moving or moving. Then, we propose a non-moving
segmentation algorithm and a moving segmentation algorithm
to segment hand gestures for two different moving scenarios.

A. Feature Extraction

It is difficult to accurately detect the mobility situation
solely based on a wristband. The reason is that the sensors
in the wristband measure the combination of hand motion,
gravity, and body movement. In order to accurately detect if
the user is moving or not, additional sensors that are tightly
attached on the body are required. However, this requirement
is intrusive.

Instead of attaching additional sensors on the body, we infer
the body movement based on the sensor readings from the
wristband. When the user is walking, the hands are pointing
to the ground with the palm facing towards the user. When the
user is jogging, the hands are pointing forward with the palm
facing towards the user. The orientation of the hand is fixed
and stable during walking or jogging. The sporadic occurrence
of a hand gesture influences the orientation of the hand in a
short time. However, the orientation of the hand is stable for
most of the time during walking or jogging. This motivates us
to use the orientation of the hand to infer the body movement.
In addition, when a user is walking or jogging, the user swings
his/her hands periodically. The sporadic occurrence of a hand
gesture does not influence the dominant frequency of walking

or jogging. This motivates us to use the frequency of hand
swinging motions to infer the body movement.

We apply a sliding window with an overlapping of 50%
for the accelerometer readings. The window size is 5 seconds.
We compute a series of time-domain and frequency-domain
features for each time window.

For the time-domain features, we compute the mean of
the accelerometer readings of the X-axis, Y-axis, and Z-axis
accordingly, the mean of the pitch, and the mean of the roll
to represent the orientation of the hand for each time window.
The pitch and roll are computed as

Pitch = arctan

(
Accy√

(Accx)2 + (Accz)2

)
, (1)

Roll = − arctan

(
Accx
Accz

)
, (2)

where Accx, Accy, Accz are the accelerometer readings of the
X-axis, Y-axis, and Z-axis for each time window.

For the frequency domain, we first compute the amplitude
of accelerometer readings as

Acc =
√

(Accx)2 + (Accy)2 + (Accz)2 , (3)

where Accx, Accy, Accz are the accelerometer readings of the
X-axis, Y-axis, and Z-axis for each time window. Then, we
perform Fast Fourier transform (FFT) for all the amplitude of
the accelerometer readings within each time window. We find
the dominant frequency, which has the largest amplitude in
the frequency domain. Finally, the dominant frequency and the
amplitude of the dominant frequency are chosen as frequency-
domain features.



TABLE II
COMPARISON OF MACHINE LEARNING ALGORITHMS FOR MOBILITY

CLASSIFICATION

Test Algorithm Precision Recall F-Measure
AdaBoost 93.5% 93.5% 93.5%

Naive Bayes 91.6% 91.4% 91.5%
5-fold SVM 93.5% 93.5% 93.3%

J48 96.0% 96.0% 96.0%
RandomForest 96.9% 96.9% 96.9%

AdaBoost 94.9% 94.6% 94.4%
Naive Bayes 93.6% 91.4% 91.5%

LOSO SVM 93.6% 92.5% 92.2%
J48 91.0% 88.7% 89.0%

RandomForest 93.7% 92.2% 92.2%

B. Mobility Classification

We apply the WEKA machine-learning suite [18] to train
five commonly used classifiers. The classifiers include Ad-
aBoost (run for 100 iterations), Naive Bayes, SVM (with poly-
nomial kernels), J48 (equivalent to C4.5 [19]), and Random
Forests (100 trees, 4 random features each). To evaluate the
performance of the proposed algorithms, we apply two tests: 5-
fold cross-validation and leave-one-subject-out (LOSO) cross-
validation. The 5-fold cross-validation test uses all the gesture
data to form the dataset. It partitions the dataset into 5
randomly chosen subsets of equal size. Four subsets are used
to train the model. The remaining one is used to validate the
model. This process is repeated 5 times such that each subset
is used exactly once for validation. The leave-one-subject-out
cross-validation test uses the gesture data from four subjects
to train the classification model, and then applies this model to
test the gesture samples from the remaining subject. Precision,
recall, and F-measure are considered as the evaluation metrics.

The classification results for these five algorithms are shown
in Table II. Under the 5-fold cross-validation test, Random-
Forest performs the best. The precision, recall, and F-measure
are 96.9%, 96.9%, and 96.9%, respectively. Under the leave-
one-subject-out cross-validation test, AdaBoost performs the
best. The precision, recall, and F-measure are 94.9%, 94.6%,
and 94.4%, respectively. We favor the leave-one-subject-out
cross-validation test over the 5-fold cross-validation test to
avoid overfitting. Therefore, we choose AdaBoost classifier
to classify the body movement.

C. Non-Moving Segmentation

When the user is not moving, we apply a lightweight
threshold-based detection method to identify the starting and
end points of the hand gestures. To characterize a user’s hand
movement (HM), a detection metric is defined using the
gyroscope sensor readings as

HM =
√
Gyro2x +Gyro2y +Gyro2z, (4)

where Gyrox, Gyroy, Gyroz are the gyroscope readings of
the X-axis, Y-axis, and Z-axis. When the user’s hand is
stationary, the HM is very close to zero. The faster a hand
moves, the larger the HM is. When the HM is larger than
a threshold, i.e. 50 degree/second, we regard it as the starting
point of a hand movement. Once the HM is smaller than

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-20

-10

0

10

20

Ac
ce

le
ra

tio
n(

m
2 /s

ec
)

ax
ay
az

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-15

-10

-5

0

5

10

15

SC
(m

2 /s
ec

2 )

SC

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-20

-10

0

10

20

Ac
ce

le
ra

tio
n(

m
2 /s

ec
)

ax
ay
az

(a) Acceleration data of a LEFT gesture while walking

(b) SC curve

t t+Tt-T

(c) Segmented acceleration data

segment

valley

peak

put down handraise handwalking gesture

(a) Acceleration data of a Left gesture while walking

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-20

-10

0

10

20

Ac
ce

le
ra

tio
n(

m
2 /s

ec
)

ax
ay
az

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-15

-10

-5

0

5

10

15

SC
(m

2 /s
ec

2 )

SC

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-20

-10

0

10

20

Ac
ce

le
ra

tio
n(

m
2 /s

ec
)

ax
ay
az

(a) Acceleration data of a LEFT gesture while walking

(b) SC curve

t t+Tt-T

(c) Segmented acceleration data

segment

valley

peak

put down handraise handwalking gesture

(b) SC curve

Fig. 5. Segmentation when a user is moving

this threshold for a certain period of time, i.e. 200 ms, we
regard it as the end point of the hand movement. The time
threshold is necessary. Without it, the HM may fall below
this threshold occasionally, leading to unexpected splitting of
this gesture [20] [21]. As a gesture does not last shorter than
260 ms or longer than 2.7 seconds in our dataset, we drop a
segment if the length of this segment is shorter than 260 ms
or longer than 2.7 seconds.

D. Self-Correlation Analysis

When the user is walking or jogging, the sensor readings
are periodic and self-correlated at the frequency of walking
or jogging. Once the user performs a gesture while walking
or jogging, the sensor readings are neither periodic nor self-
correlated. Based on this observation, we propose a novel self-
correlation metric SC to measure the self-correlation of the
accelerometer readings as

SC(t) =
∑

i∈{x,y,z}

T∑
j=1

[Acci (t+ j)−Acci (t+ j − T − 1)] /T,

(5)
where Acci (i ∈ {x, y, z}) are the accelerometer readings
of the X-axis, Y-axis, and Z-axis. T is the cycle of the
walking or jogging, which is computed as the inverse of the
dominant frequency. t is the current time. If the accelerometer
readings are self-correlated at the dominant frequency, the SC
is very close to zero. If the accelerometer readings are not
self-correlated at the dominant frequency, the SC is either a
large positive value or a large negative value. Fig. 5(a) shows
the accelerometer readings of a Left gesture when a user is
walking. The computed SC curve is in Fig. 5(b).

From Fig. 5(a) and (b), we find that the SC is very close to
zero when the user swings his/her hand during walking. The



SC begins to increase when the user raises his/her hand. The
peak of the SC occurs when the user finishes raising his/her
hand and begins to perform a Left gesture. The valley of the
SC occurs when the user finishes performing a Left gesture
and begins to put down his/her hand. After the user puts down
the hand and continues to swing the hand, the SC goes back
to zero. We find that the peak and the valley of the SC curve
are good indicators of the starting point and the end point of
the Left gesture. The reason is that when the user raises his/her
hand or puts down his/her hand, the orientation of his/her hand
changes a lot. This change greatly increases or reduces the SC
metric.

When the user is walking, the hand is pointing to the ground.
Impacted by the force of gravity, the accelerometer readings
of the Y-axis are always negative. When the user is jogging,
the hand is pointing forward with the palm facing towards
the user. In this case, the accelerometer readings of the X-
axis are impacted by gravity and always have negative values.
However, when the user raises his/her hand and performs the
gesture, the palm faces the ground. The accelerometer readings
of the Z axis are impacted by gravity and have positive values.
Therefore, when the user is walking or jogging, the sum of the
accelerometer readings in 3 axes are always negative. When
the user raises his/her hand, the sum of the accelerometer
readings increases and reaches the maximum right after raising
hand. As the SC is computed by the difference of the
accelerometer readings in two adjacent time window (window
size is the cycle of walking or jogging), SC reaches the peak
right after raising hand. Similarly, SC reaches the valley right
after putting down hand. Therefore, we use the peak and the
valley of the SC curve as the starting point and the end point
of the Left gesture.

E. Moving Segmentation

We segment the hand gestures when the user is moving by
searching for the peak and valley of the SC. We compute the
SC metric from the accelerometer readings. If the SC value
is larger than 5 m2/sec2, we start to search for the peak of the
SC within a 4 second time window. Once the peak is found,
we regard it as the starting point of the hand gesture, and begin
to search for the valley of the SC. We define the valley of the
SC to be the smallest SC within a 4 second time window and
is lower than a threshold, -5 m2/sec2. Once the SC valley is
found, we regard it as the end point of the hand gesture. We
extract the accelerometer and gyroscope readings between the
starting point and the end point as the segment. As a gesture
does not last longer than 2.7 seconds in our dataset, we drop a
segment if we cannot find the valley of the SC after the peak
of the SC for 2.7 seconds.

Fig. 6 and Fig. 7 show the performance of the moving
segmentation under different window sizes and different SC
thresholds accordingly. Three evaluation metrics are consid-
ered: precision, recall, and F-measure. As the window size
or the SC threshold increases, the segmentation precision
increases and the recall decreases. When the window size is
4 s and the SC threshold is 5 m2/sec2, the F-measure is at

TABLE III
COMPARISON OF THE GESTURE SEGMENTATION PERFORMANCE

Scenario Algorithm Precision Recall F-Measure
MobiGesture 5-fold 92.2% 93.5% 92.8%

Non-moving MobiGesture LOSO 92.6% 90.1% 91.3%
E-gesture 98.0% 97.1% 97.5%

MobiGesture 5-fold 93.5% 94.6% 93.7%
Moving MobiGesture LOSO 94.0% 91.2% 92.2%

E-gesture 8.5% 18.3% 11.3%

its highest value: 93.7%. Therefore, we choose 4 s as the time
window size and 5 m2/sec2 as the SC threshold to segment
the hand gestures when the user is moving.

F. Performance

We compare our gesture segmentation algorithm with E-
gesture [11], which is the state-of-the-art. E-gesture segments
the hand gestures based on the amplitude of the gyroscope
readings. A hand gesture is triggered if the amplitude of
the gyroscope readings is higher than 25 degree/sec. The
triggered gesture is assumed to have ended if the amplitude
of the gyroscope readings is lower than 25 degree/sec for 400
ms. Different from E-gesture, we first apply the AdaBoost
classifier to classify the body movement into moving or non-
moving. Then, we apply two different segmentation algorithms
to segment the hand gestures accordingly.

We evaluate the segmentation accuracy by checking the
overlap between a segment and a hand gesture. If the middle
of a hand gesture lies in a segment, this gesture is correctly
segmented by that segment. The performance of MobiGesture
and E-Gesture are shown in Table III. From the table, we find
that MobiGesture performs stably in both moving scenarios.
The F-measure in two moving scenarios are around 92%. E-
gesture performs well when the user is not moving. However,
it performs poorly when the user is moving. When the user
is moving, the F-measure of E-gesture is only 11.3%. The
possible reasons are: (1) the sensors in their wristband are
different from ours; (2) their predefined hand gestures are
different from ours.

We change the threshold of E-gesture from 25 degree/sec to
250 degree/sec with a step of 25 degree/sec and evaluate the
performance of E-gesture. Fig. 8 shows the F-measure of E-
gesture under different thresholds. When the threshold is 175
degree/sec, the F-measure of E-gesture in moving scenario is
at its highest value: 74.5%. This is still much lower than the
accuracy of our moving segmentation algorithm: 93.7% under
5-folder cross-validation test, and 92.2% under leave-one-
subject-out cross-validation test. Therefore, their segmentation
algorithm can not accurately segment the hand gestures when
the user is moving. Their solution is not general enough to be
extended to the new gestures and hardware platform.

When a user is standing without performing any gesture,
the gyroscope readings are close to zero. The amplitude of
the gyroscope readings is a good measurement to segment
the hand gestures. Both E-gesture and MobiGesture use the
amplitude of the gyroscope readings to segment the hand ges-
tures. Therefore, both algorithms perform well when the user
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is standing. However, when a user is moving, the hand gestures
are mixed with the hand swinging motions. With E-gesture, the
amplitude of the gyroscope readings can not differentiate the
hand gestures from the hand swinging motions. Therefore, E-
gesture performs poorly in the moving scenarios. Instead, we
utilize the self-correlation of the sensor readings to segment
the hand gestures, which takes the hand swinging motions into
consideration. Therefore, the proposed segmentation algorithm
accurately distinguishes the hand gestures from the hand
swinging motions.

V. DEEP LEARNING CLASSIFICATION

Two approaches are popular for classifying hand gestures.
One is to use conventional machine learning classifiers, such
as Naive Bayes [22], Random Forest [15], and Support Vector
Machines [23]. The other is to use sequential analysis al-
gorithms, such as Hidden Markov Model (HMM) [11] and
Dynamic Time Warping (DTW) [13].

In this paper, we use a 9-layer CNN as the classification
algorithm. There are several advantages of the CNN over the
other classifying approaches. (1) Instead of manually selecting
features, CNN is able to automatically learn parameters and
features. (2) CNN is very suitable for complex problems.
Based on our study, we find that it is capable of handling
mobility noises and reducing overfitting. (3) CNN is very fast
to run in the inference stage even when the number of classes
is very large.

A. Data Scaling

As 17 predefined hand gestures are different from each
other and different users perform hand gestures at different
speeds, the duration of each hand gesture is different. Fig. 9
shows the distribution of the gesture duration in our dataset.
The maximum gesture duration is 2.7 seconds. The minimum
gesture duration is 260 ms. The average gesture duration is 1.2
seconds. As the sampling rate is 50 Hz, each gesture contains
60 sample points on average.

As a CNN model requires input data with the same size,
we format the segment data so that each segment has the
same size. We apply the Cubic Spline Interpolation [24] to
rescale the number of sample points for each segment to
60. As 3-axis accelerometer readings and 3-axis gyroscope
readings are collected by each sampling, 60 × 6 data points
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Fig. 10. Architecture and parameter settings of the 9-layer CNN

are generated after interpolation. This 60 × 6 data matrix is
used for classification.

B. Convolutional Neural Network

We design a 9-layer CNN as the classification algorithm.
A CNN consists of an input and an output layer, as well as
multiple hidden layers. The output of the i-th layer of a n-layer
neural network is given by:

y(i) = σ(i)
(
W (i)x(i) + b(i)

)
, (6)

where y(i) is the output, x(i) is the input, σ(i) is the activation
function, W (i) is the weight matrix, and b(i) is the bias
vector [25]. x(0) is the original input, which is a matrix of
the accelerometer and gyroscope sensor data. y(n) is the final
output, which is one of 17 predefined hand gestures. The
output of the (i − 1)-th layer is the input of the i-th layer,
i.e., x(i) = y(i−1).

Fig. 10 shows the architecture and parameter settings of the
CNN. It includes the following 9 layers:

1) Input Layer: The input layer is the entrance to the CNN.
It provides data for the following layers. After data scaling,
we get a 60 × 6 data matrix. This matrix is supplied to the
input layer.

2) Convolutional Layer: The convolutional layer divides
the input data into multiple regions. For each region, it
computes a dot product of the weights and the input, and
then adds a bias term. A set of weights that are applied to a
region is called a kernel. The kernel moves along the input data
vertically and horizontally, repeating the same computation
for each region. The step size with which it moves is called a



stride. We use ten 3×3 kernels and stride of 1 in both vertical
and horizontal directions. To preserve the output size of the
convolutional layer, we use a padding of 1 in both vertical and
horizontal directions. It adds rows or columns of zeros to the
borders of the original input.

3) Batch Normalization Layer: Batch normalization is used
to speed up network training, reduce the sensitivity to network
initialization, and improve the generalization of the neural
network when the training dataset contains data from different
users. To take full advantage of batch normalization, we shuffle
the training data after each training epoch.

4) ReLU Layer: Convolutional and batch normalization
layers are usually followed by a nonlinear activation function.
We choose a Rectified Linear Unit (ReLU) as the activation
function. It performs a threshold operation on each input,
where any input value less than zero is set to zero. ReLU
is easy to compute and optimize. It provides fast and effective
training for deep neural networks. It has been shown more
effective than traditional activations, such as logistic sigmoid
and hyperbolic tangent, and is widely used in CNN [25].

5) Max-pooling Layer: The max-pooling layer reduces the
number of connections to the following layers by down-
sampling. It partitions the input into a set of non-overlapping
rectangles. For each rectangle, it outputs the maximum. The
intuition is that the exact location of a feature is less important
than its rough location relative to other features. The pooling
layer reduces the number of parameters to be learned in the
following layers, and hence reduces overfitting.

6) Dropout Layer: As a fully connected layer occupies
most of the parameters, it is prone to overfitting. One method
to reduce overfitting is dropout. It randomly removes some
nodes from a neural network with a given probability. All the
incoming and outgoing edges to a dropped-out node are also
removed. The dropout probability in our system is 0.6.

7) Fully-connected Layer: The fully-connected layer con-
nects all of its neurons to the neurons in the previous layer,
i.e., the dropout layer. It combines all the features learned by
the previous layers to classify the input. The size of the output
of the fully-connected layer is equal to the number of hand
gesture classes, i.e., 17 in our experiments.

8) Softmax Layer: The softmax layer applies a softmax ac-
tivation function to the input. The softmax activation function
normalizes the output of the fully connected layer. The output
of the softmax layer consists of positive numbers that sum to
one, which can then be used as classification probabilities by
the classification layer.

9) Classification Layer: The probabilities returned by the
softmax activation function are the input to the classification
layer . The classification layer assigns this input to one of the
17 hand gestures, and computes the loss function.

As in many other learning systems, the parameters of a CNN
model are optimized to minimize the loss function. We apply
the Stochastic Gradient Descent with Momentum [26] to learn
the CNN parameters (weights W and biases b). It updates the
parameters of the CNN by taking small steps in the direction

of the negative gradient of the loss function:

θl+1 = θl − α∇E(θl) + γ(θl+1 − θl), (7)

where θ is the parameter vector, l is the iteration index, α is the
learning rate, E(θ) is the loss function, and γ is the momentum
term [25]. The momentum term γ controls the contribution of
the previous gradient step to the current iteration. We use a
momentum term of 0.9 and a learning rate of 0.03.

Very large weights can cause the weight matrix W to
get stuck in a local minimum easily since gradient descent
only makes small changes to the direction of optimization.
This eventually makes it hard to explore the weight space,
which leads to overfitting. To reduce overfitting, we use L2
regularization, which adds an extra term into the cost function
to penalize large weights. The regularized loss function is:

ER(θ) = E(θ) + λΩ(W ), (8)

where λ is the regularization factor, and Ω(W ) = W TW /2
is the regularization function. The regularization factor in our
system is 0.03.

C. Performance

We apply both the 5-fold cross-validation and leave-one-
subject-out cross-validation to evaluate the performance of our
CNN model. Accuracy is considered as the evaluation metric.
It is defined as the number of correctly classified instances
divided by the number of all testing instances. Under the 5-fold
cross-validation test, the accuracy of the gesture classification
when the user is standing, walking, and jogging are 92.2%,
90.1%, and 88.6%, respectively. The gesture classification
accuracy when the user is jogging is only 3.6% lower than
that when the user is standing. Therefore, we conclude that the
moving scenarios do not influence the classification accuracy
significantly in our system under the 5-fold cross-validation
test.

Under the leave-one-subject-out cross-validation test, the
accuracy of the gesture classification when the user is standing,
walking, and jogging are 86.6%, 84.6%, and 75.1%, respec-
tively. The gesture classification accuracy when the user is
jogging is 11.5% lower than that when the user is standing.
In contrast to the 5-fold cross validation test, the gesture
classification is heavily influenced by the moving scenarios
under the leave-one-subject-out cross-validation test. This is
reasonable as the leave-one-subject-out test brings noises from
different body sizes and different ways of performing the same
type of hand gesture. The combination of these noises and mo-
bility noises significantly influences the gesture classification
performance.

We compare our gesture classification algorithm with E-
gesture [11]. E-gesture proposes a Multi-situation HMM
model for gesture classification. During training, a HMM
model is built and trained for each pair of gesture and
mobility situation. During testing, E-gesture computes the
Viterbi scores [12] for each of the HMM models, and the
best candidate is selected to be the classification result. We
call this method Multi-situation HMM.



TABLE IV
COMPARISON OF THE GESTURE CLASSIFICATION PERFORMANCE

Test Scenarios Algorithms Accuracy
Standing Multi-situation HMM 97.8%

CNN 92.2%
5-fold Walking Multi-situation HMM 96.2%

CNN 90.1%
Jogging Multi-situation HMM 96.5%

CNN 88.6%
Standing Multi-situation HMM 70.5%

CNN 86.6%
LOSO Walking Multi-situation HMM 69.3%

CNN 84.6%
Jogging Multi-situation HMM 60.7%

CNN 75.1%

TABLE V
COMPARISON OF THE OVERALL PERFORMANCE

Test Scenarios Algorithms Accuracy
Standing E-Gesture 95.8%

MobiGesture 85.0%
5-fold Walking E-Gesture 8.2%

MobiGesture 83.1%
Jogging E-Gesture 8.2%

MobiGesture 82.8%
Standing E-Gesture 69.1%

MobiGesture 80.2%
LOSO Walking E-Gesture 5.9%

MobiGesture 79.5%
Jogging E-Gesture 5.2%

MobiGesture 70.6%

We apply the 5-fold cross-validation test and leave-one-
subject-out cross-validation test to evaluate the gesture classi-
fication performance. Table IV shows the gesture classification
accuracy of these two algorithms under three different moving
scenarios. Under the leave-one-subject-out cross-validation
test, CNN is 16.1%, 15.3%, and 14.4% more accurate than
Multi-situation HMM when the user is standing, walking and
jogging, respectively. Under the 5-fold cross-validation test,
Multi-situation HMM is roughly 7% more accurate than CNN.
For Multi-situation HMM, the average accuracy is 96.8%
under the 5-fold cross-validation test, and 66.8% under the
leave-one-subject-out cross-validation test. There is 30% ac-
curacy difference between these two tests. It shows that Multi-
situation HMM model is overfitted. For CNN, the accuracy
difference between these two tests is 8.2%. The reasonably
small difference shows that overfitting is significantly reduced.

VI. PERFORMANCE EVALUATION

In this section, we first evaluate the overall performance of
MobiGesture, which integrates the aforementioned segmen-
tation and CNN algorithms. We also compare MobiGesture
with state-of-the-art work. Then, we evaluate the overhead of
MobiGesture and compare it with state-of-the-art work.

A. Accuracy

The overall performance of MobiGesture and E-gesture are
shown in Table V. Under the 5-fold cross-validation test, E-
gesture performs well when the user is standing. However,
when the user is walking or jogging, the accuracy of E-
gesture is very low. The reason is that E-gesture can not

TABLE VI
COMPARISON OF THE TIME CONSUMPTION

Algorithm Training Time (s) Testing Time (ms)
Multi-situation HMM 89.6 40.8

CNN 56.7 13.8

differentiate the hand gestures from the hand swinging mo-
tions. MobiGesture performs stably under different moving
scenarios. The recognition accuracy when the user is jogging
is only 2.2% lower than that when the user is standing. Under
the leave-one-subject-out cross-validation test, when the user
is standing, the accuracy of E-gesture is only 69.1%. It is
much lower than the accuracy under 5-fold cross validation:
95.8%. It shows that the gesture classification model in E-
gesture is overfitted. When the user is walking or running,
E-gesture performs poorly again due to the low segmentation
accuracy. The accuracy of MobiGesture under the leave-one-
subject-out cross-validation test is 3.6% ∼ 12.2% lower than
that under the 5-fold cross-validation test. The reasonably
small difference shows the effectiveness of MobiGesture’s
anti-overfitting design.

B. Time Delay

Table VI shows the time consumption of training and
testing of Multi-situation HMM and CNN. For the training
time, Multi-situation consumes 58% more time than CNN.
For the testing time, Multi-situation HMM consumes roughly
three times as much as CNN. Multi-situation HMM trains
a HMM model for each pair of the hand gestures and the
moving scenarios, while MobiGesture only trains one CNN
model for all the hand gestures and moving scenarios. As the
number of moving scenarios increases, Multi-situation HMM
consumes more time for testing, while our CNN keeps the
same. Therefore, CNN is more practical than Multi-situation
HMM to be implemented for real-time classification.

VII. RELATED WORK

As far as we know, two efforts have been put forth to study
the gesture recognition problem when the user is moving.
Park et al. [11] propose a gesture recognition system with a
hand-worn sensor and a mobile device. To segment hand ges-
tures, they design a threshold-based closed-loop collaborative
segmentation algorithm. It automatically adjusts the threshold
according to four mobility situations: RIDE, STAND, WALK,
and RUN. To recognize hand gestures, they propose a Multi-
situation HMM architecture. There are several limitations in
their system. For the gesture segmentation, their threshold-
based segmentation algorithm cannot effectively differentiate
the predefined hand gestures from the hand swinging motions
in our dataset. For the gesture recognition, they train a HMM
model for each pair of hand gesture and mobility situation.
In total, 32 HMM models are trained in their system. As the
number of the hand gestures or the number of the mobility
situations increases, their computational cost increases dramat-
ically. Different from this work, we only train one CNN model,
which consumes much less computational power and time.



Additionally, evaluation results show that our CNN model
performs better than Multi-situation HMM model under leave-
one-subject-out cross-validation test. The second work comes
from Murao et al. [13]. They propose a combined-activity
recognition system. This system first classifies user activity
into one of three categories: postures, behaviors, and gestures.
Then DTW is applied to recognize hand gestures for the
specific category. However, their system requires five sensors
attached to the human body to recognize activity. Instead, we
only use one sensor.

Inertial sensors-based gesture recognition has been widely
studied in mobile and pervasive computing. Various ap-
proaches dealing with the recognition of gestures or events
have been presented. RisQ [15] applies motion sensors on the
wristband to recognize smoking gestures. Bite Counter [27]
utilizes a watch-like device with a gyroscope to detect and
record when an individual takes a bite of food. Porzi et al. [23]
propose a smart watch-based gesture recognition system for
assisting people with visual impairments. Xu et al. classify
hand/finger gestures and written characters from smart watch
motion sensor data [22]. FingerPad [28], uTrack [29], and
Finexus [30] use magnetic sensors to recognize finger gestures.
However, none of these efforts takes body movement, such as
walking and jogging, into consideration.

VIII. CONCLUSION

In this paper, we present MobiGesture, a mobility-aware
gesture recognition system for healthcare. We present a novel
mobility-aware gesture segmentation algorithm to detect and
segment hand gestures. In addition, we design a CNN model
to classify the hand gestures with mobility noises. Evaluation
results show that the proposed CNN is 16.1%, 15.3%, and
14.4% more accurate than state-of-the-art work when the user
is standing, walking and jogging, respectively. The proposed
CNN is also two times faster than state-of-the-art work.
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