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Abstract—Smartphones save energy by entering a low power
suspend mode (<20mW) when they are idle. We find that on some
smartphones, WiFi broadcast frames interrupt suspend mode
and force the phone to switch to active mode (>120mW). As
a result, power consumption increases dramatically. To improve
energy efficiency, some phones employ a hardware broadcast
filter in the WiFi driver. All UDP broadcast frames other than
Multicast DNS frames are blocked, thus none is received by
upper layer applications. So, we have a dilemma of handling
WiFi broadcast traffic during smartphone suspend mode: either
receive all of them suffering high power consumption, or receive
none of them sacrificing functionalities. In this paper, we propose
Software Broadcast Filter (SBF) to address the dilemma. SBF is
smarter than the hardware broadcast filter as it only filters out
useless broadcast frames and does not impair functionalities of
applications. SBF is also more energy efficient than the “receive
all” method. Our trace driven evaluation shows that SBF can save
up to 52% energy consumption than the “receive all” method.

I. INTRODUCTION

Smartphones spend a large amount of time in a state where
they are not actively used. This state is usually referred to as
suspend or sleep mode. In this mode, the screen is off and
the processor is idle, so the phone consumes very little power.
For example, power consumption of Nexus One is 11 mW in
suspend mode while it is above 120 mW in active mode. By
turning smartphones into suspend mode while they are not in
use, considerable energy can be saved.

However, incoming WiFi traffic interrupts a smartphone’s
suspend mode and triggers the switch to the high power
active mode. One example is app notification when screen
is off. Another example, which is often overlooked, is WiFi
broadcast traffic. On some smartphones, such as Nexus One,
WiFi driver wakes up the whole system upon receiving a WiFi
broadcast frame during suspend mode. Moreover, in order to
allow enough time to process the frame and possible following
transmission events, WiFi driver requires a wake lock [1] of
one second. The phone stays in active mode until the wake
lock expires. As a result, battery drains fast even when a user
is doing nothing on the smartphone. Many users have been
complaining about this problem [2] [3] [4].

Actually, WLAN is not designed for smartphones at the
beginning. Although WiFi broadcast frames are destined to
the whole local area network, not all of them are useful to
smartphones, e.g. WiFi broadcast frames for printer service
discovery. It is energy inefficient to wake up the whole system
and stay awake just because of these useless background
broadcast frames. Smartphones have very limited battery life,

so it is important to handle WiFi broadcast traffic in an
energy efficient way. To improve energy efficiency, some
smartphones, such as Galaxy Nexus and Galaxy S4, receive
no broadcast frames except ARP and Multicast DNS frames
when they are in suspend mode. With this policy, higher energy
efficiency is achieved. However, this impairs the functionalities
as applications can not receive any broadcast frame during
suspend mode. Broadcast traffic is pervasive and important in
modern networks. Many network protocols rely on broadcast
to perform correctly or effectively, such as ARP, DHCP,
and DNS. Some system services employ broadcast packets
for resource discovery, such as NetBIOS Name Resolution.
Applications also embrace broadcast packets to communicate
with neighbors, such as LAN sync feature of Dropbox [5],
neighbor discovery of Spotify [6], and crowdsourcing based
content sharing applications [7] [8]. Failure to receive these
broadcast frames results in misfunction of system services or
user applications. Complaints regarding this issue [9] [10] [11]
[12] have also been posted in many technical forums.

Whether to receive a broadcast frame or not? It is dif-
ficult to tell because WiFi driver has no information about
what broadcast frames are needed by system services and
user applications. This leads to the dilemma of dealing with
WiFi broadcast traffic on modern smartphones during suspend
mode: receive all and suffer high power consumption, or
receive none and sacrifice functionalities. In this paper, we
address the dilemma by designing a flexible packet filter that
enables fine-grained policies to handle WiFi broadcast frames.
Specifically, we make two contributions.

• Through measurements and analysis, we investigate how
existing smartphones deal with broadcast traffic when in
suspend mode. Four smartphones are used for the study:
HTC Hero, Nexus One, Galaxy Nexus, and Galaxy S4.
Though power consumption and functionality analysis,
we reveal the problem of existing solutions, which we
refer to as the dilemma of handling WiFi broadcast traffic
during a smartphone’s suspend mode.

• We propose Software Broadcast Filter (SBF) to address
the dilemma, and compare it with solutions on modern
smartphones. Through energy modeling and trace driven
performance evaluation, we demonstrate the performance
of the proposed method. Compared to the “receive none”
solution, SBF does not impair functionalities of smart-
phone applications. Compared to the “receive all” solu-
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tion, SBF reduces the power consumption by up to 52%.
In literature, existing research mainly focuses on design-

ing energy efficient broadcast/multicast protocols for wireless
networks [13] [14] or reducing energy consumption of WiFi
unicast traffic when a smartphone is in active mode [15] [16]
[17]. However, we are different in that we study the impact of
WiFi broadcast traffic when a smartphone is in suspend mode.
This problem deserves attention because: (1) Broadcast traffic
has a broad impact as it affects all nodes in a network. (2)
Broadcast traffic is passive and typically arrives unexpectedly.
To the best of our knowledge, we are the first to present
measurements and analysis of different ways to deal with WiFi
broadcast traffic during smartphone suspend mode.

The rest of the paper is organized as follows. First, in Sec-
tion II we investigate how existing smartphones deal with WiFi
broadcast traffic during suspend mode, and reveal a dilemma
that existing solutions face with experimental study. Based
on our observations, in Section III, we propose a solution to
address the dilemma and model its energy saving. Then, in
Section IV, we demonstrate the performance through trace
driven performance evaluation. Finally, we discuss related
works in Section V and conclude this paper in VI.

II. REVEALING THE DILEMMA WITH EXPERIMENTS

To reveal the dilemma, we first introduce existing solutions
on four modern smartphones. Then, we carry out experiments
to show how they perform in term of functionality and energy
efficiency when WiFi broadcast traffic exists.

A. Understanding Existing Solutions on Modern Smartphones

To investigate how modern smartphones handle WiFi broad-
cast frames when in suspend mode, we analyze WiFi drivers of
four commercial smartphones listed in Table I. Note that some
802.11 control and management frames are also broadcast,
such as beacon frames. However, we only focus on data
frames as this is the part of traffic that we can leverage. Also,
we focus on MAC layer broadcast since we study behaviors
of WiFi driver. In IP layer, it can be either unicast address
or broadcast/multicast address. In this paper, by (UDP/ARP)
broadcast frames/traffic we simply mean WiFi broadcast data
frames/traffic (with UDP/ ARP data).

TABLE I: Devices used for analysis

device Android
version

kernel
version

WiFi
driver

HTC Hero 2.3.7 2.6.29 wlan.ko
Nexus One 2.3.7 2.6.37 bcm4329.ko
Galaxy Nexus 4.2.1 3.0.31 bcmdhd.ko
Galaxy S4 4.2.2 3.4.0 bcmdhd.ko

HTC Hero On this phone, WiFi driver receives all broadcast
frames and passes them to system network stack. When a
broadcast frame arrives during suspend mode, the system
wakes up to process the frame. At the same time, WiFi
driver requires a wake lock [1] of one second, which allows
enough time to process the current frame and any following
transmission events.

Nexus One This phone is equipped with ARP offload [18],
which enables a network adapter to respond to ARP requests
without waking up the system. For other broadcast frames,
it employs the same method as on HTC Hero: waking up
(resuming), staying in active state for one second, and then
going back to suspend mode. WiFi broadcast frames are
usually small. It will not take too much energy for the radio to
receive such frames. Figure 1 shows the power consumption
when a Nexus One phone wakes up to receive a WiFi broadcast
frame. Although the energy cost for the phone to resume and
go back to suspend is not negligible, we find that the main
part of energy is consumed during the one second wake lock
time triggered by the broadcast frame.
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Fig. 1: Power consumption when waking up to receive a
WiFi broadcast frame (measured on Nexus One with Monsoon
Power Monitor[19])

Galaxy Nexus and S4 The same as on Nexus One, these two
phones are also equipped with ARP offload. In addition, they
enable a hardware broadcast filter. This filter blocks all UDP
broadcast frames with the only exception of Multicast DNS
(MDNS) frames. As a result, no UDP broadcast frames other
than MDNS frames are received by the system when the phone
is in suspend mode.

B. Real World WiFi Broadcast Traffic Analysis

We collect traces to see how WiFi broadcast traffic looks
like in real world. Traces are collected in four locations:
a corridor inside a teaching building, a college library, an
office in a Computer Science Department, and an off-campus
Starbucks store. For each location, we capture all broadcast
frames under an AP for 30 mins during peek time.
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Fig. 2: Statistics of four broadcast traffic traces
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TABLE II: UDP ports used by WiFi broadcast frames in traces

index UDP
port

function index UDP
port

function

1 53 -unknown 17 6120 -unknown
2 67 DHCP bootps 18 6646 McAfee Shared Service Host, McAfee Integrated Security Platform
3 68 DHCP bootpc 19 8611 -unknown
4 137 Netbios-ns 20 8612 Canon BJNP Port 2, EMC2 (Legato) Networker or Sun Solcitice

Backup, QuickTime Streaming Server
5 138 Netbios-dgm 21 9164 apani5, EMC2 (Legato) Networker or Sun Solcitice Backup, Quick-

Time Streaming Server
6 161 Simple Network Management Protocol (SNMP) 22 9200 -unknown
7 177 X Display Manager Control Protocol 23 9956 Alljoyn Name Service, QuickTime Streaming Server
8 631 Common Unix Printing System, Internet Printing Protocol (IPP) 24 10007 mvs-capacity
9 1004 Mac OS X RPC-based services. Used by NetInfo, for example. 25 10019 Stage Remote Service
10 1211 Groove dpp 26 17500 Dropbox
11 1900 ssdp, Microsoft SSDP Enables discovery of UPnP devices 27 23499 -unknown
12 2222 Ethernet-IP-1, trojan 28 27036 Steam In-Home Streaming Discovery Protocol
13 2223 Rockwell-csp2, Microsoft Office OS X antipiracy network monitor 29 43440 Cisco EnergyWise Discovery and Command Flooding
14 3289 enpc 30 57621 Spotify
15 3600 Trap-daemon(text relay-answer) 31 65080 -unknown
16 5353 mdns

We calculate percentages of UDP or ARP broadcast traffic
as numbers of UDP or ARP broadcast frames divided by the
total number of WiFi broadcast frames. As shown in Figure
2(a), UDP and ARP broadcast frames account for more than
99% of WiFi broadcast traffic in all four scenarios.

We split the 30 mins traces into 5-min slices and calculate
UDP broadcast traffic volume in terms of frame arrival rate for
each slice. Figure 2(b) shows the mean and standard deviation
of frame rate for each trace. The average UDP broadcast
traffic volumes are all less than 11 frames/s. We also observe
that traffic volumes differ largely among these locations. The
lowest is 0.7 frame/s in the off-campus Starbucks store while
the highest is 10.4 frames/s in the college library.
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Fig. 3: UDP ports distribution (index defined in Table II)

From all four traces, we observe that 31 ports are used
for UDP broadcast. We list them in Table II and show the
distributions in Figure 3. Although there are 31 different UDP
ports, the majority of broadcast frames lie in a small portion
of them. While some of these broadcast frames are useless to
a smartphone, such as Canon BJNP on Port 8612 (with index
20), some of them are useful and important to a smartphone.
For example, users may keep smartphone screen off while
waiting for connection from nearby devices. If the smartphone
can not receive and respond to service discovery broadcast
frames, such as UPnP and Steam, other devices nearby will

not know presence of this smartphone. Thus, device can not
be connected and service can not be used. Another interesting
finding during our experiments is that LAN Sync feature
of Dropbox is not included in its Android app. One reason
would be that it can not work because some smartphones can
not receive broadcast frames for neighbor discovery when in
suspend mode. The “receive none” solution sacrifices func-
tionalities. What’s worse, without system support to receive
broadcast traffic during suspend mode, developers will be
pushed to abuse wake lock to prevent smartphones from
suspending, so as to ensure reception of broadcast packets.

C. Power Impact Measurements

To have a better understanding of the impact of WiFi
broadcast traffic on smartphone power consumption in suspend
mode, we carry out experiments to show how the power
consumption changes with different broadcast traffic volumes
when smartphones are in suspend mode. As already shown in
Figure 2(a), real word WiFi broadcast traffic mainly consists
of UDP and ARP broadcast frames. Therefore, we measure
the impact of UDP and ARP broadcast frames on power
consumption of smartphone suspend mode respectively.
Setup For the experiments, a private AP is set up to control
the background WiFi broadcast traffic volume. The traffic
generator, which is a desktop, sends out UDP or ARP broad-
cast packets following a Poisson distribution [20]. Payloads
of all broadcast packets are fixed to 50 bytes. We adjust the
traffic volume by varying the value of arrival rate λ for the
Poisson distribution. When λ = 0, there is no WiFi broadcast
traffic. We suppress all outgoing application traffic in order
to eliminate noise of transmission events. We keep WiFi
connected and screen off, then measure power consumption
of the whole phone with Monsoon power monitor [19], as
shown in Figure 4. Each measurement lasts 5 mins and each
data point is the average value of 5 repeated measurements.
Power Impact of UDP Broadcast Since we only consider
background WiFi broadcast traffic, we choose a UDP port
number that is not listened to by the phone. To measure
the broadcast impact, we first measure the average power
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Fig. 4: Experiment setup
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Fig. 5: Power impact of UDP broadcast
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Fig. 6: Power impact of ARP broadcast

consumption of the whole phone with screen off and WiFi
connected but no traffic (denoted as E0). Then, we measure
the average power consumption (denoted as E1) of the whole
phone with broadcast traffic added. The broadcast impact in
terms of energy is then calculated as E1 − E0. All power
consumptions are measured with Monsoon power monitor.

Figure 5 shows the results of the aforementioned four
phones. As we can see, power consumptions of Galaxy Nexus
and Galaxy S4 do not increase too much because these two
phones receive no UDP broadcast frames during suspend
mode. In contrast, HTC Hero and Nexus One receive all UDP
broadcast frames. Thus, power consumptions of these two
phones increase dramatically as UDP broadcast sending rate
increases. Power consumptions are less than 25mW for these
two phones when there is no UDP broadcast traffic. They rise
above 50mW when there is only one UDP broadcast packet per
second. Similar trends are also observed for Galaxy Nexus and
Galaxy S4 after disabling the hardware broadcast filter, which
are indicated by the curves named “Galaxy Nexus disabled”
and “Galaxy S4 disabled.” Additionally, for all four phones,
power consumption increase is slowed down when the UDP
broadcast sending rate exceeds 10 packets/s. This is because
the smartphones already spend most of time in the high power
active mode when there are 10 broadcast packets per second.
Further increase of WiFi broadcast traffic volume would not
obviously increase the portion of time in active mode.

Power Impact of ARP Broadcast In all ARP broadcast
packets, the IP address to be resolved does not belong to the
smartphone, as our concern is energy consumed by useless
broadcast frames. As shown in Figure 6, for HTC Hero,
increase of power consumption under ARP broadcast traffic
is similar to that under UDP broadcast traffic. However, ARP
broadcast traffic is observed to have little impact on the other
three phones. For example, power consumption of Nexus
One increases by less than 8mW when we increase the ARP
broadcast traffic from 1 to 20 packets/s. From our analysis in
the previous section, we learn that the reason is ARP offload.
As observed, ARP offload is efficient enough to deal with ARP
broadcast traffic. Therefore, in the rest of this paper, we target
at UDP broadcast traffic.

III. SOFTWARE BROADCAST FILTER DESIGN AND ENERGY
SAVING ANALYSIS

As we have demonstrated, current solutions of receiving all
or no broadcast frames sacrifice either functionalities or battery
life of a smartphone. To address the dilemma, we design a
flexible and fine-grained Software Broadcast Filter (SBF). To
demonstrate the energy efficiency of SBF, we first characterize
the energy consumption when a smartphone system wakes up
to receive a broadcast frame. Then, we get the energy saving
of SBF by modeling the energy consumptions of both SBF
and “receive all” method.

A. SBF Design

Fig. 7: SBF work flow inside WiFi driver

Figure 7 shows the work flow of SBF inside WiFi driver.
Actions outside the shaded rectangle are logicals of the
original WiFi driver. Actions inside the shaded rectangle are
logicals of SBF. All actions are numbered in order along the
work flow. For every UDP broadcast frame received by the
WiFi radio, SBF extracts the UDP port number and checks
with the system whether the UDP port is listened to or not
(Linux kernel maintains a hash table for all UDP port numbers
currently in use). If the UDP port is not listened to, this is a
useless broadcast frame. SBF simply drops it without requiring
a wake lock; otherwise, SBF passes the frame and lets the WiFi
driver continue with the processing.

Compared to the “receive none” hardware broadcast filter,
SBF is smarter in that it blocks all useless broadcast frames
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Fig. 8: power consumption during system resume and suspend (measured on Nexus One phone)

but lets the useful ones in. Thus, SBF does not impair the
functionality. To analyze energy efficiency of SBF, we first
build an energy model based on power profiles of Nexus One
and Galaxy S4 phone. Then, we compare power consumption
of SBF with that of the default “receive all” WiFi driver, based
on trace driven simulation.

B. Energy Characterization

In Figure 1, we have already seen a typical process of re-
ceiving a WiFi broadcast frame during a smartphone’s suspend
mode: waking up from suspend, receiving broadcast frames,
keeping awake for around one second if no traffic follows, and
then going back to suspend. We zoom in the process and show
a close look of resume part and suspend part in Figure 8.

As marked in Figure 8, there are mainly 6 phases during
the whole process. At first, the phone is in suspend mode with
very low power consumption (∼11mW). Then, the smartphone
enters the following phases one by one.

• Phase 1 - beacon This phase is the beginning of a
Delivery Traffic Indication Message (DTIM) interval.
During this phase, WiFi radio wakes up to receive the
beacon frame carrying broadcast traffic information. If the
beacon frame indicates that there is no frame buffered at
the AP, the smartphone stays at suspend state. Otherwise,
WiFi radio continues to receive data and enters Phase
2. Energy consumption during this phase is the energy
consumed to receive the beacon frame Ebeacon.

• Phase 2 - pre-resume This is the pre-resume phase.
During this phase, WiFi radio receives the broadcast
frame and sends an interrupt to the kernel. This triggers
the system resume. Energy consumption during this phase
is denoted as Epre.

• Phase 3 - resume The main task of this phase is system
and device resume. At the end of this phase, WiFi driver
processes the broadcast frame and starts the wake lock
timer which expires in one second. Energy consumed
during the whole phase is denoted as Es2a.

• Phase 4 - post-resume This is the post-resume phase.
After this phase, if there are no more tasks to do and no
more incoming WiFi data frames, the system becomes
idle. However, as the wake lock timer is active, the
system stays at active state until the timer expires. We
calculate energy consumption of this phase Epos as

the extra power consumption when compared to power
consumption during system idle.

• Phase 5 - wake-lock During this phase, if there are more
WiFi data frames coming in, WiFi driver can process
them immediately as the system is in active state during
the whole phase. At the same time, new incoming data
frames will update the wake lock timer to be one second.
If there are no more data frames, the smartphone goes
back to suspend state after the wake lock timer expires.
The average power consumption of system idle during
this phase is Psleep. This is the phase that SBF tries to
avoid or shorten. At the end of the post-resume phase
or anytime during this phase, if SBF finds out that the
broadcast data frame received is not listened to by any
application and the “more data” bit in the frame header
is not set (no more broadcast frames buffered at the AP),
it goes directly to Phase 6.

• Phase 6 - suspend This is the phase when the system
transits from active state to suspend state. We denote the
energy consumption as Ea2s.

During all phases, the small dark space right above the x-
axis in Figure 8 is the average power consumption when the
system is in suspend mode, denoted as Psuspend (∼11mW).

Energy consumption of handling WiFi broadcast frames
during a smartphone’s suspend mode can be divided into three
aspects. (1) The first aspect E1 is energy consumed by WiFi
radio to receive WiFi frames, including idle listening, data
transmission, and frame processing. (2) The second aspect
E2 is energy consumed by system state transfers, including
transitions from suspend to active and transitions from active
to suspend. (3) The third aspect E3 is energy consumed in
system idle state due to WiFi wake lock.

SBF is a software method. It does not stop WiFi radio
from receiving any broadcast frame. So, SBF does not impact
energy consumed by the first aspect. From Figure 1, we see
this part of energy is not dominant when broadcast traffic
is sparse. SBF increases energy consumption of the second
aspect because SBF puts smartphone into suspend mode more
aggressively than the “receive-all” solution. With SBF, the
chance that a broadcast data frame comes in when the system
is in suspend mode becomes higher. As a result, the frequency
of system state transfer increases. This is the overhead of
SBF. However, SBF reduces energy consumed in the third
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aspect because SBF reduces the time that the system spends
at idle/active state after receiving a broadcast frame. During a
smartphone’s suspend mode, energy reduction of SBF in the
third aspect is usually larger than the energy increase in the
second aspect, which is why SBF saves energy. Later, in our
evaluation results (Figure 9), we show how much energy is
consumed in these three aspects respectively.

C. Energy Saving Modeling

Suppose that a smartphone receives n UDP broadcast
frames during m beacon intervals. The ith broadcast frame
arrives at time ti (ti > ti−1 for all 1 ≤ i ≤ n) during beacon
interval bi (1 ≤ bi ≤ m). The frame length is Li and WiFi data
rate is ri. Beacon interval is τb, and it is typically configured to
be 100ms in real world WiFi networks. DTIM interval is set to
1, which means Delivery Traffic Indication Messages are sent
with every beacon. WiFi wake lock timer length is τw, which
is one second on the phones we used. In order to model energy
saving of SBF, we need to calculate the following parameters
for each frame Fi: system state when the broadcast frame
arrives s(i) (1 means suspend and 0 means active), start time
of wake lock timer tw(i), and wake lock effective time length
Twl(i). Without loss of generality, and to simplify the model,
we assume the first beacon interval starts at time 0 and the
initial state of the smartphone system is suspend, which is

sa(1) = sb(1) = 1

twa(1) = twb(1) = Tbeacon + Tpre + Ts2a

Tbeacon, Tpre, and Ts2a are time lengths of the beacon phase,
pre-resume phase, and resume phase, respectively. To differen-
tiate variables under different methods, we use superscript ‘a’
for variables under the “receive all” method and superscript ‘b’
for variables under SBF. Based on these two initial values, we
can calculate the corresponding parameters for all following
n − 1 frames under the “receive all” method and SBF,
respectively.

Energy Consumption of “receive all” If a frame i arrives
after the suspend phase of frame i− 1, then the system state
upon frame arrival is suspend mode. Otherwise, the system is
in active mode.

sa(i) =

{
0 , if ti ≤ twa(i− 1) + τw + Ta2s
1 , otherwise (1)

If a frame arrives during the suspend phase of the previous
frame, it interrupts the suspend process. We assume that
suspend energy cost is evenly distributed across the suspend
phase. Once a suspend process is interrupted, system transits
back to active mode immediately without extra transition
energy consumption. If sa(i) = 1 for a frame i, then the
system needs to transit from suspend mode to active mode
to process the frame. So, sa(i) can also be used to indicate
whether a broadcast frame triggers the system resume or not.

Wake lock timer for the ith(2 ≤ i ≤ n) broadcast frame
starts at time

twa(i) =


(bi − 1) ∗ τb + Tbeacon + Tpre + Ts2a

if sa(i) = 1

ti + Li/ri if sa(i) = 0

(2)

Wake lock effective time length for the ith(1 ≤ i ≤ n− 1)
broadcast frame is

T a
wl(i) = min{τw,max{0, ti+1 − twa(i)}} (3)

With the above three variables, we calculate system state
transfer energy consumption of “receive all” method as

Ea
2 = (Epre + Es2a + Epos + Ea2s) ∗

n∑
i=1

sa(i) + Ea
is (4)

where Ea
is is the energy consumed by interrupted suspends.

Ea
is =

Ea2s

Ta2s
∗

n∑
i=2

T a
is(i) (5)

with

T a
is(i) =


ti − twa(i− 1)− T a

wl(i− 1)

, if 0 < ti − twa(i− 1)− T a
wl(i− 1) < Ta2s

0 , otherwise
(6)

Then, the total energy consumed by the “receive all” method
is calculated as

Ea = Ea
1 + Ea

2 + Ea
3 (7)

where Ea
2 is already shown in Equation (4) and

Ea
1 = Pidle ∗ Tidle + Pr ∗

n∑
i=1

Li

ri
+ Efp ∗Nb (8)

Ea
3 = Psleep ∗

n∑
i=1

T a
wl(i) (9)

In Equation (8), Pidle is WiFi idle listening power consump-
tion. Pr is the power consumption of WiFi when WiFi radio
is receiving a frame. Since time to process a frame is very
short, we assume that WiFi groups the processing of all data
frames received during the same beacon interval. So, there
is only a one-time frame processing energy cost during a
beacon interval, denoted as Efp. Also, we assume Efp is
constant across all beacon intervals. Nb is the number of
beacon intervals with data frame(s). It is calculated as

Nb =| {i | ∃bj = i ∧ 1 ≤ i ≤ m ∧ 1 ≤ j ≤ n} | (10)

Tidle is the total time that WiFi radio spends at idle listening
before data transmission. Considering the total idle listening
time during a beacon interval bi, it is the time offset of the last
frame arrival event during the current beacon interval. Thus

Tidle =
m∑
i=1

[max{tj | bj = i} − (bi − 1) ∗ τb] (11)

Energy Consumption of SBF When SBF operates in a WiFi
driver, the system state upon frame arrival is
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sb(i) =

{
0, if ti < twb(i− 1) + T b

wl(i− 1) + Ta2s
1, otherwise (12)

Also, we have wake lock start time

twb(i) =


(bi − 1) ∗ τb + Tbeacon + Tpre + Ts2a

if sb(i) = 1

ti + Li/ri if sb(i) = 0

(13)

and wake lock effective time length

T b
wl(i) = max{0,min(bi ∗ τb, ti+1)− twb(i)} (14)

where dmore(i) stands for the “more data” bit in the MAC
layer header of the ith frame. If this bit is set, then SBF keeps
the smartphone awake until the next broadcast frame or the
next beacon interval, whichever comes first. Otherwise, SBF
puts the smartphone into suspend state immediately.

Then, state transfer energy consumption by SBF is

Eb
2 = (Epre + Es2a + Epos + Ea2s) ∗

n∑
i=1

sb(i) + Eb
is (15)

where Eb
is is energy consumed by interrupted suspends for

SBF.

Eb
is =

Ea2s

Ta2s
∗

n∑
i=2

T b
is(i) (16)

where

T b
is(i) =


ti − twb(i− 1)− T b

wl(i− 1)

, if 0 < ti − twb(i− 1)− T b
wl(i− 1) < Ta2s

0 , otherwise
(17)

Similarly, the total energy consumption of SBF is

Eb = Eb
1 + Eb

2 + Eb
3 (18)

where Eb
2 is already shown in Equation (15) and

Eb
1 = Ea

1 (19)

Eb
3 = Psleep ∗

n∑
i=1

T b
wl(i) (20)

Energy Saving of SBF With the total energy consumption
of both SBF and “receive all”, we calculate energy saving
percentage of SBF as

p =
Ea − Eb

Ea
(21)

IV. SBF PERFORMANCE EVALUATION

We evaluate performance of SBF in terms of energy effi-
ciency and delay through trace driven simulation. The traces
we used are the four traces we introduced in Section II-B.
With a Monsoon power meter, we measure and profile the
power/energy consumption of two phones: Nexus One and
Galaxy S4. The values are listed in Table III. To demonstrate

the energy efficiency of SBF, we compare it to the “receive
all” method and a calculated lower bound. To calculate this
lower bound, we assume that SBF has the information of future
frame arrival time. So, it can decide to keep the system active
until the next broadcast frame when the wake lock energy
consumption E3(i) is less than state transfer energy cost E2(i)
for the current frame i. This also gives the upper bound of
energy savings.

TABLE III: Energy profile

Ebeacon Epre Es2a Epos Ea2s

NexusOne 0.41 2.72 13.88 1.11 17.66
S4 0.56 3.08 34.54 20.65 85.8

Efp Pidle Psleep Psuspend Pr

NexusOne 1.022 370 125 11 530
S4 5.7 405 130 15 538

Tbeacon Tpre Ts2a Tpos Ta2s

NexusOne 0.0045 0.009 0.046 0.009 0.086
S4 0.0053 0.0114 0.044 0.039 0.165

energy in mJ , power in mW , time in second

A. Energy Saving

Energy savings of SBF are shown in Figure 9. In order
to normalize energy consumptions across different traces, we
translate energy consumption calculated with Equation (7) and
(18) to average power consumption. Also, we divide the power
consumption into three different aspects as presented in those
two equations. For each trace, we plot three bars. The left
bar is power consumption of the default “receive all” method.
In the middle is power consumption of SBF. The right bar
is oracle lower-bound power consumption. The values above
the bars are power saving percentages. The upper values are
power savings of SBF and the lower values are upper-bound
power savings from the oracle we defined.
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Fig. 9: Power consumptions of different methods (left
bar:“receive all”, middle bar: SBF, right bar: lower bound.)

Figure 9 shows that SBF saves considerable power for all
traces on Nexus One phone. The largest saving is 52.3% for
Starbucks trace while the smallest saving is 10.4% for library
trace. And the power savings of SBF are very close to the
lower-bound values from the oracle.

In order to better understand energy saving differences
across different traces, we show CDF of inter arrival time
of broadcast frames in each trace in Figure 10. As can be
observed from the figure, Starbucks trace has obviously longer
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Fig. 10: CDF of inter-arrival time of broadcast frames

frame inter arrival time than the other three traces. In this
case, the “receive all” method suffers because most of the
smartphone’s idle waiting turns out to be a waste as nothing
happens. For the same case, SBF benefits the most as it reduces
a lot of wake lock energy while only incurs a small amount of
state transfers overhead. For the other three traces, Figure 10
shows that more than 45% of the broadcast frames have inter-
arrival time less than 100ms. Which means, broadcast frames
tend to arrive in batches. This is easy to understand as AP
buffers these broadcast frames and sends them out together
in the next DTIM interval. In contrast, S4 can only save
energy for the Starbucks trace (∼ 12.6%). This is because state
transfer energy cost is quite high on S4 phone, as can be seen
from Table III. The overhead is too heavy to be counteracted
by wake lock energy reduction of SBF when the broadcast
traffic is not sparse.

B. Delay Overhead
The delay overhead of SBF consists of two parts. (1) SBF

takes the frame from WiFi driver, extracts the port number and
looks it up in a hash table to decide whether to drop or pass the
frame. So, the first part of delay is the local processing delay.
(2) When a broadcast frame arrives during a smartphone’s
suspend mode, SBF needs to first wake up the system. So, the
second part of delay is the waking up latency, which is around
60ms. Note that, this delay only impacts frames which trigger
the system resume and it also incurs under the “receive all”
method. Besides, SBF works during a smartphone’s suspend
mode where user is not delay sensitive to the traffic. Therefore,
this wake up latency is acceptable for suspend mode. So, our
delay evaluation here will focus on the local processing delay,
as it impacts every broadcast frame received by WiFi driver.

TABLE IV: Local Delay of Software Broadcast Bilter (λ=5)

mean (ms) stddev
SBF 1.1464 0.0036
Receive-all 1.1343 0.0038

To measure this local processing delay, we implement the
work flow shown in Figure 7 in WiFi driver of Nexus One.
During the experiments, we intentionally create 100 UDP
sockets on the smartphone. Then, we send 1000 UDP broad-
cast packets through the local area network to the smartphone.

We log the time (t1) when a frame enters step 3a in Figure 7,
and the time (t2) when the frame is received by the application.
Then, we calculate the mean and standard deviation of t2− t1
from eight repeated runs. As indicated in Table IV, the local
processing is very fast. With 100 UDP ports in use, local
processing delay only increases by 1.07%.

V. RELATED WORK

A number of prior solutions have been proposed to reduce
energy consumption on mobile devices. We focus on those
most closely related to our work.
WiFi power consumption measurements Balasubramanian
et al. [21] measure energy consumption of different compo-
nents of WiFi with downloading/uploading streams. Carroll
et al. [22] measure WiFi power consumption under various
scenarios, such as system suspend, system idle, emailing, SMS
messaging and so on. Perrucci et al. [23] measure power
consumption in different stages of WiFi when the phone
is downloading data. Cuervo et al. [24] also measure WiFi
power consumption with different amount of downloading
data. All these works focus on power consumptions consumed
by application communication, while we focus on power
consumption caused by background traffic.
Reducing WiFi power consumption Catnap [17] takes ad-
vantage of the bandwidth gap between wireless and wired
links. They batch the time that WiFi is idle listening for data
from wired network and put WiFi into sleep mode during
this time. Liu et al. [25] leverage traffic prediction to exploit
idle intervals as short as several hundred microseconds. All
these methods reduce the time a WiFi module stays at a high
power active state. However, our method reduces the time
an operating system spends in high power active state when
the phone is not actively used. During this time, the WiFi
driver is mostly in low power sleep state. So, these work are
complementary to ours.

Authors in [26] also check destination port number in WiFi
frames to determine if there is a process listening on that
port. They use this information to determine whether a frame
is delay sensitive or not. However, transmission of broadcast
frames are scheduled by AP for the whole local network. It
can not be delayed for a specific client. Hence, their solution
does not apply in our case.

The authors in [27] propose a solution to reduce energy
consumed by 3G/LTE interface staying in active mode unnec-
essarily. Rozner et al. [28] try to mitigate power consumption
increase when there is competitive background traffic. Bharad-
waj et al. [29] study PSM timeout in WiFi driver. These two
works control how wireless radio switches between active and
sleep. We control how the system switches between suspend
and active modes. In [30] [31], the authors study energy bugs
caused by wake lock. The case they study is when wake lock
is activated but is unable to be released. In our paper, the wake
lock triggered by WiFi driver is due to normal behavior not a
bug, as it can be released normally after the timer expires.

A similar work reducing system wakeup energy overhead
caused by WiFi is done on PC [32]. They employ a peripheral
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low power processor to receive all broadcast/unicast frames
with less energy cost when a PC is in suspend mode. In
contrast, we determine whether to take actions for a broadcast
frame or not, such as activating wake lock, putting packet data
to system network stack. As far as we know, we propose the
first work that studies solutions for handling WiFi broadcast
frames during a smartphone’s suspend mode.

VI. CONCLUSION & FUTURE WORK

This paper studies different ways to handle WiFi broadcast
traffic on modern smartphones during suspend mode. By
examining WiFi drivers on four Android smartphones, we
find that modern smartphones face the dilemma of handling
broadcast frames during suspend mode: either receive all UDP
broadcast frames suffering high power consumption or receive
none UDP broadcast frame sacrificing functionalities. We
analyze wireless traces under four different scenarios and show
that the “receive none” solution blocks both useless and useful
broadcast frames. For the “receive all” solution, we measure
the impact of WiFi broadcast traffic on power consumption
of smartphones in suspend mode. Results show that ARP
broadcast traffic only slightly increases the power consumption
due to ARP offload. However, power consumption increases
dramatically as UDP traffic volume increases.

Based on these findings, we propose Software Broadcast
Filter (SBF) for fine-grained UDP broadcast frame processing.
Compared to “receive none” approach, SBF does not impair
functionalities of smartphone applications as it only blocks
useless broadcast frames. Compared to “receive all” approach,
SBF saves up to 52.3% energy consumption. Meanwhile, SBF
only increases the local processing delay by 1.07%.

Software broadcast filter is not perfect but opens the door
for fine-grained WiFi broadcast filter research in smartphones.
As future work, we plan to improve SBF in the following
ways. We first plan to adapt SBF to reduce state transfer over-
head. For example, SBF can decide how long to keep awake
according to the current broadcast traffic volume. Second, we
will combine software broadcast filter and hardware broadcast
filter, switching between them according to the current context.
Finally, SBF works after a WiFi radio receives a frame and
the system already switches to active mode. In future, we plan
to leverage a low power radio, such as Bluetooth, to wake up
the smartphone only when necessary.
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