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Abstract—The generation of random numbers has tradition-
ally been a task confined to the bounds of a single piece of
hardware. However, with the rapid growth and proliferation
of resource-constrained devices in the Internet of Things (IoT),
standard methods of generating randomness encounter barriers
that can limit their effectiveness. In this work, we explore the
design, implementation, and efficacy of a Collaborative and
Distributed Entropy Transfer protocol (CADET), which aims to
move random number generation from an individual task to a
collaborative one. Through the sharing of excess random data,
devices that are unable to meet their own needs can be aided
by contributions from other devices. We implement and test a
proof-of-concept version of CADET on a testbed of 49 Raspberry
Pi 3B single-board computers, which have been underclocked to
emulate the resource constraints of IoT devices. Through this, we
evaluate and demonstrate the efficacy and baseline performance
of remote entropy protocols of this type, as well as highlight
remaining research questions and challenges in this area.

Index Terms—Random number generation, Internet of Things,
Entropy, Collaboration, distributed service.

I. INTRODUCTION

In recent years, the concept of the Internet of Things (IoT)

has materialized, encompassing a new class of computing

hardware ranging from hobbyist boards, device prototypes, and

flexible circuitry, all the way up to single board computers.

While the data produced by some of these devices may be

considered benign (e.g., a weather monitor), data from other

devices may be cause for serious concern if accessed by unau-

thorized users. Particularly around the home, technology such

as baby monitors, home security systems, home-assistants, and

smart thermostats provide windows into a person’s private life

that a malicious entity may see as valuable targets. While

IoT devices may be set up to utilize modern algorithms to

protect these sources of sensitive data, the execution of these

algorithms may be hampered by the capability of low profile

hardware [1], [2].

One type of potentially affected algorithm is random number

generation. Random Number Generators (RNGs) help facil-

itate the execution of many tasks across all areas of the

computing hierarchy. The values produced are consumed by

user-level applications such as games of chance and scientific

simulation, but are also used in critical areas such as core

OS systems, networking functionality, security algorithms,

and many more. RNGs can be broadly categorized into two

types: True Random Number Generators (TRNG) and Pseudo

Random Number Generators (PRNG). A TRNG derives its

values by sampling from some physical process that exhibits

random tendencies [3], while a PRNG uses a combination of

mathematical operations and initial “seed” data to produce a

stream of statistically random values [4].

As it stands, random number generation is an individualized

task. Standard computing environments typically employ a

PRNG as their generator of choice to avoid the hardware

costs of a TRNG. Computers, however, are deterministic

environments, which makes finding suitable input sources

for a PRNG a nontrivial task. Some PRNG implementations

draw entropy (i.e., randomness) from the timing of different

system events. The Linux PRNG, for example, uses disk I/O,

interrupts requests (IRQs), and user input [4] [5]. While these

events are readily available on a desktop computer or laptop,

IoT and virtualized devices have created spaces devoid of

user interaction. Similarly, due to the resource-constrained

nature of IoT devices, the frequency of disk events is also

greatly reduced or even completely absent. This combination

of factors directly impacts the ability of the PRNG to gather

sufficient entropy, which can lead to adverse affects such as

boot-time entropy weakness, or extended periods of entropy

starvation [6], [7].

Ideally, all devices would be able to take advantage of a

hardware-based TRNG when needed. There has been some

work in recent years to integrate TRNG capabilities directly

into CPUs, such as Intel RDRAND for x86 [8]. Similarly,

consumer devices effectively put a TRNG in a black box

(e.g., USB stick, Smart Card) to augment on-board implemen-

tations [9], [10]. However, these newer hardware solutions are

unavailable for devices without the necessary architecture or

ports to utilize them (e.g., mobile phones, IoT devices, ARM-

based devices). Similarly, purchasing new hardware for every

device could be costly and time-consuming to implement and

maintain, depending on scale (e.g., an office scenario). This

problem is compounded for legacy or low cost devices, where

hardware features may have been unavailable or omitted. Thus,

for many devices in the IoT space, a software solution is the

only answer.

While previous work has looked into improving PRNGs by

better analyzing current sources of entropy or tapping into
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new ones (e.g., hardware sensors) [11], [12], [13], [14], [15],

we instead turn our attention to augmenting the amount of

data a device has access to. Specifically, we consider the

idea that randomness can be treated a shared resource, where

devices can export data that they are not using, and import

additional data in times of high demand or low personal

supply. In this way, random number generation is turned into

a collaborative task. This is not the first time the idea of

acquiring remote randomness has been explored. Websites

have previously offered services employing randomness, such

as shuffling lists or lotto drawings [3], [16]. Multiple patents

discussing various mechanisms for distributing entropy have

been submitted [17], [18], [19]. Most notably, a centralized

entropy service was proposed by the National Institute of

Standards and Technology (NIST) [6]. However, to the best of

the authors’ knowledge, a functional framework and evaluation

thereof has not been made publicly available.

Therefore, we further explore this idea and its efficacy by

designing and creating a lightweight, flexible, and collabo-

rative framework for devices to acquire randomness when

needed. Our work is done with low profile IoT devices in

mind, and we highlight the the following design choices and

tradeoffs. First, we choose to effectively crowdsource (i.e.,

collect on a wide scale) the random data for this protocol

from participating devices, rather than relying on specialized

hardware located at centralized servers. This reduces the

impact of individual hardware failure while also making the

protocol capable of rapid deployment. Second, the framework

is designed to be easily scaled to any scope, allowing both

public and private instances (e.g., one single office building)

to exist concurrently. Finally, we designed the protocol to be

easy to access, and hardware agnostic. In this way, devices

with very limited hardware or input methods are able to tap

into the service without obtuse setup requirements or software.

In summary, the contributions of this work are as follows:

1) To the the author’s knowledge, we propose the first general

specification and implementation of an open distributed en-

tropy transfer protocol, CADET, including details of the packet

structure, device hierarchy, data flow, and core functionality.

2) We provide a thorough evaluation of CADET, including

performance and overhead. We also provide insight into the

design decisions, as well as investigate their effectiveness.

3) We highlight critical results from the evaluation of the

protocol in its current form, discussing its efficacy as well

as paths for refinement and growth in future work.

II. CADET OVERVIEW

We present the overview of our remote entropy protocol,

CADET. For our prototype implementation in this paper, the

protocol exists at the application layer of the Internet stack.

Our main goal is to offer two core functions for participants:

the ability to contribute excess random data that they do not

plan to use, and the ability for clients to request additional

random data when needed. Through these, algorithms that

rely on random numbers can be ensured a healthy supply of
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Fig. 1. The CADET device topology. The server network is a collection of 1
to N devices which host entropy data. Edge nodes (E) bridge the gap between
the local network (where client devices (D) are) and the server network.

entropy, even on devices where harvesting randomness is a

difficult task. Furthermore, we implement measures to enable

secure data transfer for applications of a more sensitive nature,

such as cryptographic key generation.

The CADET protocol is structured in a tree-like arrange-

ment, distributed across three tiers - client, edge, and server.

This style of construction takes advantage of the device

hierarchy already seen in the Internet, where local devices

connect through a gateway to access devices across the world.

This topology is illustrated in Figure 1. We briefly discuss the

device tiers and their purpose below.

Client: The lowest tier encompasses all devices on a local

network (LAN). This is where both producers and consumers

of entropy reside, including (but not limited to) laptops, smart

phones, IoT devices, and virtual clients on servers. Devices in

this tier will either upload excess data to the framework, or

request additional data to consume.

Edge: The middle tier serves as a communication bridge

between the client and server tiers. Logically, the edge consists

of one device which serves as the gateway to the Internet at

the edge of a LAN (e.g., a wireless access point or router).

However, it could also be one designated device in the client

tier, such as a home server.

Server: The upper tier is the network of central servers, which

can range from simple desktop computers to rack servers. This

tier is responsible for the heavy processing and bulk storage

of data, as well as ensuring that requests from edge devices

are met quickly and with quality output.

Data flows in two directions: from client to server (an upload

of entropy into the service), or from server to client (a request

for entropy from a client). We organize our discussion of

how CADET accomplishes these tasks according to the design

challenges for the protocol. These are data transport (how the

data should flow through the service), data quality (how do

we ensure the data is good), and data security (making the

protocol robust against malicious entities). To that end, we

formulate the following research questions to motivate our

design over the course of this work:

RQ1) How can entropy data be effectively collected and

distributed between producing and consuming devices? (§III)

RQ2) How does the system need to react to varying entropy

supply and demand to ensure correct operation? (§III)
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Fig. 2. The CADET protocol data flow. The top row represents the upstream flow, with data going from client devices to the server tier. The bottom row
represents the downstream flow, with data coming from the server tier down to client devices.

RQ3) How and where can we verify that data being exchanged

is of desired quality without sacrificing efficiency? (§IV)

RQ4) How and where can security primitives be implemented

to facilitate secure exchange without imposing excessive over-

head? (§V)

III. CADET DATA TRANSPORT

Data Transport encompasses the flow of entropy data be-

tween devices in the CADET framework. In this section, we

discuss the high level design of how uploads and requests are

handled in the system, and introduce the various components

used throughout both processes. Figure 2 illustrates the data

flow architecture.

A. CADET Transport Design

As discussed in Section II, devices participating in the

protocol are organized in a distributed, tree-like hierarchy. By

utilizing this structure, we aim to distribute the points of failure

while still maintaining an ordered structure. A distributed

service deals with the load balancing problem by moving a

bulk of the collection work and initial processing out of the

server tier and into the edge tier where there are more devices.

The edge device for a given network serves as a staging ground

for a local cache, similar to DNS. Each edge node keeps a

small buffer of data available for local devices so that queries

can resolve without traveling to the server level. As the edge

device is both closer in a network sense and a physical sense,

this reduces both transmission time of any packets, as well as

the probability of network interference.

Data Upload: The top half of Figure 2 illustrates the

flow of entropy data from clients to the server tier, while

Figure 3a diagrams the corresponding packet exchange. Data

is uploaded by client devices to their local edge node (1).

Here, incoming data packets are collected and serialized by

the packet processor module. If the client is in bad standing

because of previous bad behavior, the packet may be dropped

(2), otherwise the data is checked for initial quality (3). Should

the data pass, the payload (entropy data) is added to a local

upload buffer (4). After enough entropy data has accumulated,

the edge node forwards all accumulated uploads to the server

Client Edge

DATA (upload 
buffer full)

Server

DATA

(a) Data Upload

Client Edge

DATA REQ

DATA REQ 
(edge cache < req)

Server

DATA ACK
(edge cache > req)

DATA ACK
DATA ACK

(b) Data Request

Fig. 3. Basic packet exchange timelines for data uploads and data requests
in the CADET framework.

Version Number Reserved
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Fig. 4. The CADET protocol packet structure. Each row is one byte (eight
bits) long, except for the Data Payload section which is of a variable size.

tier (5). Incoming packets at the server tier are serialized by

the packet processor in a fashion similar to the edge tier (6-7).

After processing, the data makes its way to the mixing function

(8), which combines the new input with data already in the

data pool on the server. Occasionally, the nodes in the server

tier will partially exchange pool data (10, 11). This facilitates

further mixing of input from devices all across the client tier.

Data Request: The bottom half of Figure 2 illustrates when

a client makes a request for additional entropy, while Figure

3b diagrams the packet exchange for this process. A client

sends an entropy request their local edge node (1). The request

packet is processed and the edge node performs a check

against its own local entropy cache (2). If there is sufficient

data, then the edge node responds to the request immediately

with a data packet (3). Otherwise, the edge node forwards a

request to the server tier to acquire data to both refill its cache

and respond to the client (4). Once data is received (5), it is

mixed into the edge’s local cache. Afterward, the edge node

finally responds to the client’s request (6).
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B. CADET Packet Structure

Figure 4 illustrates the structure for all CADET protocol

packets. The packet header is a four byte long chunk of

information that describes important aspects about the type

of action(s) instructed by the packet. There are three distinct

chunks: protocol information, packet type and flags, and

additional arguments. The first byte of the packet header is

protocol information, where the first five bits are the protocol

version number, while the last three bits serve to byte-align

the header data. However, these bits could be used in future

expansions of the protocol.

The second byte of the packet header specifies the packet

type and various flags for the packet. The first two bits

specify if the packet is a registration or data packet, while

the second two bits specify whether the packet is a request
or acknowledgement. The last four bits are flags which further

specify the type of communication (i.e., whether it is client-to-
edge, edge-to-server), whether the payload is encrypted, or if

the packet is urgent, respectively. The third and fourth bytes

of the packet header are reserved for additional arguments

related to different packet types. Entropy request packets use

the space to specify how large the request is (in bits), while

entropy data packets use the space it to specify how large the

contained entropy payload is (in bytes).

C. Data Availability

As the goal of CADET is to export a process that is

performed on-device, care must be taken to minimize response

time. Significant delays in delivery could impact a device’s

ability to properly run algorithms relying on random values. To

address this issue, we implement a caching component (‘local

cache’ or ‘edge cache’) at the edge tier. This exploits the phys-

ical locality of edge devices (e.g., router) to mitigate network

latency issues. Deciding on when to refill the cache depends

on the supply and demand of the local network, and could

potentially be modeled as a flow control problem. Deeper

investigation of this topic has been left outside the scope of this

paper. For our implementation, we instead use simple metrics.

The maximum size of the buffer should be equal to 4096

bits (the typical size of a client’s own randomness buffer),

multiplied by the number of clients the edge is serving. This

effectively reserves one buffer worth of data for each client.

Meanwhile, the edge node should request additional data from

the server tier when the cache reaches 25% capacity. These

parameters mean that an edge node should always be ready to

serve one quarter of its clients should demand spike.

There is also the possibility that a small number of clients

could temporarily monopolize the local cache and impact the

response time for other clients, causing local degradation of

service. In consideration of this scenario, we implement a

reserve-cache component for the caching mechanism at the

edge tier. For this, we set aside a portion of the cache isolated

from heavy users, should the edge not be able to adequately

meet the demands of its heavier clients. To flag these heavy

users, we implement a usage score based on the Exponentially-

Weighted Moving Average (EWMA) formula. This is detailed

in Equation 1.

USt = usaget + (decay ∗ USt−1)
(1)

USt is a particular client’s usage score at time t, and usage
tis the client’s current usage at time t. To be flexible with the

speeds of different networks, t increments by one step every

time a CADET packet is processed by the edge device. For

a client to be considered a heavy user at time t, their current

score must be above a given threshold. Our solution is inspired

by the use of EWMA in TCP for congestion control [20].

Empirically, we choose a decay value of 0.96 and a threshold

of 3 standard deviations above the mean usage score.

IV. CADET DATA QUALITY

Data quality refers to ensuring that any data transferred

throughout the protocol eventually results in usable data for

clients. We address the issue of data quality in CADET on

three fronts as seen in Figure 2. With regards to input verifi-

cation, we perform sanity checks on incoming packet payloads

at both the edge and server tiers. For output verification, we

periodically perform quality checks on the contents of the

server pools to ensure outgoing data is sufficiently random.

Finally, we ensure that data from all devices is thoroughly

combined by basing the design of our mixing function on

existing PRNG algorithms.

A. Sanity Checks

Sanity checks in CADET are intended to prevent excessive

poor data from making it into the server pool. We introduce

these checks in the packet processing phase at the edge and

server tiers. When a device sends a data packet to the next

tier, the contents are checked against a set of simple statistical

properties (e.g., a balanced number of ‘0’ bits and ‘1’ bits).

Depending on the outcome of the check, the data will either

be forwarded to the internal data queue or discarded for being

too low quality.

To quantify the problem of a device attempting to bulk

upload bad data, the edge and central tiers maintain a penalty

score for each uploading device. This score is based on the

idea of a driver’s license point system. Every time a driver gets

a ticket, their license is assigned a certain number of points.

After accumulating too many points (i.e., the driver is a ‘bad’

driver), their license is taken away. Similarly, when a device in

CADET uploads poor quality data, points are assigned against

the device. We summarize the general function of this penalty

system in Figure 5. The number listed beneath the figure

represent a user’s penalty score, and increases left to right.

0

Drop according to 
(delinquent)

Always accept
(trusted) 

Always ignore 
(blacklisted

)dropthresh maxpenalty

Fig. 5. The CADET protocol drop strategy for sanity checks. User penalty
increases left to right up to some threshold.

A device’s penalty ranges from [0,∞). Points are removed

or added depending on the quality of the data according to

800



TABLE I
SANITY CHECK PENALTY SCHEMES

Num. Checks Passed 0/6 1/6 2/6 3/6 4/6 5/6 6/6

CADET Base +5 +4 +3 +2 +1 0 -1
Loose +4 +3 +2 +1 0 -1 -2
Strict +10 +6 +3 +1 0 -1 -1

the penalty scheme. After a point threshold is reached, data

upload packets are randomly ignored with a certain percentage

until the device’s penalty score reduces. This is to ensure

that a device must always play fair to have points removed

as they don’t know whether a good or bad data packet will

be ignored. Should the device continue to send bad data, all

incoming data packets will be ignored and the device will be

effectively blacklisted from participation. For the purposes of

our prototype implementation, the values for dropthresh
and maxpenalty are set to 10 and 35 respectively, while

the formula for drop_percent is listed in equation 2. Al-

ternative equations for drop_percent, such as the sigmoid

function, can also be used in order to avoid a 100% drop rate.

The penalty scheme used in the prototype implementation of

CADET is in Table I, along with other potential alternatives,

as different edge nodes may have different requirements.

drop percent =
userpenalty − dropthresh

maxpenalty − dropthresh
(2)

To implement sanity checks in the system, we’ve taken a

subset of 5 tests from the NIST suite, plus one test that

compares current data against past data. Specifically, we use

the frequency (Freq), runs, approximate entropy (AE), for-

ward cumulative sum (CSum(F)), and reverse cumulative sum

(CSum(R)) tests [21]. Each of these tests are computationally

light, requiring only one or two passes through the data,

keeping the amount of processing per bit linear.

B. Mixing Function
In the CADET architecture, the mixing function directly

impacts the output quality by how well it folds together

incoming bits. While any number of mixing algorithm designs

could be created and implemented, we have drawn the design

of our prototype mixing function from the Yarrow-160 PRNG

[13]. Yarrow uses a two-pool system consisting of a fast pool

and a slow pool, both of which accumulate entropy at different

rates by alternating which pool is fed incoming input.
Using a similar design, we illustrate our mixing function

in Figure 6. Data accumulates in two pools (1); a majority of

client input winds up in the fast pool, while periodically some

input is diverted to the slow pool. Once a pool is full (2), its

contents are concatenated with some of the oldest bits in the

server’s data pool (3). The combined data is hashed (4), and

then reinserted at the tail of the buffer until data is requested

(5). This process combines bits that are not temporally local,

which helps keep the predictability of the pool low.

C. Quality Checks
The goal of quality checks is to ensure that the data

that passes through the mixing function and is stored in a

Input
0 1 1 0 1 0 0 1 0

Fast Pool

Slow Pool
HeadTail

Hash Func.
1 2

3

4 5

Server Entropy Pool

Fig. 6. The CADET protocol mixing function, which serves to combine
incoming data at the server level before storing it for future use.

server pool is sufficiently random to be used by clients. To

implement quality checks in CADET, we utilize a larger subset

of statistical tests from the NIST suite [21]. This quality check

is performed on the contents of the entropy pools located in the

server tier to determine if the entropy eventually delivered to

clients is sufficiently random. Depending on the power of the

central server, more tests can be included in order to provide

higher quality assurance, though care must be taken to avoid

excessive computation which could impact response time.

V. CADET DATA SECURITY

Data security is the process of ensuring that a client’s data

or service quality is not affected by a malicious entity. This

means both the contents of the data as well as the delivery of

the data itself. We focus on three main threat vectors in the

scope of this work - service degradation, quality degradation,

and eavesdropping. Note that a service degradation attack in

the context of CADET simply means that a client’s request

response times are significantly longer than expected. While

previously mentioned components (e.g., usage score, sanity

checks, mixing function) work together to mitigate degrada-

tion attacks, protecting against eavesdropping mandates the

creation of secure communication channels between devices

in the protocol.

To facilitate the creation of these channels, CADET im-

plements a simple device registration component. While

registration is not required for client devices to simply request

entropy in the clear, it is a necessary step should the device

wish to receive encrypted data. Both edge and client devices

can register themselves, which establishes a secure channel

between the device and the tier above it (i.e., client to edge,

and edge to server). CADET’s registration process is a hybrid

of public key and token-based authentication in order to ease

entropy consumption and computation on resource-constrained

clients. For the purpose of our prototype, we have adapted a

basic version of the Elliptic Curve Diffie-Hellman handshake

algorithm to assist with registration.

A. Edge registration

For client devices to register to a CADET service, there

must first be a registered edge node to communicate to. Thus,

edge registration is regarded as the first step for allowing

secure communication to occur. Figure 7a details the packet

exchange for this process.

To act as an edge node, the device generates a new public-

private key pair (e.pub, e.pri), as well as a nonce n,

and sends these to a server node (Packet 1). Once received,

the server generates its own key pair (s.pub, s.pri), and

then computes a shared key esk based off of the received key
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Edge Server

REG REQ 
[e.pub, n] 

REG REQ+ACK 
[s.pub, E(n+1,esk)] 

REG ACK 
[E(n+2,esk)] 

(a) Edge Reg.

Client Server

REG REQ 
[c.pub, n] 

REG REQ+ACK 
[s.pub, E(n+1,csk), 
E(t,csk)] 

REG ACK 
[E(n+2,csk)] 

(b) Client Init.

Client Edge

REG REQ [h(T)]

REG ACK 
[E(x,esk), E(x,csk)] 

Server

REG REQ 
[E(h(T),esk)]

REG ACK 
[E(x),csk] 

(c) Client Reregistration

Fig. 7. Packet exchange diagrams for the CADET registration process. c, e, s
are shorthand for client, edge, server, respectively. Brackets represent packet
payloads, comma separated. x.pub and x.priv refer to the public and private
keys for a given device x. n is a nonce. t is a token. E(d,k) refers to encrypting
data d under key k. h is a secure hash function. esk, csk, cek refer to shared
keys between the two designated parties (e.g., esk is the edge-to-server key).

e.pub. The server encrypts n+1 under esk, and sends both

its own public key s.pub and the encrypted nonce back to

the edge node (Packet 2). The edge device can now compute

esk and decrypt the nonce to verify the shared key. The edge

node sends an encrypted n+2 under the shared key to the

server (Packet 3) which allows it to verify the shared key.

B. Initial Client Registration

Client registration is a less straightforward problem, as

resource-constrained devices may have trouble generating

the necessary randomness to repeatedly execute modern key

exchange algorithms, or execute the algorithms in a timely

fashion. Therefore, we have broken client registration into

two parts - an initialization phase and a reregistration phase.

Client initialization is a one-time execution of a key exchange

algorithm to establish a shared key with a server, meaning

that there is a one-time expense of entropy by the client.

This process is roughly identical to edge registration, but

also includes the exchange of a “token”. This registration

token is used to help prove a client’s identity for future client

registration events. Figure 7b illustrates this packet exchange.

Similar to edge registration, a client first generates a fresh

key pair (c.pub, c.pri), a nonce n, and sends both

pieces of information to a server node (Packet 1). The server

generates a shared key csk from c.pub and encrypts n+1
under csk. In addition, the server generates a token t (effec-

tively a large chunk of random data) for the client device to

facilitate future registration with edge nodes. The server sends

its public key, encrypted nonce, and encrypted token to the

client (Packet 2), where the client can also compute csk and

verify the encrypted nonce. The client then responds to the

server with an encrypted n+2 so both parties can confirm that

they have agreed on a shared key (Packet 3).

C. Client Reregistration

Once initial registration is completed, the client can register

itself with the local edge node. This utilizes the token acquired

from the initial registration step to avoid needing to do more

than one key exchange. Whenever a client must register with

any edge node, it can skip directly to this process instead of

having to initialize once again. This avoids the situation where

the client has to run a key exchange algorithm again, spending

more entropy. Figure 7c illustrates this packet exchange.

The client takes its token t and the current time to make a

tuple T, computes a hash h(T), and sends it to the edge node

it wants to register with (Packet 1). The edge node encrypts

the token hash under its shared server key esk and forwards

the registration request to the server tier (Packet 2). The server

decrypts the hashed token and checks a local database to see if

there is a match. If so, the server generates a new shared key

cek for the client and edge to use. Two copies of this key are

encrypted, one under the edge-server key esk and one under

the client-server key csk. Both encrypted keys are sent back

to the edge node (Packet 3). The edge forwards the client half

of the encrypted payload, after which both the edge and client

devices decrypt and obtain the shared key cek.

VI. EXPERIMENTAL EVALUATION

To assess the capability and viability of the CADET proto-

col as described in this paper, we have implemented a proto-

type in Python. The following section details our evaluation

of this implementation along several axes, including response

time, overhead, performance, and security.

A. Testbed Setup

For all experiments in this paper, we utilize a testbed

network of 49 Raspberry Pi 3B devices, all running the

Debian-based Raspbian Jessie Lite OS [22]. The topology

for this network is shown in Figure 9. For the client tier,

44 Pi devices are split into 4 networks of 11 nodes each,

where each client and edge are connected via a single switch.

The devices in each network act according to different sets

of rules. Specifically, a consumer network consists of devices

that will be mainly requesting entropy, a producer network
consists of devices that will be mainly producing entropy, and

a balanced network will have an approximately equal mix of

consumers and producers. These networks attempt to model

different ratios of producing devices to consuming devices.

We have underclocked each Pi according to the labels in

Figure 9, with the client tier operating at 20MHz with one

core - the lowest stable speed. This is to emulate devices with

processor constraints. While this is only one type of resource

constraint, we find that the memory overhead of CADET is

quite low, only requiring space to the client to store two

encryption keys, their token, and the data that they request.

Thus, the total memory footprint should stay under 4Kb for

any device. For the edge tier, we choose 200MHz to mirror that

of a low-end router. The server is at 600MHz, slightly under

the speed of the original Raspberry Pi. For some experiments

in this paper, we utilize a subset of the testbed in order to

show data on one particular module. The code for CADET

is written entirely in Python in around 1400 lines of code,

utilizing UDP sockets to facilitate direct exchanges of data.

B. Data Transport

1) Protocol Timing: Here, we measure the window from

the moment the first packet leaves the source device to after

all processing for the final packet has been resolved. The

results of this experiment are summarized in Figure 8a. In
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Fig. 9. The Raspberry Pi testbed topology. Each “network” box in the
client tier represents 11 Raspberry Pi devices under a particular edge node,
connected via a single switch. The clock speed for each tier is listed beside
the tier name.

general, response times are very low, below 0.25 seconds in all

cases. With regards to registration, edge registration overhead

is lower than client registration, likely due to the extra hop in

the network and lower processing power of the client device.

However, we highlight the fact that the average time for client

reregistration is lower than that of initial client registration.

This indicates that the token registration component for clients

does indeed save time should the client device need to change

edge nodes. With regards to the edge cache, the overhead

difference is much more stark. On average, a client request

experiences a 0.25 second response time when the edge node

has no cache, but a 0.12 second response time when the cache

can serve the request. These savings increase to almost a 0.3

second difference outside the testbed scenario where general

Internet traffic and travel affects response times.

2) Edge Node Effect: We generated 1000 random packets

on each of the 43 client devices (43000 packets total, one

device was malfunctioning) and tallied the number of packets

processed by both the edge tier and the central tier. We do this

for several configurations of upload payload sizes - small (4

bytes), medium (32 bytes) and large (64 bytes). Figures 10a

and 10b summarize the data. As seen, introducing the edge

node causes around a 98% drop in the number of packets

the central server must process (10a), while the total number

of packets sent within the system only increases around 3-

5% due to the extra communication between edge and server

(10b). These values are only expected to improve as the size

of the edge tier grows. In the same vein, as the payload size

increases, the number of data uploads from the edge tier to

server tier increases as well. However, the increase is minor

at best and is overshadowed by the savings on the server tier.

3) Usage Score: We orchestrated one network of 8 Rasp-

berry Pi’s to investigate how well the usage score can identify

heavy users. We plotted the usage score over time of all

devices, two of which were intentionally tuned to be heavier

users. Figure 8c shows the results of one data trace. While this

is only one type of network, we see that the heavy users stay

above the ‘heavy user’ threshold line between 60-80% of the

time, while normal users are above the threshold only 5-15%

of the time. For heavy users, it takes about 30-60 seconds to

fall back beneath the heavy user threshold after finishing their

period of increased use. Light users are much quicker, only

taking around 5-10 seconds. This indicates that the user score

does a good job of identifying heavy users quickly, without

overly applying penalties. The decay factor and heavy user

threshold can be tuned on a per-edge node basis. For example,

lowering the decay factor will decrease the amount of time it

takes for a user to transition from a heavy to normal user.

C. Data Quality

1) Sanity Checks: We investigated how the penalty system

reacts when a client intentionally uploads a certain percentage

of bad data (e.g., 5% of packets are intentionally poor). Note,

that an honest client will statistically upload 1% bad data.

Figure 10c shows these results. Under the default CADET

penalty scheme, a clients penalty does not climb above the

drop threshold of 10 points until 5% bad data, and clients do

not have a high probability of being blacklisted until around

9% bad data. By implementing different penalty schemes (as

discussed in section V), it is possible to push these numbers

higher or lower on a per-edge node basis.

Table II summarizes how well the sanity checks perform in

terms of classifying incoming data. Good data packets should

be let through, while bad data packets (score ≤ 3 checks

passed) should be dropped. For clients who upload less than

5% bad data, we see that the classification error (FN + FP)

stays under 2%. This number stays under 6% as the client bad

data percent climbs to 8%, but quickly grows afterward. This

represents a client’s penalty score growing to the point that too

many good packets are being dropped. On a machine clocked

at 300MHz, the current set of sanity checks take approximately

70-80ms to run on a data block size of 256 bits.

2) Quality Checks: To evaluate the quality of the mixing

function, we use the NIST statistical test suite on the data
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TABLE II
SANITY CHECK ACCURACY VS. CLIENT BEHAVIOR

Client Behavior Honest 2% 4% 6% 8% 10%

True Positive 98.76 97.44 95.42 93.08 90.16 84.54
True Negative 0 1.06 2.08 3.62 4.36 0.96
False Positive 0 0.88 1.72 2.48 4.26 8.94
False Negative 1.24 0.62 0.78 0.82 1.22 5.56
Accuracy 98.76 98.50 97.50 96.70 94.52 85.50

TABLE III
P-VALUES FOR QUALITY ASSURANCE TESTS

Freq. B.Freq CS(F) CS(R) Runs LROO AE

CADET 0.49 0.39 0.90 0.04 0.82 0.10 0.10
LPRNG 0.73 0.62 0.57 0.72 0.51 0.27 0.03

that accumulates in the server pool. Specifically, we allow

50000 bits to accumulate before running the tests. This process

is repeated 200 times. The NIST suite documentation details

how to calculate and interpret the p-values for each test, but

in general a higher value indicates a stronger suggestion of

randomness, and p must be above 0.01 [21]. For comparison,

we show our values against those produced by running the

suite on the Linux PRNG [4]. Table III summarizes the

results. Overall, we find that the values returned by CADET

are comparable in quality to the LPRNG, as all tests are

passed, and CADET shows stronger values on half of the tests.

However, it is recommended by NIST that any values acquired

from a remote entropy service be used to bolster the on-board

RNG for a given device, rather than used directly [6].

D. Data Security

Due to space, the authors cannot give a 100% comprehen-

sive security evaluation of the CADET protocol. However,

we use this section to highlight some of the more obvious

threat vectors and how we mitigate them. We assume that all

participating devices are not compromised - an attacker does

not have control of, or the ability to read data within a device.

We consider three different threat models: eavesdropping,

service degradation, and randomness degradation.

1) Eavesdropping: An eavesdropping attack occurs when

an entity listens to data flowing between two devices. An

attacker in this scenario wins if he is able to snoop on any data

that he was not intended to receive. For the sake of argument,

we only focus on encrypted data. Because of the registration

process, all data flowing between devices is encrypted on every

link. Therefore, an attacker’s best chance is to deduce the

shared key between devices during the registration phase.

The edge registration and client initialization steps currently

both use the curve25519 Diffie-Hellman key-exchange algo-

rithm, which has been shown to be both fast and secure

[23], [24]. This means our security falls to the security of

the algorithm. We therefore reasonably assume that edge-to-

server communication and client-to-server communication is

as secure as curve25519. When the client attempts to register

with the edge node, their token is securely hashed before being

sent. Thus, even though the hash is sent in the clear, the

security of this step is on the strength of the hashing algorithm.

Furthermore, even though an attacker can get a client’s token

hash, he does not have access to the client-server shared key,

and therefore cannot decrypt the client-edge key. All other

steps of the reregistration phase take place across secured lines

(edge→ server, server→ client). Therefore, we conclude that

the CADET protocol is robust against eavesdropping.

2) Service Degradation: A Service Degradation attack oc-

curs when an entity attempts to affect the ability of other

devices to properly participate in the CADET protocol. Proper

participation, in the view of an honest client, is the ability to

receive good data in a timely fashion. Therefore, an attack

is considered successful if a client receives bad data, or if a

client is sufficiently delayed in receiving data. Note, that we

do not address what would be considered a standard ‘Denial of

Service’ attack, where an edge or server node is overwhelmed

with traffic, as that is outside the scope of this work.

To cause a client to receive bad data, an attacker would have

to upload enough data into the system to dilute the server

entropy pool. However, three factors prevent the pool from

being flooded. First, collecting data from many devices means

that a single device malicious device is greatly outnumbered by

honest devices. Second, the mixing function at the server tier

blends together data multiple sources, masking poor uploads.

Finally, the sanity checks at both the edge and server tiers will

quickly catch a malicious client and prevent it from uploading

poor quality data in bulk.

To impact a client’s response time, an attacker would need

to continually drain the local cache at the targeted edge node.

However, we easily address this by implementing the usage

score, separating clients into heavy and regular users based on

their recent request volume. When an edge cache is emptied,

regular users have their requests answered by the reserved
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portion of the edge cache. As seen in figure 8b, we are able

to keep the response time within the expected measurement

average of 0.25s, even while the normal portion of the cache

has been emptied. While there are more outliers, we attribute

this to the larger number of packets being processed.

3) Randomness Degradation: A randomness degradation

attack occurs when a large number of devices attempt to

influence the quality of the service by bulk uploading known

data. The aim is to make the eventual client output more

predictable based on knowing or controlling a large majority

of the input. This is similar in style to how a bot net would

operate to negatively influence some service. While outright

preventing bot net attacks is beyond the scope of this paper, we

argue that CADET is resilient to this ‘flooding’ style attack.

There are two types of data that a malicious entity can upload

- poor quality data and good quality data. We have already

demonstrated that poor quality data cannot be uploaded in bulk

due to the sanity checks at both the edge and server tiers.

Therefore, we only worry about the scenario where a large

number of attackers are uploading known data that passes the

sanity check phase

We note that all client data at a particular edge is aggre-

gated and serialized into a single large payload before being

uploaded to a server node. This means a single benign client

uploading data will reduce the effectiveness of the attack, as

his data will be randomly added into the malicious payload.

This process repeats at the server level, as incoming payloads

from all edge nodes are combined into one main buffer. Even

if we make the assumption that multiple edge nodes are

uploading predictable data, the strength of the server mixing

function also comes into play. By utilizing a two-pool design,

and mixing back in data that is already in the randomness

buffer, we introduce a high degree of nonlinearity that is drawn

from the unpredictability of client request timings, which

cycles data out of the buffer.

Some simple changes to the upload pipeline could also help

further mitigate the effectiveness of this attack. First, the edge

node can require data from multiple clients before uploading

the aggregate payload. The edge (and server) could further

measure some local sources of entropy, such as CADET packet

inter-arrival times, and inject these bits between payload

contributions from clients. Finally, the mixing function can

be adjusted to require contributions from multiple edge nodes

before insertion into the main buffer.

VII. RELATED WORK

Closely related to this work is the idea of remote entropy

retrieval. This was first realized with the introduction of

HotBits in 1996 and random.org in 1998. These services

provide on-demand random numbers drawn from radioactive

and atmospheric noise respectively [16][3]. A patent in 2001

put forth the first concrete notion of remote entropy, describing

the process of acquiring additional PRNG seeding information

generated on remote servers and combining it with data

already present locally [17]. However actual implementations

of providing entropy on demand are still relatively new. The

first attempt at this type of service came in 2012 by A.

Toponce, who set up a single server for users to pull entropy

from [25]. This was followed up by the National Institute

of Standards and Technology (NIST) in 2013, who set up

a beacon that broadcast 512 bit blocks of randomness every

minute [26]. However, these bits were not intended to be used

for security purposes. Note, that the NIST randomness beacon

predates their Entropy as a Service (EaaS) proposal from

2015. In 2014, Canonical, the company behind Ubuntu Linux,

announced the pollenate package. This was designed to

help with reseeding the PRNG of Ubuntu virtual clients from a

distributed network of servers which generated random strings

[27]. Only in recent years has there been a growth of true EaaS

services, such as netRandom [28]. Compared to these works,

we differentiate ourselves in three key ways: 1) we collect

excess entropy from participating devices in the protocol; 2)

we specify and implement an open, lightweight distribution

protocol; 3) our design is hardware agnostic (i.e., a software-

only solution) and specifically accommodates resource-scarce

devices; and 4) we provide a full evaluation of the performance

of CADET.

A related subset of work involves attacks on PRNGs that are

low on entropy. Of particular note are boot-time attacks, when

entropy is expected to be the lowest due to the nature of how it

is collected. It has been shown that this period of low entropy

can lead to unfavorable outcomes such as factorable RSA

keys [7], predictable TLS keys in virtual environments [12],

predictable OpenSSL keys on Android [29], predictable initial

RNG outputs [11], and other yet undiscovered outcomes.

These investigations motivate our work, which aims to provide

entropy on demand to ensure the correct operation of any

algorithm relying on random numbers.

Recent efforts have tried to standardize software used across

low-profile IoT devices to improve interoperability. Google

has proposed their Android ThingsTM platform as a standard

executing environment for IoT devices [30]. Similarly, the

Google WeaveTM communication protocol allows for these de-

vices to more easily communicate through a unified language

[31]. Other instances of unified protocols and platforms exist,

such as Mozilla’s Things Gateway [32], Open Habitat [33], or

Home Assistant [34]. Should there be widespread adoption of

a unified IoT platform or architecture standard in the future,

this could pave the way for IoT devices to participate in a

variety of useful distributed services, such as CADET.

VIII. DISCUSSION AND FUTURE WORK

We have constructed a working prototype of our proposed

Collaborative and Distributed Entropy Transfer protocol. How-

ever, there are many questions and features that were unable

to be explored in the scope of this paper. Here, we briefly

summarize potential areas for exploration further research.

First is deeper analysis of supply and demand. As the num-

ber of devices increases, the load on the system becomes more

complex and more difficult to predict. This may necessitate

nodes in the system to adapt in a dynamic manner to ensure

timely delivery of data. This could potentially be modeled as
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a flow control problem, but would require additional empirical

data on the demands that a large scale system produces.

Next are questions surrounding the scope of deployment. At

the current stage, we make the assumption that the edge node

can be trusted (e.g., a home router). However, with mobile

devices, scenarios where the user cannot trust the edge node

will be much more common (e.g., public Wi-Fi at a local

coffee shop). Further investigation is needed to determine the

amount of effort required to expand the protocol to cover these

scenarios where trust may not be guaranteed.

Finally, we consider how to encourage participation in the

CADET protocol. A collaborative solution is only as good

as the data provided to it by participants. However, clients

who contribute above a certain threshold may wish to be

compensated. Similarly, building up a network of central

servers requires hardware and bandwidth. Potential incentive

models include public utilities like electricity (e.g. users with

solar panels), or sharing economy systems (e.g. ride sharing).

IX. CONCLUSION

Random numbers power a wide variety of algorithms in

modern computing, ranging from simulation to security. How-

ever, gathering the necessary entropy to ensure the correct

operation of these algorithms has become a problematic task

with the surge of resource-constrained devices in the Internet

of Things. To alleviate this problem, we propose the initial

designs for a Collaborative and Distributed Entropy Transfer

(CADET) protocol, whereby devices that have generated an

excess of entropy can indirectly assist those that are entropy

deficient. Throughout this paper we have highlighted a number

of design choices taken in order to maximize efficiency of the

framework, utilizing a testbed of 49 Raspberry Pi 3B devices

to gather additional supporting evidence. The groundwork has

been laid for future work on this topic, with a number of open

questions still remaining for exploration.
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