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Abstract—WiFi is a major source of energy consumption
on smartphones. Unfortunately, a non-negligible portion of the
WiFi energy consumption is spent for frames that are useless
to the smartphone. For example, energy is wasted to receive
WiFi broadcast frames that are not needed by any smartphone
application. What’s worse, in order to process the broadcast
frames received, a smartphone in suspend mode switches from
suspend mode to high power active mode and stays there for a
while. As such, additional energy is wasted to do the processing.
In this paper, we design a system, namely HIDE, to reduce
smartphone energy wasted on useless WiFi broadcast traffic.
With our system, smartphones in suspend mode do not receive
useless broadcast frames or wake up to process useless broadcast
frames. Our trace-driven simulation shows that the HIDE system
saves 34%-75% energy for Nexus One when 10% of the broadcast
frames are useful to the smartphone. Our overhead analysis
demonstrates that our system has negligible impact on network
capacity and packet round-trip time.

I. INTRODUCTION

WiFi is among the top biggest culprits for battery drain on

smartphones, mainly due to two factors. First, WiFi consumes

considerable amount of power on smartphones. For example,

when WiFi is turned off, power consumption of Galaxy S4

is ∼130mW with system idle and screen off. When WiFi is

receiving data, the power consumption adds up to ∼538mW .

Second, the amount of data traffic over WiFi is significant

on smartphones. A report shows that WiFi accounts for 73%

of total traffic on Android smartphones [1]. With mobile data

offloading [2] [3], more and more smartphone traffic will flow

over WiFi.

Reducing WiFi energy consumption can effectively boost

smartphone battery life. Generally, energy consumed by WiFi

is spent for data downloading/uploading desired by users. In

some cases, unwanted (or useless) traffic may become rampant

and dominate WiFi energy consumption, such as malicious

traffic from attackers (e.g., denial-of-service or energy attack-

ers) [4] [5] and background broadcast data traffic that is useless

to a smartphone [6] (e.g., WiFi broadcast frames for printer

service discovery). Thus, to reduce WiFi energy consumption,

we seek to cut down energy waste incurred by unwanted WiFi

traffic.

Existing literature mainly focuses on how to receive desired

traffic in a more energy efficient way, e.g., traffic scheduling

or traffic shaping [7] [8] [9]. With these methods, a client has

no choice of what should be sent to it. Some other work [6]

has studied how to filter out useless broadcast frames in WiFi

driver at client side after they are received by the WiFi radio.

In this way, useless broadcast data frames are still received by

smartphones. Unnecessary energy has already been consumed

to receive and process these useless data frames. What is

worse, if a smartphone is in suspend mode (i.e., the system-

on-chip (SOC) of the device including CPU, ROM, and the

micro-controller circuits for various I/O devices are suspended

[10]) when a useless frame arrives, the device still needs to

switch to active mode in order to wake up the CPU and other

resources to do the processing.

In this paper, we improve smartphone energy efficiency by

reducing energy wasted on useless WiFi broadcast traffic1.

Specifically, we propose to filter out useless UDP-padded

broadcast frames (MAC layer WiFi broadcast data frames with

UDP payload) at APs before they are received by smartphones.

Thus, no energy will be wasted on smartphones to receive or

process these useless broadcast frames. We focus on broadcast

traffic because broadcast traffic is normal traffic that naturally

exists in almost every network. In contrast, malicious unicast

traffic is abnormal traffic which only exists in the targeted

network. It is trivial to extend our system to incorporate useless

unicast traffic. Although it is also interesting to work on other

types of WiFi broadcast frames, in this paper, we focus on

UDP-padded broadcast frames as they are the majority of

WiFi broadcast data frames [6]. In the rest of this paper,

unless specifically stated, broadcast frame/traffic means UDP-

padded broadcast frame/traffic. Also, we target at smartphones

in suspend mode because power consumption is very low

in this state. If a data frame arrives during a smartphone’s

suspend mode, the smartphone needs to switch to high power

active mode and stays in that mode for a while. The energy

impact of useless traffic on smartphones in suspend mode is

much more serious than the impact on smartphones in active

mode.

However, in order to filter out useless broadcast traffic at

APs, two research questions need to be answered. The first

question is how to differentiate between useful and useless
broadcast traffic. APs have no idea about what broadcast

frames are needed by clients. Moreover, the definition of

“useful” and “useless” is different across clients. A broadcast

1In this paper, we use unwanted traffic and useless traffic interchangeably.
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frame which is useless to a client may be useful to another

client. The second question is how to manage useless broad-
cast traffic in an energy efficient way. An AP cannot simply

drop a useless broadcast frame for one client as it may be

useful to other clients. Currently, the 802.11 network protocol

assumes that broadcast frames are to be received by all clients.

So, an AP uses only one bit in beacon frames to indicate any

buffered broadcast frames to all clients. This cannot deliver

client-specific notifications. Besides, communication between

a client and an AP has cost. It incurs energy overhead as

well as brings extra traffic to the network which may decrease

network throughput.

In this paper, we answer the above two research questions.

Our main idea is to enable cooperation between an AP and

smartphone clients. Clients tell the AP what are needed.

With the information from clients, the AP identifies useless

broadcast frames for each client. Then, traffic notifications

sent out within beacon frames are extended to offer one bit for

each client. So, the AP can indicate to each client only useful

broadcast frames. With our solution, no energy is wasted

to receive useless broadcast frames. Moreover, if there are

no useful frames, a client does not even need to wake up

from suspend mode. Thus, our solution remarkably reduces

the energy wasted on unwanted broadcast traffic. Our main

contributions are:

• We design a framework, namely HIDE, working between

an AP and smartphone clients to reduce smartphone

energy wasted on useless broadcast traffic. In our system,

broadcast frames are managed at the AP. The AP hides

presence of useless broadcast frames from each client.

As a result, smartphones in suspend mode do not need to

receive and wake up to process these useless broadcast

frames.

• We demonstrate the energy saving of our system with

energy modeling and trace-driven simulation. With five

broadcast traffic traces collected in five different real-

world scenarios, we show that the HIDE system saves

34%-75% energy for Nexus One and 18%-78% energy

for Galaxy S4 when 10% of the broadcast traffic are

useful to the smartphone. Our overhead analysis demon-

strates that our system has negligible impact on network

capacity and packet round-trip time.

The rest of this paper is organized as follows. In Section II,

we present some background on how broadcast frames are

managed in current WiFi networks. Then, we propose our

system in Section III. We model the energy consumption of

the proposed system in Section IV and analyze its performance

overhead in Section V. We evaluate our system in Section VI.

After that, we introduce related work in Section VII. Finally,

we draw our conclusions and discuss future work in Section

VIII.

II. BACKGROUND

In 802.11 networks, an AP periodically sends out a beacon

frame [11]. Every client under the AP must periodically wake

up the WiFi radio and receive beacon frames.

The AP buffers unicast frames for every client with WiFi

radio in Power Saving (PS) mode. Notifications of unicast

frames buffered at the AP are sent out in every beacon frames

with a TIM (Traffic Indication Map) information element,

shown in Figure 1. The notification data is encoded in the

Partial Virtual Bitmap field, one bit for each client. If there are

unicast frames buffered for it, the client must send a Power

Save Poll (PS-Poll) control frame to retrieve each buffered

frame from the AP.
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Fig. 1. Traffic Indication Map information element

The AP also buffers all broadcast/multicast frames as long

as there is one client with WiFi radio in PS mode. Notifications

of buffered broadcast/multicast frames are sent out with a

special type of TIM called DTIM (Delivery Traffic Indication

Map). This DTIM is generated within beacon frames at a

frequency specified by the DTIM period (interval). In Figure

1, DTIM period is represented in unit of beacon intervals.

Typical values are 1 ∼ 3. The DTIM count field indicates

how many beacons must be transmitted before receiving the

next DTIM. The DTIM count is zero when we reach a DTIM.

The first bit of the Bitmap Control field is used to indicate

whether broadcast/multicast frames are buffered at the AP or

not. If there are any broadcast/multicast frames buffered, i.e.,

the first bit of the Bitmap Control is set to one, every client

must listen to the channel and receive the broadcast/multicast

frames. After a DTIM, the AP sends the multicast/broadcast

data on the channel following the normal channel access rules

(CSMA/CA).

III. PROPOSED SYSTEM

In this section, we present the proposed system. our main

idea is to use UDP ports to differentiate between useless and

useful UDP-padded broadcast frames. If the UDP port of a

broadcast frame is opened (listened to by a process) on a client,

then the AP considers this broadcast frame useful to the client;

otherwise, the AP considers this broadcast frame useless to this

client. Then in traffic indication, the AP hides the presence

of useless broadcast frames from corresponding clients and

only tells the presence of useful broadcast frames. We call the

proposed system HIDE.

A. System Overview

Figure 2 shows an overview of how the system works. Every

time before a smartphone enters suspend mode, it collects all

UDP ports currently opened and sends them to the AP in a

UDP Port Message. Upon receiving a UDP Port Message,

the AP responds with an ACK frame. At the same time, the

AP stores all UDP ports received from clients in a hash table

(Client UDP Port Table) and keeps the table updated with
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Fig. 2. System Overview

the latest data from clients. After receiving the ACK frame

from the AP, the client now enters into suspend mode. During

suspend mode, the smartphone screen is off. The CPU, ROM,

and the micro-controller circuits for various I/O devices are

suspended [10]. However, the WiFi chip is still able to receive

beacon frames and check if there are any frames buffered at

the AP. When a DTIM period starts, the AP calculates a flag

for each client based on the Client UDP Port Table. This flag

indicates whether there are useful broadcast frames buffered

for the corresponding client or not. These flags are carried

in the Broadcast Traffic Indication Map (BTIM) information

element in a beacon frame. Every client checks its exclusive

bit in the BTIM information element. If this bit is not set, then

no useful broadcast frames are buffered at the AP. The client

stays in suspend mode as long as there are no unicast frames

buffered. If the corresponding bit is set, then the client has

useful broadcast frames buffered at the AP. No matter there

are unicast frames buffered or not, the client needs to prepare

its WiFi radio for receiving data. After data is received by the

WiFi radio, the client switches to active mode, i.e., waking up

the CPU and other resources, to process the frames.

In the following subsections, we present more details of the

proposed system about (1) how UDP port information is sent

from clients to the AP with a UDP Port Message, (2) how the

AP determines whether a client has useful broadcast frames,

and (3) how broadcast traffic indication flags are delivered to

clients in a beacon frame.

B. UDP Port Information Synchronization

In our HIDE system, an AP uses UDP ports to differentiate

useless and useful broadcast frames. This policy requires that

the AP has the information of all open UDP ports on each

smartphone. As this information is only available on the client

itself, a client needs to send the data to the AP. The structure

of this frame is shown in Figure 3. It is called UDP Port

Message.
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Fig. 3. Frame structure of UDP port message

A UDP Port Message is a WiFi management frame

(type=00, subtype=1111) sent from a client to an AP, reporting

a set of UDP ports opened on the client. To reduce the size

of the message, a client only reports UDP ports associated

with the source address INADDR ANY. To carry the UDP

port information, we add a new information element, named

Open UDP Ports information element (as in Figure 3) to the

standard 802.11 protocol. We use 200, which is reserved and

unused by 802.11 protocols, as the element ID for Open UDP
Ports information element. This information element contains

an array of UDP port numbers. Each UDP port number takes 2

bytes. Upon receiving a UDP Port Message, the AP responds

with an ACK frame, so that the client knows the message is

successfully delivered. If an ACK frame is not received by the

client, the normal retransmission operation applies to the UDP

Port Message.

Each time before a client enters suspend mode, it sends a

UDP port message to the AP. If there is a change made to

the set of open UDP ports on a client, such as adding a new

open UDP port or deleting an existing open UDP port, the

system should definitely have already resumed to active mode

to process such an event. Next time when the system is about

to enter suspend mode, a new UDP port message will be sent

to the AP with the latest UDP port information. In this way,

an AP can always get the updated open UDP ports from a

client.

C. Traffic Differentiation at AP

A broadcast frame may be useful to one client while being

useless to another client. So, in the HIDE system, the AP

maintains a broadcast flag (one bit) for every associated client.

If there is any useful broadcast frame buffered for a client,

the corresponding broadcast flag is set to 1; otherwise, the

broadcast flag is set to 0.

Open UDP ports of all clients are stored in a hash table

(Client UDP Port Table). With this hash table, the AP then

calculates the broadcast flag for each client. The procedure

is described in Algorithm 1. Right before transmission of a

beacon frame representing the start of a DTIM period, the AP

resets all broadcast flags to 0. Then, for every broadcast frames
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Algorithm 1 Calculating broadcast flags

Input: broadcast frames currently buffered at the AP
Client UDP Port Table

Output: broadcast flags for clients
1: broadcast flags[ ] ← {0} // initialize the array of

broadcast flags to all 0
2: for all broadcast frames currently buffered do
3: O ← UDP port number from frame data
4: C ← list of clients by Client UDP Port Table lookup with

key O
5: for ci in C do
6: k ← AID of ci
7: m ← �k/8� − 1 // octet number
8: n ← k− 8 ∗m // bit number in the target octet
9: (the nth bit of broadcast flags[m-1]) ← 1;

10: end for
11: end for

currently buffered, the AP extracts the destination UDP port

number from the frame data. Then, the AP looks up the hash

table using the UDP port number as the key and gets a list

of clients C which have this UDP port opened. After that, the

AP sets the broadcast flags for all clients in C to 1.

D. Broadcast Traffic Notification

The current traffic notification uses only one bit to notify

all clients of the presence of any broadcast frames. To enable

fine-grained notification of buffered UDP broadcast frames, we

add an information element, shown in Figure 4, in the beacon

frame.
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Fig. 4. Broadcast Traffic Indication Map information element

We use 201 as the element ID for our Broadcast Traffic
Indication Map (BTIM) information element. The Length field

indicates the total length of the subsequent fields in bytes.

The Partial Virtual Bitmap is constructed in a similar way

as in TIM information element [12] in Figure 1. The Partial

Virtual Bitmap consists of the broadcast flags introduced in the

previous subsection. Each bit corresponds to an Association ID

(AID) of a client. For example, the 1st bit is for the client with

AID 1. If a bit is set to 1, then the corresponding client has

useful broadcast frames; otherwise, the client does not have

useful broadcast frames.

To shorten the length of this information element and reduce

the protocol overhead, we do not put all flags for all clients

in this bitmap. Instead, we compress the data and only put

part of the flags in this field. An example is shown in Figure

5. Suppose the first N1 (N1 is an even number) bytes of the

bitmap are all 0 and all bytes after the (N2)
th byte are also 0,

then we can only put the (N1)
th to (N2)

th bytes in the Partial

Virtual Bitmap. At the same time, we use the Offset field to

indicate the start of the partial bitmap: Offset = N1.

For clients who do not support this AP-assisted broadcast

traffic management, they can still follow the standard 802.11

protocol: check the first bit of Bitmap Control field in the

TIM information element (as introduced in the Background

section) and discard our BTIM information element. So, our

system works with co-existence of HIDE-enabled devices and

legacy devices.

IV. ENERGY MODELING

In this section, we present the energy modeling for the HIDE

system.

Suppose an AP sends out n UDP broadcast frames at time

t̂1, t̂2, ..., t̂n, respectively. Also, suppose frame i is sent during

beacon interval bi with a length of Li and a data rate of ri. In

the original system, a client receives and wakes up for every

broadcast frame sent out by the AP. However, with the HIDE

system, a client only receives and wakes up for broadcast

frames that are useful to it. Let ui denote whether a UDP

broadcast frame i is useful to a client or not. If ui = 1, then

the ith UDP broadcast frame is useful to the client; otherwise,

the ith UDP broadcast frame is useless to the client. Based on

this, the UDP broadcast traffic from the AP, in the perspective

of a HIDE-enabled client, is

n′ = ∑n
i=1 ui

ti =

{
t̂i , if ui = 1
null , if ui = 0

(1)

With the filtered UDP broadcast traffic, the total energy

consumed by the whole system for all the n UDP broadcast

frames can be calculated as

E = Eb + Ef + Ewl + Est + Eo (2)

where Eb is the energy consumed to receive all beacon frames,

Ef is the energy consumed to receive all broadcast data

frames, Est is the energy consumed by system state transfer,

Ewl is the energy consumption during system idle periods due

to WiFi wakelocks, and Eo is the energy overhead of the HIDE

system.

1) System state. Energy consumed for a UDP broadcast frame

depends on the system state when the frame arrives. Thus

we derive the system state first. For each UDP broadcast

frame received, a wakelock of duration τ is acquired in the

WiFi driver. This wakelock keeps the whole device awake and

allows enough time for applications to process and respond to

this frame. Also, due to the wakelock, subsequent frames can

be received immediately.

If a UDP broadcast frame arrives during the wakelock of

the previous frame, it renews the wakelock time and resets

the time-to-expire to τ . If a UDP broadcast frame arrives

when the system is in suspend mode, the WiFi driver needs

to first wake up the operating system. If a UDP broadcast

frame arrives during system resume operation, activation of

the WiFi wakelock will be delayed until the resume operation

is finished.
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Fig. 5. An example of the Construction of Partial Virtual Bitmap

Let s(i) stands for the operating system state when frame

i arrives. s(i) = 0 means the system is in suspend mode.

s(i) = 1 means the system is in active state, or is resuming or

suspending. Assume the wakelock for frame i starts at time

tr(i), then

tr(i) =

{
ti + li/ri + Trm , if s(i) = 0
max{ti + li/ri, tr(i− 1)} , otherwise

(3)

where Trm is the duration of system resume operation. Imme-

diately after a system resume operation is finished, the delayed

wakelocks are activated one by one in a self-renewal way.

Since all these happen in a very short time, we combine them

into one single wakelock. Active duration of the wakelock for

frame i is

twl(i) = min{tr(i+ 1)− tr(i), τ} (4)

Then, we calculate the system state s(i). Without loss of

generosity, assume s(1) = 0. For 2 ≤ i ≤ n

s(i) =

{
0 , if ti + li/ri ≥ tr(i− 1) + τ + Tsp

1 , otherwise
(5)

where Tsp is the duration of system suspend operation.

2) Energy consumption of receiving beacon frames. The

first item Eb in Eq. (2) is calculated as

Eb = Eu
b ∗

∑
b1≤i≤bn

Li (6)

where Eu
b is the energy consumption per byte of WiFi radio

when receiving beacon frames and Li is the length of the ith

beacon frame.

3) Energy consumption of receiving broadcast data frames.
This second item in the right end of Eq. (2) Ef is calculated

as

Ef = Pr ∗
n∑

i=1

tt(i) + Pidle ∗ (
n∑

i=1

td(i) +
∑

b1≤i≤bn

tf(i)) (7)

where Pr and Pidle are the power consumption of WiFi radio

when receiving data and idle listening, respectively. tt(i) is the

transmission time of the ith UDP broadcast frame, td(i) is the

length of time that the WiFi driver spends in idle listening state

right after receiving the ith UDP broadcast frame, and tf(i)
is the idle listening time between the ith beacon frame and

the first UDP broadcast frame in the ith beacon interval. So,

tt(i) =
li
ri

(8)

tf(i) = min
j∈{k|bk=i}

tj − tb(i) (9)

td(i) = {min{ti+1, tb(bi + 1)} − ti − li/ri} ∗ dmore(i) (10)

where dmore(i) is the ‘more data’ bit in the ith UDP broadcast

frame. If this bit is set, WiFi radio listens to the channel

for future broadcast frames. tb(i) is the start time of the ith

beacon interval and Tb is the beacon interval. Without loss of

generosity, we assume tb(1) = 0. Then,

tb(i) = (i− 1) ∗ Tb (11)

4) Energy consumption of system idle due to WiFi wake-
locks. Ewl in Eq. (2) is calculated as

Ewl = Psa ∗
n∑

i=1

twl(i) (12)

where Psa is the power consumption when the system is active

and idle. twl is the duration of wakelock for frame i being

active which is presented in Eq. (4).

5) Energy consumption of state transfers. Est in Eq. (2) is

calculated as this.

Est = (Erm + Esp) ∗
n∑

i=1

[1− s(i)] + Esp ∗
n∑

i=2

y(i) (13)

where Erm and Esp are the energy consumption of system

resume and suspend operations, respectively. It may happen

that a WiFi driver tries to acquire a wakelock when the system

suspend operation is in execution. In this case, the system

aborts the suspend operation. Let y(i) denote the time portion

of system in suspend operation upon arrival of frame i (2 ≤
i ≤ n), then

y(i) =
max{0, tr(i)− tr(i− 1)− twl(i− 1)} ∗ s(i)

Tsp
(14)

6) Energy overhead. Energy overhead of our HIDE system

contains two parts: energy consumed by transmission of UDP

port messages E1
o and energy consumed by receiving extra

bits in beacon frames E2
o .

Eo = E1
o + E2

o (15)

In the HIDE system, we add a Broadcast Traffic Indication

Map information element in the beacon frame. So, the extra

energy consumed to receive beacon frames in a HIDE system

is

E1
o = Eu

b ∗
∑

b1≤i≤bn

Lb
i (16)
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where Lb
i is the total length of BTIM information element in

beacon frame i.
In the HIDE system, a client sends out UDP Port Messages

to synchronize open UDP ports with AP. This part of energy

overhead, denoted as E2
o , is calculated as

E2
o = M ∗ Pt ∗

∑
i

Lm
i

rmi
(17)

where M is the number of UDP Port Messages sent out by

the client.

M = f ∗ Tb ∗ (bn − bi + 1) (18)

In Eq. (17), Pt is the power consumption of WiFi radio when

sending data. rmi is the data rate of the ith UDP port message

from a client and Lm
i is its length. From Figure 3, we see that

it includes the PHY and MAC layer headers, 2 bytes of fixed

fields plus a series of UDP port. Each UDP port takes 2 bytes.

With Ni UDP ports in the message, we have

Lm
i = Lphy + Lmac + 2 + 2 ∗Ni (19)

V. NETWORK CAPACITY AND DELAY ANALYSIS

The proposed system impacts network throughput and de-

lay in two ways. First, in our system, AP is in charge of

managing broadcast traffic. Frame processing at AP is slowed

down. Consequently, packet delay is increased. Second, extra

management frames (UDP Port Message) are introduced in

the system. Protocol overhead is increased. Consequently, the

network capacity, which is the maximum network throughput,

is decreased. In this section, we quantify the impact of our

system on network capacity and delay.

A. Network Capacity

In [13], the authors model the maximum network throughput

that can be achieved in an 802.11 network with different num-

bers of nodes. We borrow their model to calculate the network

capacity, denoted as S. Let Φ be the network throughput

defined in [13], which is defined as the fraction of time the

channel is used to successfully transmit payload bits. And let

r be the average WiFi data rate (in bits/s) during transmission

of payload bits. Then, the network capacity (in bits/s) of the

original 802.11 network is

S1 = Φ ∗ r (20)

Assume that there are N clients in the network and the percent

of clients with HIDE enabled is p. With our system, the total

number of UDP Port Messages sent out per unit time by all

clients is

nu = N ∗ p ∗ f (21)

where f is the frequency of sending UDP Port Messages from

a client. Meanwhile, in the original network, the number of

data frames transmitted per unit time is

n = S1/L (22)

where L is the average length of payload bits in a data frame.

Let Lm denote the average length of UDP Port Messages.

Then, the network capacity with our HIDE system is

S2 = (n− nu ∗ �L
m

L
�) ∗ L (23)

Therefore, the percentage of decrease in network capacity is

c = 1− S2/S1 (24)

B. Network Delay

Delay overhead of the HIDE system is mainly due to

maintenance of the Client UDP Port Table and table lookup

for identifying useful broadcast frames. Here, we calculate

the extra network delay incurred by the HIDE system through

approximate estimation.

For each UDP port message received, an AP needs to refresh

the table by deleting the old ports from the hash table and

inserting the new ports to the table. Assume the original round-

trip time of a packet is D. Let no be the average number of

open UDP ports in a client. With N as the total number of

clients in the network, p as the percent of clients with HIDE

enabled, and f as the sending rate of UDP Port Messages from

a HIDE-enabled client, frame processing time at the AP will

be increased by

t1 = f ∗D ∗N ∗ p ∗ no ∗ (τdel + τins) (25)

where τdel and τins are the durations of a delete operation and

an insert operation, respectively.

At the start of each DTIM period, for each UDP broadcast

frame currently buffered, an AP needs to look up the UDP

port from the hash table. Frame processing time at the AP

will be further increased by

t2 = nf ∗ τlp (26)

where τlp is the duration of a table lookup operation and nf is

the average number of broadcast frames buffered at AP during

each DTIM period.

Then, the percentage of increase in network delay is

d = (t1 + t2)/D (27)

Here, the delay overhead calculated is actually the upper

bound, because the processing time of UDP Port Messages

at the AP may overlap with part of the packet round-trip time,

such as the channel access time and packet forwarding time

in the backbone network. Also, a packet exchange may start

and end in the middle of one DTIM period. In this case, our

system does not incur the delay overhead of t2. Thus, the delay

overhead calculated by Equation (27) is the bounded network

delay overhead.

VI. EVALUATION

In this section, we demonstrate the performance of the

proposed system, namely HIDE, by answering two questions:

1) how much energy can our HIDE system save in real-

world scenarios? 2) how much does the system affect network

throughput and delay?
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A. Energy Efficiency

To show the energy efficiency of our system, we first present

the solutions for comparison. Then, we show results of our

trace-driven simulation.

1) Solutions for Comparison: To show the energy effi-

ciency of the HIDE system, we compare its energy consump-

tion to that of the “receive-all” method employed on modern

smartphones and the lower bound energy consumption of the

“client-side” solution [6].

“receive-all” solution: With the receive-all solution, the AP

forwards all broadcast frames. The client receives all of these

broadcast frames and activates a WiFi wakelock of one second

[6] for each broadcast frame.

“client-side” solution: In the HIDE system, we manage

WiFi broadcast frames at the AP side. A “client-side” solution

is presented in [6]. In the client-side solution, the smartphone

receives all UDP broadcast frame. Then it determines whether

a broadcast frame is useful or useless. If this is a useless

broadcast frame, the smartphone drops it and goes back to

suspend state immediately. A “client-side” solution reduces

the time that the system spends in active state due to WiFi

wakelocks triggered by useless broadcast frames. However, the

overhead of this solution is more frequent state transfers. We

compare our method to the lower bound energy consumption

of the “client-side” solution derived by the authors.

2) Trace-driven Simulation: We collect broadcast traffic

traces from 5 different real-world scenarios: a classroom

building, a CS department, a college library (WML), an off-

campus Starbucks store, and a city public library (WRL). Each

trace contains 30∼60 minutes data during peek hours. The cdf
plots of broadcast traffic volume in the traces, i.e., number of

UDP-padded broadcast frames per second, are shown in Figure

6. The average value is indicated with a black square on each

curve.
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Fig. 6. Broadcast traffic volumes in traces

With these wireless traces and the energy model in Section

IV, we calculate the energy consumption of different solutions

through trace-driven simulation. The energy profile inputs for

the model are measured with a Monsoon power monitor [14]

from two phones: Nexus One and Galaxy S4. We list the

values in Table I. For the HIDE system setting, we assume

that the UDP port message are sent out every 10 seconds

from each HIDE-enabled client with the lowest data rate of

1 Mbits/s. And, the number of UDP ports included in a UDP
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Fig. 7. Energy consumption comparison (Nexus One). Numbers along x-axis
are different percentages of useful broadcast frames.
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Fig. 8. Energy consumption comparison (Galaxy S4). Numbers along x-axis
are different percentages of useful broadcast frames.

Port Message is set to 100. This setting is able to represent

smartphones in heavy usage. Thus, they are fair enough to

show the overhead of our system when compared to others.

Figure 7 and 8 shows the average power consumption of

handling broadcast traffic with different solutions on Nexus

One and Galaxy S4, respectively. In each sub-figure, the first

bar is for the “receive-all” method and the second bar is for

the “client-side” method. The last five bars are for the HIDE

system with different percentages of useful broadcast frames.

In order to remove the differences in duration between traces,

we show the average power consumption instead of the total

energy consumption. Five different colors stand for power

consumed in five different aspects as introduced in Equation

2.

From Figure 7 and Figure 8, first, we see that our system

saves significantly more energy than the “client-side” solution.

With 10% of the broadcast frames being useful, we save

34%∼75% energy for Nexus One and 18%∼78% energy for
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TABLE I
ENERGY/POWER CONSUMPTION MEASURED FROM PHONES

τ Trm Tsp Erm Esp Eu
b Pr Pt Pidle Pss Psa

Nexus One 1 s 46 ms 86 ms 18.26 mJ 17.66 mJ 1.25 mJ 530 mW 1200 mW 245 mW 11 mW 125 mW

S4 1 s 44 ms 165 ms 58.3 mJ 85.8 mJ 1.71 mJ 538 mW 1500 mW 275 mW 15 mW 130 mW

Galaxy S4. We save even more energy when 2% of the

broadcast frames are useful: 71%-82% for Nexus One and

62%-83% for Galaxy S4. On average, HIDE:10% (the HIDE

system with 10% of the broadcast frames being useful to the

client) saves 23% more energy for Nexus One and 35% more

energy for Galaxy S4 than the “client-side” solution. HIDE:2%

saves 62% more energy on average for Nexus One and 45%

more energy for Galaxy S4 than the “client-side” solution.

Second, we observe that energy savings of the HIDE system

are different across traces. This is mainly because different

traces have different broadcast traffic volumes. Other factors,

such as frame arrival pattern, frame length, and data rate, are

also causing the energy saving differences between traces. The

third observation is that the energy overhead of our system,

which is shown in red color, is negligible. The overhead is

minimal despite that the system setting used in the evaluation

represents smartphones in heavy usage.

Third, we notice that state transfer overhead on Galaxy S4

is much higher than on Nexus One. As a result, the “client-

side” solution does not save much energy when the broadcast

traffic is heavy, as shown in Figure 8. For example, in the

classroom and college library (WML) scenarios, the “client-

side” solution barely saves energy. In contrast, our system still

largely reduces the average power consumption.
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Fig. 9. Fraction of time in suspend mode for Nexus One

In order to help understand the energy savings of our

method, we show the fraction of time that the device stays in

suspend mode in Figure 9. HIDE:10% (HIDE:2%) means the

HIDE system is used and 10% (2%) of the broadcast frames

are useful. Here, we only show the results for Nexus One. Sim-

ilar results are obtained for Galaxy S4. Generally, the HIDE

system spends much more time in suspend mode than both

the “receive-all” method and the “client-side” solution. When

the broadcast traffic is heavy, such as under the classroom

scenario and under the WML scenario, the device spends less

than 20% of the time in suspend mode when the “receive-all”

or “client-side” solution is used. However, with our method,

the device spends ≥80% of the time in suspend mode with 2%

of useful broadcast frames. One exception is that, in the CS

Department scenario, the fraction of time in suspend mode for

HIDE:10% is only slightly larger than that of the “client-side”

solution. Referring back to Figure 7, we know that the “client-

side” solution saves much less energy because it wastes a lot

more energy in switching between active mode and suspend

mode.

B. Impact on Network Capacity and Delay

Impact on Network Capacity. Based on the analysis

in Section V-A, we calculate the percentage of decrease in

network capacity with typical 802.11b network configurations

as used in [15]. The parameters are listed in Table II. In

addition, the sending interval of UDP Port Messages from a

client is set to 10 seconds. Each UDP Port Message contains

50 UDP ports.

TABLE II
NETWORK CONFIGURATION FOR OVERHEAD ANALYSIS

min contention window 32
max contention window 1024
slot time 20 us
SIFS 10 us
DIFS 50 us
propagation delay 1 us
channel data rate 11 Mbits/s
MAC Header 224 bits
PHY preamble +header 192 bits
average data payload size 1000 bits

Figure 10 shows the results of the decrease in network

capacity. We vary the total number of nodes in the network

from 5 and 50. Also, we vary the percentage of nodes with

HIDE enabled, denoted as p, from 5% to 75%. We made

the following observations. First, the more the nodes in the

network, the more the network capacity decreases. This is

because the number of UDP Port Messages transmitted is

linear to the number of nodes in the network. And, the original

network capacity drops only slightly when the number of

nodes in the network increases from 5 to 50. Second, the

decrease of network capacity is negligible. With 50 nodes in

the network and 75% of the nodes with HIDE enabled, the

decrease of network capacity is only 0.13%. Here, we adopt

the parameters from 802.11b networks. With newer 802.11

versions, the original network throughput increases largely.

Thus, our system has even less network capacity overhead.

Impact on Network Delay. To measure the network delay

overhead of our system, we set the percent of clients with

HIDE enabled p to 50%. In addition, we set the number of
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Fig. 10. Decrease in network capacity with dif-
ferent percents of HIDE-enabled nodes
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Fig. 12. Increase in network delay with different
numbers of UDP ports in use

broadcast frames buffered at the AP during each DTIM period

nf to 10. Note that the nf in the five traces we collected are

all much smaller than 10. For the original network delay D,

we measure the round-trip time (rtt) when connecting to a

YouTube server under a deployed AP with ping command.

In our experiments, the average rtt is 79.5ms. We use this

measured rtt as the original network delay D.

To get the time durations of hash table operations, in-

cluding deleting τdel, inserting τins, and lookup τlp, we

implement the Client UDP Port Table on an old smartphone.

We use a smartphone instead of a computer because computers

have much more powerful processing capability than wireless

AP/routers. The processing time measured on a computer does

not reflect actual processing time on wireless APs/routers. The

smartphone we use has a 1 GHz ARM processor and 512 MB

memory with Android system installed. This configuration is

comparable to some wireless routers in the market [16] [17].

To measure the time of operations, we first initialize the hash

table with N ∗ 50% ∗ 50 randomly generated pairs of (UDP

port, Association ID). The parameter is then calculated as the

mean value from 10 repeated runs of 100 deleting, or inserting,

or lookup operations.

First, we fix the average number of open UDP ports in a

client no to 50 and vary the average sending interval of UDP

Port Messages. With this setup, the increase of packet delay

with our HIDE system is shown in Figure 11. We observe

that the more the nodes in the network, the more the packet

delay increases. At the same time, the more frequently the

UDP Port Messages are sent, the larger the increase is. The

same as the impact on network capacity, the impact on packet

delay is very small. When UDP Port Messages are sent every

10 minutes (600s), the increase of rtt is as small as 0.05%.

Even when the UDP Port Messages are sent every 10 seconds,

the increase is only 2.3%.

Second, we fix the sending interval of UDP Port Message

to 30s and vary the average number of open UDP ports no in

a client. The results for this configuration are shown in Figure

12. As expected, more open UDP ports means larger delay

overhead. However, the overhead is less than 1.6% with 100

UDP ports in use on each HIDE-enabled client.

During our overhead analysis, we find that t1 	 t2 in

Equation (27). Meanwhile, according to Equation (25), t1 is

linear to the original network delay D. Our analysis results

above actually have little dependence on the actual value of

the original network delay, although we use a measured value

of 79.5 ms.

VII. RELATED WORK

The work presented in [6] is the most related work to ours.

In that paper, the authors filter out useless broadcast traffic in

the WiFi driver at client side after they are received by clients.

With their method, energy is still wasted to receive useless

broadcast frames and wake up to do the processing. In contrast,

with our system, a smartphone in suspend mode does not need

to receive useless broadcast frames or wake up to process the

frames. Our evaluation already shows that our method saves

more energy than “client-side” solutions including the work

in [6].

Detecting/Filtering Unwanted Traffic. In [18] [19], the au-

thors measure the impact of unwanted traffic on 3G networks.

In [20], the authors measure the impact of unwanted link layer

WiFi frames due to client association/dissociation and probe

activities. In this work, we focus on WiFi broadcast frames

generated by upper-layer applications with UDP payload.
The authors in [21] [5] detect data traffic sent from DDoS

attackers.The authors in [22] consider null data frames from

attackers as unwanted traffic and propose defense mechanisms

against it. These works focus on detecting and filtering ab-

normal traffic from malicious nodes. However, in our work,

we study WiFi broadcast frames that are normal traffic from

benign nodes.

Smartphone Traffic Reduction. In [23] [24] [25], the authors

propose to reduce data received by smartphones during video

chatting or streaming. However, these methods target at unicast

frames for a specific type of application. In this work, we

consider broadcast frames that come from various applications.
In [26], the authors propose to let the server selectively

send the data to a smartphone according to the smartphone’s

battery status. Smartphone advertising is also one source of

unnecessary or unwanted traffic [27] [28]. Applications, such

as Adblock [29], have been provided to block such kind of

unwanted traffic. Again, all of these work study unicast traffic.

We study broadcast traffic.
In [30], the authors propose to reduce general data traffic of

smartphones by applying redundancy elimination at different

protocol layers. Their work is orthogonal to ours.

517



VIII. CONCLUSION AND FUTURE WORK

Energy is wasted on smartphones to receive broadcast

frames that are useless to the smartphone and to switch from

low power suspend mode to high power active mode to process

these useless WiFi broadcast frames. In this work, we propose

a framework, namely HIDE, to reduce energy wasted on

smartphones due to useless broadcast frames, with assistance

from the WiFi Access Point (AP). In the HIDE system, a client

coordinates with the AP to identify useful broadcast frames.

Then, traffic notifications sent out from AP only indicate useful

broadcast frames that are currently buffered at the AP. The

presence of useless broadcast frames is hidden by the AP from

the client. As a result, a client in suspend mode does not need

to receive the useless broadcast frames. Neither does it need

to switch to active mode and process the useless frames.

With WiFi broadcast traces collected from 5 different real-

world scenarios, we conduct trace-driven simulation with the

energy model derived in the paper. The results show that

our system saves 34%-75% energy for the Nexus One phone

and 18%-78% for the Galaxy S4 phone when 10% of the

broadcast frames are useful to the smartphone. When 2% of

the broadcast frames are useful to the smartphone, our system

saves 71%-82% energy for Nexus One and 62%-83% for

Galaxy S4. We also analyze the performance overhead of the

proposed system. The impact of the HIDE system on network

capacity is less than 0.2% and the impact on packet round-trip

time is no more than 2.3%.

In future, we plan to evaluate the system with more

broadcast traffic traces and for more smartphones. Combining

the HIDE system with the “client-side” solution is also one

direction to be explored.
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