
IEEE INTERNET OF THINGS JOURNAL, VOL. 2, NO. 6, DECEMBER 2015 479

A Software-Based Sonar Ranging Sensor
for Smart Phones

Daniel Graham, George Simmons, David T. Nguyen, and Gang Zhou, Senior Member, IEEE

Abstract—We live in a 3-D world. However, the smart phones
that we use every day are incapable of sensing depth, without the
use of custom hardware. By creating new depth sensors, we can
provide developers with the tools that they need to create immer-
sive mobile applications that take advantage of the 3-D nature of
our world. In this paper, we propose a new sonar sensor for smart
phones. This sonar sensor does not require any additional hard-
ware, and utilizes the phone’s microphone and rear speaker. The
sonar sensor calculates distances by measuring the elapsed time
between the initial pulse and its reflection. We evaluate the accu-
racy of the sonar sensor by using it to measure the distance from
the phone to an object. We found that we were able to measure the
distances of objects accurately with an error bound of 12 cm.

Index Terms—Depth, ranging, sensing, smartphone, smart
phone, sonar.

I. INTRODUCTION

S ENSORS on mobile devices have allowed developers to
create innovative mobile applications. For example, the

use of GPS localization allows developers to create applications
that tailor their content based on the user’s location [1]. Other
sensors such as the proximity sensor help to improve the user’s
experience by disabling the touch screen when it detects that the
user has placed the phone next to his or her ear. This prevents
buttons from accidentally being pressed during a phone call
[2]. Since the release of Android 1.5, Google has added appli-
cation program interface (API) support for eight new sensors
[3]. These sensors include: ambient temperature sensors, ambi-
ent pressure sensors, humidity sensors, gravity sensors, linear
acceleration sensors, and gyroscopic sensors.

Developing new and innovative sensors for smart phones
will help open the field to new possibilities and fuel innova-
tion. In particular, developing sensors that allow smart phones
to perceive depth is key. Google’s Advanced Technology and
Projects Team share this vision. They are currently working on
a smart phone that uses custom hardware to perceive depth.
The project is nicknamed as: “Project Tango” [4]. Engineers
at NASA have also partnered with the Google team to attach
these phones to robots that will be sent to the international
space station [5]. However, Google’s structured light sensor
does not perform well in outdoor environments, since the light

Manuscript received December 18, 2014; revised February 23, 2015;
accepted February 23, 2015. Date of publication March 04, 2015; date of
current version November 17, 2015. This work was supported by the U.S.
National Science Foundation under Grant CNS-1253506 (CAREER) and Grant
CNS-1250180.

The authors are with the Computer Science Department, College of William
and Mary, Williamsburg, VA 23185 USA (e-mail: gzhou@cs.wm.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JIOT.2015.2408451

from the sun interferes with the sensor. In this paper we explore
the possibility of using sonar to provide depth sensing capabil-
ities in both indoor and outdoor environments and address two
unique research questions: 1) how do we design a sonar sensor
for smart phones using only the phone’s existing hardware? and
2) how do environmental factors such as noise, reverberation,
and temperature affect the sensor’s accuracy?

The proposed sonar sensor uses the smart phone’s rear
speaker and microphone and implements the sonar capabili-
ties on a software platform. The software process is comprised
of three major steps: 1) a signal generation step; 2) a signal
capture step; and 3) a signal processing step. During the sig-
nal generation step, the phone’s rear speaker emits a pulse. The
pulse forms a pressure wave which travels through the air until
it encounters an object, which then reflects the pulse and scat-
ters it in multiple directions. During the signal capture step, the
microphone captures the reflected pulse, and the distance to the
object is determined by calculating the time between the pulse
and its reflection.

However, factors such as noise and multipath propagation
negatively affect the system’s ability to accurately identify the
reflected pulse. To address this, we use a technique called pulse
compression. Pulse compression is the process of encoding the
pulse with a unique signature. This unique signature makes it
easier to distinguish the pulse from external noise [6]. The pulse
is recovered by calculating the cross correlation between the
noisy signal and the pulse.

In addition to being corrupted by noise, a pulse may some-
times overlap with another pulse. This occurs when objects
close to the system begin to reflect parts of the wave while
it is still being transmitted. This limits the minimum distance
at which an object can be detected. Encoding the pulse helps
to reduce this distance by allowing the filtering process to
distinguish between overlapping pulses.

The sonar sensor was evaluated using three metrics: 1) accu-
racy; 2) robustness; and 3) real-time performance. The accuracy
of the sonar sensor was evaluated by comparing the distances
reported by our sensor with known distances. The sensor accu-
rately measured distances within 12 cm. The robustness of
the sensor was evaluated by comparing the sensor’s accuracy
under different noise and reverberation conditions in different
environments. Finally, the sensor’s real-time performance was
evaluated by measuring the time that it takes to process a sig-
nal and return a measurement when different optimizations are
applied. Using a collection of optimizations, we were able to
reduce the processing time from 27 s to under 2 s.

In-air sonar has been extensively studied in the literature
and supports a vast array of sensing capabilities beyond simply

2327-4662 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



480 IEEE INTERNET OF THINGS JOURNAL, VOL. 2, NO. 6, DECEMBER 2015

Fig. 1. Overview of the process that the sonar system uses to calculate the
distance from the system to an object.

ranging. State-of-the-art systems can determine the 3-D posi-
tions of objects [7] and can even ascertain properties of these
objects [8]. However, these techniques cannot simply be ported
to smart phones. Implementing these techniques on smart
phones presents a collection of unique challenges and therefore
requires a measured and systematic approach. In this paper, we
begin by exploring ranging applications.

The main contributions of this paper are as follows:
1) presents a design and implementation of a sonar sen-

sor for smart phones that does not require specialized
hardware;

2) uses the smart phone’s temperature sensor to improve the
accuracy of the readings;

3) evaluates the sonar sensor under different reverberation
and temperature conditions.

The remainder of this paper is organized as follows.
Section II outlines the necessary background. Section III out-
lines the related work. Sections IV and V describe our approach
and system design. Section VI describes our evaluation. Finally,
Section VII concludes this paper.

II. BACKGROUND

A sonar system can be decomposed into three steps. Fig. 1
shows a simulated example of these steps. During the first step,
the system generates a pulse. This pulse travels through the
air until it encounters an object. Once the pulse encounters an
object, it is reflected by the object. These reflected waves then
travel back to the system which records the reflected pulse. The
time difference between the initial pulse and the reflected pulse
is used to calculate the distance to the object. Since the speed of
sound in air is known, the distance to an object can be calculated
by multiplying the time difference between the initial pulse and
the reflected pulse by the speed of sound, and dividing the result
by two. We need to divide by 2 because the time difference
between the reflected pulse and the initial pulse accounts for
the time that it takes the wave to travel from the phone to the
object and back.

The reflected pulse will contain noise from the environment.
This noise is reduced by filtering the signal. Fig. 2 shows the
signals that are generated or recorded at each step.

Fig. 2(a) shows the signal that is transmitted from the phone’s
rear speaker, and Fig. 2(b) shows the signal that is received
by the phone’s microphone. In Fig. 2(b), the received signal
contains both the initial pulse and the reflected pulse, and the

Fig. 2. (a) Original pulse that is transmitted. (b) Signal that is received by the
microphone. (c) Result of the filtering process. These figures are illustrative and
have been simulated using a sample rate of 44.1 kHz.

phone’s microphone will pick up both the transmitted signal
and its reflection. This is common in sonar systems where both
the transmitter and receiver are located close to each other. Such
sonar systems are called monostatic sonar systems. In Fig. 2(b),
the second pulse represents the reflected pulse. Fig. 2(c) shows
the output of the filtering process. The peaks in the resulting
filtered signal correspond to the location of the pulse in the orig-
inal signal. The filtering process will be discussed in detail in
Section IV-D.

In Fig. 2(b), the reflected signal has a smaller amplitude than
the initial pulse because some of the energy has been lost. This
is because as sound travels through free space, its energy per
square meter dissipates as a fixed amount of energy gets spread
over a larger surface area. This dissipation is governed by the
inverse wave square law [9]. Fig. 1 provides a visual explana-
tion of the inverse-wave square law. As the wave moves from
location R1 to R3, its energy density decreases since the same
amount of energy is spread over a larger surface area.

As the wave travels further from the transmitter, its power
density decreases. If an object is too far away, the energy den-
sity of the wave that encounters the object may not be enough to
generate a reflected wave that can be picked up at the receiver.
Distance is not the only factor in determining the amount of
energy that is reflected. The amount of energy that is reflected
is also determined by the composition and cross-section of the
object. Larger objects have larger cross-sections and therefore
reflect more energy, while smaller objects have smaller cross-
sections and therefore reflect less energy. Because objects with
larger cross-sections reflect more energy, they can be detected at



GRAHAM et al.: SOFTWARE-BASED SONAR RANGING SENSOR FOR SMART PHONES 481

larger distances. However, objects with smaller cross-sections
can only be detected at smaller distances because they reflect
less energy. Another key insight for sonar systems is that large
flat surfaces act like mirrors and mostly reflect sound waves in
the direction of their surface normal. This property is known as
the mirror effect.

Sonar systems attempt to accommodate for these limitations
by designing special speakers and microphones. To improve the
range of sonar systems, speakers are designed so that they focus
the speaker’s output. The concept of focusing the speaker’s
output is known as the speaker’s gain. Focusing the speaker’s
output allows sound waves to travel further, in a specified direc-
tion. Sonar systems also attempt to improve their range by being
able to pick up weaker signals. Just as objects with large surface
areas are able to reflect more energy, microphones with large
surface areas are able to receive more energy. The concept of a
microphone’s surface area is known as the microphone’s aper-
ture. Once the wave reaches the microphone, it is only able to
pick up a subsection of the waves energy. Sonar systems use
an array of microphones to increase the receiving surface area,
thus increasing the microphone’s aperture. Now that we have
developed an intuition for sonar systems, we will compare the
state-of-the-art in-air sonar systems with our proposed system,
highlighting the key differences and technological challenges
that arise when implementing a sonar system on a smart phone.

III. RELATED WORK

In 1968, Dean wrote a paper entitled “Towards an air Sonar”
in which he outlined some of the fundamental challenges of
designing in-air sonar [10]. These challenges included acoustic
mismatch and wind effects. Since Dean’s paper, several in-air
sonar systems have been developed for a variety of applications.
These systems include: ultrasonic imaging [11], ultrasonic
ranging for robots [12], and SODAR (SOnic Detection And
Ranging) systems that measure atmospheric conditions [13].
However, all of these systems have been implemented using
custom hardware. By using custom hardware, these systems are
able to address many of the challenges associated with in-air
sonar systems. This is where our system is different. The sonar
sensor that we proposed does not use any custom hardware and
must compensate for the limitations of the commodity hardware
in everyday smart phones.

The earliest occurrence of a smart phone-based ranging sen-
sor in the literature occurred in 2007 when Peng et al. proposed
an acoustic ranging system for smart phones [14]. This rang-
ing sensor allowed two smart phones to determine the distance
between them by sending a collection of beeps. The sensor was
accurate to within centimeters. The sensor is a software sensor
and only uses the front speaker and microphone on the phone.
Our sensor is different from the sensor in [14] because it allows
smart phones to determine the distance from the phone to any
arbitrary object in the environment.

In 2012, researchers at Carnegie Mellon University pro-
posed a location sensor that allowed users to identify their
specific location within a building [15]. The system proposed
by the researchers used a collection of ultrasonic chirps that
were emitted from a collection of speakers in a room. A smart

phone would then listen for these chirps and use this informa-
tion to locate a person in a room. The phone was able to do
this by using the chirps from the speakers to triangulate itself.
For example, if the smart phone is closer to one speaker than
another, it will receive that speaker’s chirp before it receives
the chirp from another speaker. Since the locations of the speak-
ers are known and the interval of the chirps is also known, the
phone is able to use the chirps to triangulate its location. Our
system is different from this one, since it attempts to determine
the location of the smart phone relative to another object.

Other researchers have also implemented in-air sonar
systems on other unconventional systems. For example,
researchers at Northwestern University have implemented a
sonar system on a laptop [16]. Other researchers have also
uploaded code to MATLAB central that implements a sonar
system on a laptop by using MATLAB’s data acquisition frame-
work [17]. The closest sensor to the proposed sensor is an
iphone application called sonar ruler [18]. The application mea-
sures distances using a series of clicks. The application does
not filter the signal and requires the user to visually distin-
guish the pulse from the noise. Our sensor is different from the
sonar ruler application because our sensor filters the signal and
does not require the user to manually inspect the raw signal.
Removing the need for user input allows the proposed sensor
to be abstracted using an API. Being able to abstract the sen-
sor using an API is important because it allows the sensor to be
easily used by other applications.

IV. DESIGN

The system is comprised of three major components: 1) a sig-
nal generation component; 2) a signal capture component; and
3) a signal processing component. Fig. 3 shows an overview of
these components. The signal generation component is respon-
sible for generating the encoded pulse. This component is
comprised of two subcomponents: 1) a pulse/chirp generation
component and 2) a windowing component. The second com-
ponent is the signal capture component. The signal capture
component records the signal that is reflected from the object.
The third component is the signal processing component. The
signal processing component filters the signal and calculates the
time between the initial pulse and its reflection. This component
is comprised of two subcomponents. The first component is the
filtering component and the second subcomponent is the peak
detection component. We discuss each component in detail in
the following sections.

A. Generating the Signal

The signal generation process is comprised of two subpro-
cesses. The first subprocess generates an encoded pulse, while
the second subprocess shapes the encoded pulse. We discuss
each part of the process in a separate subsection. We begin
by discussing the pulse-encoding process which is also called
pulse compression.

1) Pulse Compression: Pulse compression makes it easier
to recover a pulse by encoding the pulse with a unique signa-
ture. The pulse can be encoded using amplitude modulation or



482 IEEE INTERNET OF THINGS JOURNAL, VOL. 2, NO. 6, DECEMBER 2015

Fig. 3. Overview of the sonar system’s architecture.

frequency modulation. Amplitude modulation is the process of
encoding a wave by increasing or decreasing the amplitude of
sections of the wave, while frequency modulation is the pro-
cess of varying the frequency of different sections of the wave.
The state-of-the-art pulse compression approach uses frequency
modulation to create an encoded pulse, since frequency modu-
lation is less susceptible to noise [19]. The encoded pulse is
known as a linear chirp. A linear chirp is a signal whose fre-
quency increases linearly from a starting frequency to an ending
frequency.

Fig. 4(a) shows an image of the linear chirp in the time and
frequency domain. The signal was sampled at 44.1 kHz, so each
sample index represents 0.227µs. The signal starts at a low
frequency and progresses to a higher frequency.

Now that we have discussed the intuition behind a linear
chirp, we will look at how the signal is generated. A linear
chirp can be expressed as a sinusoidal function. Equation (1)
describes how the amplitude of a linear chirp signal varies with
time. The value f0 represents the initial frequency, the value
k represents chirp rate (how quickly the frequency increases),
and φo represents the phase of the pulse. The chirp rate can be
determined using (2)

x(t) = sin

[
φ0 + 2π

(
f0 ∗ t+ k

2
∗ t2

)]
. (1)

In (2), the values f0 and f1 represent the starting and ending
frequencies, respectively. The value t1 represents the duration
of the pulse

k =
f1 − f0

t1
. (2)

Equation (1) represents the continuous time representation of
a linear chirp. However, the signal must be discretized before it
can be played by the phone’s speaker. The signal is discretized
by sampling equation (1) at specific time intervals. The time
intervals are determined based on the sample rate and the pulse
duration. In our implementation, a linear chirp was generated

Fig. 4. (a) Unwindowed linear chirp time and frequency domain sampled at
44.1 kHz. (b) Unwindowed linear chirp autocorrelation showing sidelobes.
(c) Windowed linear chirp time and frequency domain sampled at 44.1 kHz.
(d) Windowed linear chirp autocorrelation showing no sidelobes These fig-
ures show the time and frequency domain representation for the windowed and
unwindowed linear chirp

TABLE I
CHIRP PROPERTIES TABLE

using the parameters shown in Table I. Though we have selected
a linear chirp with these properties, it is important to note that
other linear chirps can be used with different frequencies and
sweep times.

Now that we have discussed how the encoded pulse is gener-
ated, we will discuss how the pulse is shaped in the next section.
This process of shaping the pulse is known as windowing.

2) Windowing the Pulse: The windowing process is the
second subprocess of the signal generating process. The



GRAHAM et al.: SOFTWARE-BASED SONAR RANGING SENSOR FOR SMART PHONES 483

windowing subprocess shapes the pulse by passing it through a
window. Shaping the pulse improves the pulse’s signal-to-noise
ratio by improving the peak-to-sidelobe ratio. This becomes
clearer when we compare the autocorrelated representation
of the windowed signal in Fig. 4(d) with the unwindowed
signal in Fig. 4(b). Notice that the autocorrelated representa-
tion of the windowed signal does not contain the additional
peaks/sidelobes that are in the autocorrelated representation of
the unwindowed signal.

The signal in Fig. 4(c) was windowed using a hanning win-
dow [20]. The pulse is shaped by multiplying it by a hanning
window of the same length. The hanning window is described
by (3). In (3), N represents the number of samples in the win-
dow and n represents the index of a sample. Since the pulse
is 0.01s and the sample rate is 44.1 kHz, the window has a
length of 441 samples. The discretized pulse is shaped by per-
forming an element-wise multiplication between the discretized
pulse vector and the discretized hanning window. Finally, the
discretized shaped pulse is sent to the speaker’s buffer to be
transmitted

H[n] = 0.5 ∗
(
1− cos

(
2 ∗ π ∗ n
N − 1

))
. (3)

B. Capturing the Signal

Once the system has transmitted the pulse, the next step is
capturing the pulse’s reflection. The signal capture component
is responsible for capturing the signal’s reflection. However,
accurately capturing the signal possess two unique challenges.
The first challenge is working with the constraints of the
phone’s sampling rate and the second challenge is concurrently
managing the hardware’s microphone and speaker buffers.

1) Sampling Constraints and Hardware Requirements: The
range of frequencies that can be recovered by the phone is lim-
ited by the maximum sampling rate and frequency response of
the hardware. This is because in order to recover a wave, we
must sample at more than twice the wave’s frequency. This
means that the frequencies that can be contained in the linear
chirp are limited by the sampling rate of the microphone and
speaker. The microphone and speaker on the Nexus 4 has a
maximum sampling rate of 44.1 kHz. This means that without
the use of compressive sensing techniques, it is only possible to
generate and record a maximum frequency of 22 050 Hz, since
Nyquist sampling theorem states that we must sample at twice
the frequency of signal that we are attempting to recover. To
ensure that we remain within the sample range of most phones,
we use a linear chirp that ranges from 4 to 8 kHz. Limiting the
frequency range of the linear chirp allows us to address the sam-
pling constraints of the hardware. In addition to the sampling
constraints of the hardware, the phone’s speaker and micro-
phone have frequency response constraints. This means that
they are only able to generate and receive a limited range of fre-
quencies. This frequency response depends heavily on the make
and model of the microphone and speaker, which can vary dras-
tically among devices. To mitigate this, we select a frequency
range for the chirp that is slightly above the range of the human
voice. So, most smart phone microphones and speakers should
be able to transmit and receive the pulse.

2) Concurrency Problem: State-of-the-art sonar systems
have the ability to concurrently manage the microphone and
speaker buffers. Synchronizing the buffers is important for
sonar systems because ideally the system would start recording
immediately after it has finished sending the pulse. Starting the
recording immediately after the pulse is transmitted provides
a baseline for calculating the time difference between when the
initial pulse was sent and when the reflected pulse was received.
If the buffers are not well managed, the recording may con-
tain the initial pulse, and the time index of the reflected pulse
will not accurately represent the time between the initial pulse
and the reflected pulse. The android operating system does not
allow for real-time concurrent management of the microphone
and speaker buffers, so synchronizing them is challenging. This
means that we must find a way to accurately calculate the time
between the initial pulse and reflected pulse without managing
the buffers in real time.

We solve the concurrency problem by starting the recording
before the pulse is transmitted. Starting the recording before
transmitting the pulse allows us to record the initial pulse as
well as the reflected pulse. We can then calculate the distance
by calculating the time between the first pulse and the sec-
ond pulse, since we have recorded both. This solution works
because the proposed sonar system is monostatic which means
that both the microphone and the speaker are located on the
same device.

C. Processing the Signal

Now that we have explained how the sonar system gener-
ates a pulse and captures its reflection, we can discuss how the
captured signal is processed. The process of analyzing the sig-
nal is comprised of two subprocesses. The first process is the
filtering process. The signal is filtered by calculating the cross-
correlation between the known signal and the noisy signal. The
result of the filtering process is passed to the peak detection
process, which detects the peaks in the output and calculates
the distance between each peak. The distance between peaks is
used to calculate the distance between an object and the sonar
system.

D. Frequency Domain Optimization

The cross-correlation process works by checking each
section of the noisy signal for the presence of the known sig-
nal. Each section of the noisy signal is checked by calculating
the sum of the element-wise multiplication between the known
signature and the signal. Equation (4) describes this process.
The � notation represents the cross-correlation operation and
the value f ′ represents the complex conjugate of f

(f � g)[n] =
∞∑

m=−∞
f ′[m]g[n+m]. (4)

Calculating the cross-correlation of the signal can be com-
putationally expensive. This is because, the algorithm that is
normally used to calculate the cross-correlation of two signals
has an algorithmic complexity of O(n2). [Assuming that both
signals (f and g) have the same length.] However, it is possible



484 IEEE INTERNET OF THINGS JOURNAL, VOL. 2, NO. 6, DECEMBER 2015

Fig. 5. (a) Noisy signal that was captured at approximately 2.5 m from the
wall. (b) Filtered signal. (c) Result of applying the envelope detection algo-
rithm. (d) Detection threshold values applied to another sample taken at 1.5 m.
A Nexus 4 smart phone was used to collect these readings by measuring the
distance to an outdoor wall on a college campus.

to optimize the algorithm by performing the computation in
the frequency domain. Equation (5) shows how to compute the
cross-correlation of two signals in the frequency domain. The
F is the mathematical notation for the Fourier transform, and
F−1 represents the inverse Fourier transform

(f � g) = F−1[F [f ]′ · F [g]]. (5)

Matches are represented by large peaks in the output of
the filtering process. Higher peaks represent better matches.
Fig. 5(a) shows a noisy signal which contains the initial pulse

and its reflection, and Fig. 5(b) shows the output of the filtering
process. Notice that the output of the filtering process contains
two prominent peaks. These peaks correspond to both the initial
pulse and its reflection.

Computing the correlation in the frequency domain allows
for faster computation since the algorithm has a lower algo-
rithmic complexity O(n log(n)). The process can be further
optimized since the Fourier transform of the known signal has
to be computed only once. Reducing the number of samples
will also result in faster computation times.

Now that we have discussed the filtering process we can dis-
cuss the process that is used to detect the peaks in the filter’s
output.

E. Peak Detection and Reverberation

Performing peak detection on the cross-correlation function
is difficult, since the resulting function is jagged and contains
several small peaks. To mitigate this, we calculate the enve-
lope of the cross-correlation by calculating the analytic signal
of the frequency domain multiplication of the pulse and the
received signal. The analytic signal is calculated by setting the
negative frequencies to zero and doubling the positive frequen-
cies. Once the analytic signal has been calculated, the absolute
value of the inverse Fourier transform is calculated to deter-
mine the final envelope. Fig. 4(c) shows an example of the
envelope.

The output of the filtering process is a collection of peaks.
The sonar system needs to automatically detect these peaks and
calculate the distance between them. In an ideal case, the signal
would only contain as many peaks as there are objects in the
wave’s path and a simple peak detection algorithm could be
applied. However, factors such as noise cause the filtered signal
to contain other peaks.

To account for the noise in the filtered signal, we propose a
new peak detection algorithm that selects the most prominent
peaks. By only considering peaks above a fixed threshold it
is possible to remove the number of peaks that correspond to
noise. This threshold can be determined empirically. We define
a peak as a point which is higher than its adjacent points.

Algorithm 1. Peak Dectect Algorithm

Input: array, threshold
Output: PeakArray
for i = 0; i < array.length; i++ do

if array[i] > array[i− 1]and array[i] > array[i+ 1]
then

if array[i] ≥ threshold then
PeakArray.add(i);

end
end

end

We propose a peak detection algorithm for detecting the
peaks in the cross-correlation result. The threshold that we
chose for the Nexus 4 was 22 ∗ 109. This threshold provides
the best tradoff between accuracy and range. We selected
this threshold empirically by taking ten samples in a room at



GRAHAM et al.: SOFTWARE-BASED SONAR RANGING SENSOR FOR SMART PHONES 485

Fig. 6. Error in meters versus the threshold value. These readings were
collected using a Nexus 4 smart phone.

Fig. 7. The figures show an example of how pulse compression helps reduce
the minimum distance at which objects can be detected. (a) Combination of
the two pulses that are received by the microphone. The first pulse is a linear
chirp 4–8 kHz with a sweep time of 10 ms, while the second pulse has the
same parameters but is attenuated by a factor of 0.4. (b) Result of the filtering
process. All signals shown in this figure were sampled at a rate of 44.1 kHz.

different distances. We then selected the detection threshold
that resulted in the least number of peaks above the line. The
height of a peak is a reflection of the quality of the received
signal. The last peak corresponds to the object that is the fur-
thest from the smart phone, while the first peak represents the
object that is closest to the phone. Fig. 4(d) shows the threshold
superimposed on the filtered signal. Furthermore, Fig. 6 shows
the error in meters versus the threshold that was selected.

We have considered a collection of approaches for deter-
mining the threshold including other functions that are more
complex than the proposed linear one. However, since the
height of the correlation peak also depends on the sensitivity of
the microphone, the user needs to be able to calibrate the device
by adjusting the threshold. A simple linear function makes this
calibration process easier. Fig. 8(a) shows the user interface
slider that is used to adjust this threshold.

F. Increasing the Minimum Detection Range

The minimum distance at which a sonar system can iden-
tify an object is limited. If objects are too close to the system,
they will reflect parts of the linear chirp while other parts are
still being transmitted. This is because the linear chirp is not
transmitted instantly but rather over a period of 10 ms.

Consider the example shown in Fig. 7(a). This figure shows
an illustration of the signal that is received when a pulse is
reflected from an object at 0.41 m, overlaps with the initial

pulse. Notice that it is not possible to visually distinguish the
initial pulse from its reflection. This is because as the first lin-
ear chirp is generated, it begins to travel through the air until it
encounters an object at 0.41 m, 2.5 ms later. The object will
then reflect the waves and the reflected waves will arrive at
the system 5 ms later. This is problematic since the system is
recording both the pulse and the reflection. The reflected sig-
nals will interfere with the signal that is being generated since
the generated signal has a duration of 10 ms. This means that
the sonar system cannot detect objects within a 1.65-m radius.

There are two ways to decrease the minimum distance at
which an object can be detected. The first method is to reduce
the duration of the pulse. Reducing the duration of the pulse
reduces the amount of time that subsequent reflections have to
overlap with the pulse. However, reducing the duration of the
pulse increases the signal-to-noise ratio. The second method is
pulse compression.

Pulse compression allows the cross-correlation process to
identify pulses even when they overlap without increasing the
signal-to-noise ratio. Fig. 7(b) shows the signal that results from
two overlapping pulses and the output of the filtering process.
The two peaks correspond to the correct location of the pulses.
Notice that even though the pulses overlapped, the filtering pro-
cess was able to recover two distinct peaks, because they were
encoded. The only thing that limits the minimum distance now
is the width of the autocorrelation peak.

G. Temperature’s Impact on the Speed of Sound

Environmental factors such as temperature, pressure, and
humidity affect the speed of sound in air. Because these factors
affect the speed of sound in air, they also affect the accuracy of
a sonar system. The factor that has the most significant impact
is temperature [21]. In this section, we show how the ambi-
ent temperature can significantly affect the accuracy of a sonar
system. We also propose a method for increasing the system’s
accuracy by using the phone’s temperature sensor to estimate
the air’s temperature.

Equation (6) from [22] describes the relationship between the
speed of sound and the air temperature

v(Tc) ≈ 331.4 + 0.6 ∗ Tc (6)

where Tc represents the air temperature and v(Tc) represents
the speed of sound as a function of air temperature. From (6),
we can see that underestimating the temperature will result
in a speed of sound that is slower than its actual speed.
Underestimating the speed of sound will cause objects to appear
further away than they actually are, while overestimating the
temperature will overestimate the speed of sound, thus causing
objects to appear closer than they actually are.

Overestimating or underestimating the temperature by a sin-
gle degree results in an error of 0.6 m for every second of time
that has elapsed. Therefore, we can improve the accuracy of the
sonar sensor by using the phone’s temperature sensor. Several
phones such as the Samsung S4 now have ambient temperature
sensors [23].



486 IEEE INTERNET OF THINGS JOURNAL, VOL. 2, NO. 6, DECEMBER 2015

Fig. 8. (a) Application screenshot of the sonar sensor application running on the Nexus 4. (b) Experimental setup that was used in the evaluation.

H. Smart Phone Application

Fig. 8(a) shows a screenshot of the sonar application. The
top graph shows the raw signal that was captured by the micro-
phone. The number in the top left shows the distance in meters.
The number below it shows the distance in feet. The graph at
the bottom shows the absolute value of the filtered signal. The
highest peak represents the initial pulse, while the second high-
est peak represents the reflected pulse. The x-axis in both the
top and bottom graphs represents the sample index. The graphs
have been designed so that the user is able to zoom in the graphs
by pinching the display. Subsequent readings are overlaid on the
original graph. This allows the user to easily validate the peaks.
The horizontal line in the bottom graph represents the detec-
tion threshold. Only peaks above this threshold are considered
by the peak detection algorithm. The slide bar on the top left
is used to adjust the threshold and the value in the box next to
it displays the value of the detection threshold. New measure-
ments are taken by pressing the “measure distance” button. If
the output of the filtering process does not contain peaks above
the threshold, the system will report a measurement of zero. The
application will also display a message to the screen that asks
the user to take another measurement. Since graphs for each
measurement are overlaid on each other, the user may reset the
display by simply rotating the phone.

To obtain a good reading, the user must not cover the phone’s
microphone or rear speaker. If the user covers the phone’s rear
speaker, the sound from the rear speaker will be muffled and the
chirp signal will be suppressed. If the user covers the phone’s
microphone, the reflected pulse will not be received. It is also
important to calibrate sensor by adjusting the threshold as pre-
viously described. The source code and application package
(APK) file for this application is available on github.1

V. PERFORMANCE EVALUATION

We evaluate the sonar system using three metrics: 1) accu-
racy; 2) robustness; and 3) real-time performance. We evaluate
the accuracy of the system by measuring known distances
under different temperature and reverberation conditions. The
accuracy of the system is then determined by comparing the
known values to the measured values. All measurements that
are reported in this section were collected using a Nexus 4 smart
phone.

1[Online]. Available: http://researcher111.github.io/SonarSimple

A. Evaluating the Impact of Temperature and Reverberation

In this section, we explain the process that we used to con-
currently measure the sonar system’s accuracy and robustness.
We measure the sonar sensor’s accuracy by using it to measure
known distances. Ten measurements were taken at distances
between 1 and 4 m. This range was divided into 0.5 m incre-
ments: 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4. To ensure that the
measurements were taken in the same position every time, the
phone was placed on a tripod. The tripod was placed at a height
of 1.53 m. It is important to note that stability is not a require-
ment. The phone does not need to be held perfectly still to
obtain a reading. However, since we are evaluating the accuracy
of the sonar system, we wanted to ensure that the readings were
taken at the same distance every time. Fig. 8(b) shows a pic-
ture of the phone on the tripod. We also evaluated the sensor’s
accuracy in different environments. In particular, we examined
the sensor’s performance in environments that were expected
to have different levels of reverberation and ambient noise. It
is well known that reverberation affects the accuracy of sonar
systems [24]. Reverberation occurs when a reflected signal is
scattered in multiple directions and reflects off other objects
in the environment. Some signals may arrive at the receiver
later since they have taken a longer path. The signal-processing
component at the receiver must decide among these multiple
reflections. We evaluate the sensor’s robustness by repeating the
measurement process above for environments that are expected
to have different levels of reverberation and ambient noise.
Fig. 9 shows a photograph of each of these environments.

Fig. 10(a) shows the results of the outdoor measurements.
The y-axis represents the measured distance, while the x-axis
represents the known distance. The dotted line represents a
perfect match between measured distances and the known dis-
tances. Ideally, the sensor’s readings should perfectly match
this line. The bars represent the standard deviation of the mea-
surements. Each point on the graph represents the average of
the ten readings. The solid black lines represent the readings
that were taken using 330 m/s as the speed of sound. The
green lines represent the readings that were taken using the
temperature-adjusted speed of sound. Notice that most of the
nontemperature-adjusted readings are slightly below the ideal
line. This is because the speed of sound is temperature depen-
dent. Sound travels at 330 m/s at −1 ◦C; however, it travels
faster at higher temperatures, e.g., 343.6 m/s at 21 ◦C. Since
the system is assuming that sound waves are traveling slower



GRAHAM et al.: SOFTWARE-BASED SONAR RANGING SENSOR FOR SMART PHONES 487

Fig. 9. Photographs of all three environments. (a) Outdoor environment. (b) Large carpeted indoor classroom. (c) Small indoor room 3.2 m × 3.1 m.

than they actually are, the system under estimates the distance.
Some smart phones have temperature sensors. These sensors
can be used to improve the accuracy of the system.

The outdoor environment is expected to have the least
reverberation, since it is an open environment in which other
reflecting surfaces are far away. Ten measurements were taken
at fixed distances between 1 and 4 m. Once the ten measure-
ments have been taken, the tripod is moved to the next 0.5 m
increment. The process is repeated until measurements have
been taken at all seven distances, for a total of 70 readings.
When the measurements were taken, there was low ambient
noise, light foot traffic, and conversation.

The second environment is a large indoor carpeted class-
room. This environment is expected to have more reverberation
than the outdoor environment, since it contains several chairs
and tables. For this experiment, the tripod is set up facing a
wall in the classroom. The measurement process is repeated
until all ten measurements were obtained for all seven distances.
The measurements were plotted in a similar fashion to the out-
door results. Fig. 10(b) shows a plot of these results. Notice the
indoor measurements underestimate the ideal line even more
than the outdoor environment. This is because the classroom is
warmer than the outdoor environment, and therefore the sound
waves are traveling faster. Notice that the measurement at 1.5 m
has a high standard deviation. This is due to the effects of rever-
beration. The indoor classroom also contained ambient noise
such as the rumbling of the air conditioning unit.

The final environment is a small indoor room that is not car-
peted. The room is 3.2 m × 3.1 m and has a ceiling, i.e., is
2.9 m high. All the walls in the room are solid brick. This room
is expected to have the highest level of reverberation. Since
the room is small and contains tables and chairs, the sound
waves are expected to bounce off multiple objects, thus result-
ing in a high level of reverberation and interference. Fig. 10(c)
shows the results for the experiments performed in the room.
Notice the high standard deviation. This is expected since the
room is expected to have a high degree of reverberation. The
standard deviation is larger at smaller distances in the small
room because as the phone is placed closer to the wall, the
reverberation effects are greater, due to the proximity of the
neighboring walls. The room also contains ambient noise from
the air conditioning unit.

The results in Fig. 10 lead us to conclude that this system
works well in environments that have low reverberation such as
outdoor environments and large rooms, but does not work well
in areas that have high reverberation such as small rooms.

Fig. 10. Measurements that were taken in all three environments. (a) Results
for the outdoor environment. (b) Results for the large carpeted indoor class-
room. (c) Results for the small indoor room 3.2 m × 3.1 m.

B. Evaluating the Detection of Multiple Objects

In this experiment, we use the sonar sensor to detect the dis-
tance from the phone to three walls that form the sides of a
wheel chair ramp. Fig. 11 shows a photograph of the walls. The
output of the filtering process is shown in Fig. 12(a). Notice that



488 IEEE INTERNET OF THINGS JOURNAL, VOL. 2, NO. 6, DECEMBER 2015

Fig. 11. Photograph of the wall that forms the sides of the wheel chair ramp.

Fig. 12. (a) Output of the filtering process when the readings were taken
directly facing the wall. (b) Output of the filtering process when the readings
were taken at an oblique angle to the wall. The horizontal line represents a
detection threshold of 2 ∗ 1010. These readings underestimate the target since
they are not temperature adjusted, the speed of sound is assumed to be 330 m/s.

there are four main peaks. The first peak corresponds to the ini-
tial pulse, while the second, third, and fourth peaks correspond
to the first, second, and third walls, respectively. Each wall is
approximately 1.7 m apart. The phone was placed 1.7 m in front
of the first wall so that the distances from the phone to each wall
would be 1.7, 3.4, and 5.1 m, respectively. In Fig. 12(a), each
peak is labeled with the distance it represents. It is important
to note that this is a single sample and averaging the additional
samples will increase accuracy as previously shown.

The experiment was repeated, but this time the phone was
placed at an oblique angle to the wall, Fig. 12(b) shows the
result of the experiment. Notice that the system does not detect
the walls when the readings are taken at an oblique angle
(approximately 140o) to the wall. This is because of the mirror
effect. Since large planar surfaces reflect sound in the direc-
tion of their surface normal, the reflected sound does not get
reflected back to the phone, hereby preventing the walls from
being detected.

Fig. 13. Amount of time that it takes to obtain a single sonar reading. No
Opt represents not optimizations. Opt 1 represents the frequency domain opti-
mization; Opt 2 represents caching the FFT of the pulse; and Opt 3 represents
limiting the number of samples

C. Evaluating Real-Time Performance and System Usage

In this section, we evaluate the real-time performance of the
sonar sensor. In particular, we focus on the time that it takes to
obtain a reading. The most computationally expensive part of
processing a signal is calculating the cross-correlation between
the captured signal and the known pulse. In this section, we
discuss three optimizations and evaluate how each optimization
affects the system’s real-time performance.

We focus on three optimization strategies. Opt 1) perform-
ing the cross-correlation calculation in the frequency domain.
Opt 2) caching the frequency domain representation of the
pulse. Opt 3) only processing a subsection of the signal. Fig. 13
summarizes the result of our experiments.

Calculating the cross-correlation in the time domain is com-
putationally expensive and has an algorithmic complexity of
O(n2). It takes an average of 27 s to return a result. However,
calculating the cross-correlation in the frequency domain has an
algorithmic complexity of O(n log(n)). Performing the calcu-
lation in the frequency domain reduces that average time from
27.01 to 9.33 s. This is equivalent to a 290% reduction in the
amount of time that it takes to return a reading. However, it still
takes over 9.33 s to return a result. Ideally, we would like to get
the response time to under 2 s. In an effort to reduce the time,
we introduced the second optimization Opt 2. This optimiza-
tion reduces the processing time by caching the fast Fourier
transform of the pulse. Since the transform of the known pulse
does not change, we have only to calculate its transform once.
This reduces the average processing time by 2.68 s resulting
in an average processing time to 6.65 s. However, this is still
above the ideal value of 2 s. We further optimize the process by
limiting the number of samples that we consider to 2048. This
does not affect the accuracy of the system, but it does limit the
system’s range to approximately 4 m. Limiting the number of
samples reduces the processing time to 1.62 s. This is 0.38 s
below the ideal processing time of 2 s.

VI. CONCLUSION AND FUTURE WORK

The proposed sonar sensor is comprised of three compo-
nents: 1) a signal generation component; 2) a signal capture
component; and 3) a signal processing component. Designing
a sonar system for smart phones presented two unique chal-
lenges: 1) concurrently managing the buffers and 2) achieving
real-time performance. We addressed the concurrency problem



GRAHAM et al.: SOFTWARE-BASED SONAR RANGING SENSOR FOR SMART PHONES 489

by starting the recording before transmitting the pulse. This
allowed us to capture the pulse along with its reflected pulses.
Doing this allowed us to determine the index of the pulse and
reflections by filtering the signal. We addressed the real-time
performance problem by reducing the algorithmic complex-
ity of the filtering process from O(n2) to a O(n log(n)) by
performing the cross-correlation calculation in the frequency
domain.

Finally, we evaluated our sonar sensor using three metrics:
accuracy, robustness, and efficiency. We found that the system
was able to accurately measure distances within 12 cm. We
evaluated the robustness of the sensor by using it to measure
distances in environments with different levels of reverberation.
We concluded that the system works well in environments that
have low reverberation such as outdoor environments and large
rooms, but does not work well in areas that have high reverber-
ation such as small rooms. In the future, we plan to investigate
strategies for improving the sonar sensor’s accuracy in environ-
ments with high reverberation. We also evaluated the system’s
real-time performance. We found that by performing three opti-
mizations, we were able to, reduce the computation from 27 s
to under 2 s. In the future we will be releasing the sonar applica-
tion on the android market. This will allow us to test the sensor’s
performance on different hardware platforms.

REFERENCES

[1] J. Nord, K. Synnes, and P. Parnes, “An architecture for location aware
applications,” in Proc. IEEE 35th Annu. Hawaii Int. Conf. Syst. Sci.
(HICSS’02), 2002, pp. 3805–3810.

[2] N. D. Lane et al., “A survey of mobile phone sensing,” IEEE Commun.
Mag., vol. 48, no. 9, pp. 140–150, Sep. 2010.

[3] Google, “Sensors overview,” 2013 [Online]. Available: http://developer.
android.com/guide/topics/sensors/sensors_overview.html. Accessed:
Nov. 22, 2013.

[4] Google, “Introducing Project Tango,” [Online]. Available: https://www.
google.com/atap/projecttango/#project. Accessed: Nov. 8, 2014.

[5] J. Kastrenakes, “Sending Google’s Project Tango smartphone to
space to improve flying robots,” NASA [Online]. Available: http://
www.theverge.com/2014/4/19/5629254/nasa-google-partnership-puts-ta
ngo-smartphone-on-spheres-robots. Accessed: Nov. 8, 2014.

[6] J. Klauder, A. Price, S. Darlington, and W. Albersheim, “The theory and
design of chirp radars,” Bell Syst. Tech. J., vol. 39, no. 4, pp. 745–808,
Jul. 1960.

[7] H. Akbarally and L. Kleeman, “A sonar sensor for accurate 3D target
localisation and classification,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), 1995, pp. 3003–3008.

[8] J.-E. Grunwald, S. Schörnich, and L. Wiegrebe, “Classification of natural
textures in echolocation,” in Proc. Nat. Acad. Sci. USA, 2004, vol. 101,
no. 15, pp. 5670–5674.

[9] W. M. Hartmann, Signals, Sound, and Sensation. New York, NY, USA:
Springer, 1997.

[10] D. Dean, “Towards an air sonar,” Ultrasonics, vol. 6, no. 1, pp. 29–32,
1968.

[11] M. P. Hayes, “Ultrasonic imaging in air with a broadband inverse
synthetic aperture sonar,” 1997 [Online]. Available: http://www.cs.cmu.
edu/afs/.cs.cmu.edu/Web/People/motionplanning/papers/sbp_papers/
integrated2/hayes_ultr_synthetic_ap.pdf

[12] W. Burgard, D. Fox, H. Jans, C. Matenar, and S. Thrun, “Sonar-
based mapping with mobile robots using EM,” in Machine Learning–
International Workshop Then Conference. San Mateo, CA, USA: Morgan
Kaufmann, 1999, pp. 67–76.

[13] S. Bradley, “Use of coded waveforms for sodar systems,” Meteorol.
Atmos. Phys., vol. 71, no. 1–2, pp. 15–23, 1999.

[14] C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan, “Beepbeep: A high
accuracy acoustic ranging system using cots mobile devices,” in Proc.
5th Int. Conf. Embedded Netw. Sens. Syst., New York, NY, USA:
ACM, 2007, pp. 1–14 [Online]. Available: http://doi.acm.org/10.1145/
1322263.1322265

[15] P. Lazik and A. Rowe, “Indoor pseudo-ranging of mobile devices using
ultrasonic chirps,” in Proc. 10th ACM Conf. Embedded Netw. Sens. Syst.,
2012, pp. 99–112.

[16] S. P. Tarzia, R. P. Dick, P. A. Dinda, and G. Memik, “Sonar-based
measurement of user presence and attention,” in Proc. 11th Int. Conf.
Ubiquitous Comput., 2009, pp. 89–92.

[17] R. Bemis, “Sonar demo,” 2014 [Online]. Available: http://www.
mathworks.com/matlabcentral/fileexchange/1731-sonar-demo

[18] L. C. Corp, Laan Labs., “Sonar ruler,” 2014 [Online]. Available: https://
itunes.apple.com/us/app/sonar-ruler/id324621243?mt=8

[19] M. G. Crosby, “Frequency modulation noise characteristics,” in Proc.
Inst. Radio Eng., 1937, vol. 25, no. 4, pp. 472–514.

[20] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach.
New York, NY, USA: McGraw-Hill, 2000.

[21] G. S. Wong and T. F. Embleton, “Variation of the speed of sound in air
with humidity and temperature,” J. Acoust. Soc. Amer., vol. 77, p. 1710,
1985.

[22] Georgia State Univ., “Speed of sound in air,” [Online]. Available: http://
hyperphysics.phyastr.gsu.edu/hbase/sound/souspe.html. Accessed: May
12, 2014.

[23] “Samsung GALAXY S4 Specs,” 2013 [Online]. Available: http://
www.samsung.com/latin_en/consumer/mobile-phones/mobile-phones/
smartphone/GT-I9500ZKLTPA-spec. Accessed: Jan. 27, 2014.

[24] D. A. Abraham and A. P. Lyons, “Simulation of non-rayleigh reverbera-
tion and clutter,” IEEE J. Ocean. Eng., vol. 29, no. 2, pp. 347–362, Apr.
2004.

Daniel Graham received the B.S. and M.Eng.
degrees in systems engineering from the University
of Virginia, Charlottesville, VA, USA, in 2010 and
2011, respectively, and is currently working toward
the Ph.D. degree in computer science at the College
of William and Mary, Williamsburg, VA, USA.

His research interests include intelligent embedded
systems and networks.

George Simmons received the B.S. degree from the Massachusetts Institute of
Technology, Cambridge, MA, USA, the M.Sc. degree in computer science from
the College of William and Mary, Williamsburg, VA, USA, and is currently
working toward the Ph.D. degree in computer science at the College of William
and Mary.

His research interests include embedded systems and phase-lock loops.

David T. Nguyen received the B.S. degree from
Charles University, Prague, Czech Republic, in 2007,
the M.S. degree from Suffolk University, Boston,
MA, USA, 2010, and is currently working toward the
Ph.D. degree in computer science at the College of
William and Mary, Williamsburg, VA, USA.

Before joining the College of William and Mary, he
was a Lecturer in Boston, MA, USA, for two years.
He was a Visiting Graduate Student with Stanford
University, in 2009. His research interests include
wireless networking and smart phone storage.

Gang Zhou (GSM’06–M’07–SM’13) received the
Ph.D. degree from the University of Virginia,
Charlottesville, VA, USA, in 2007.

He is currently an Associate Professor with the
Computer Science Department, College of William
and Mary, Williamsburg, VA, USA. He has authored
more than 60 papers in the areas of sensor networks,
ubiquitous computing, mobile computing, and wire-
less networks. The total citations of his papers are
more than 4300 according to Google Scholar, among
which the MobiSys04 paper has been cited more than

780 times. He also has 13 papers each of which has been cited more than 100
times since 2004.

Dr. Zhou is a Senior Member of ACM. He is on the Editorial Board of
the IEEE INTERNET OF THINGS JOURNAL. He is also an Editor of Elsevier
Computer Networks Journal. He has served as NSF, NIH, and GENI pro-
posal review panelists multiple times. He was the recipient of an award for
his outstanding service to the IEEE Instrumentation and Measurement Society
in 2008. He was also a recipient of the Best Paper Award of IEEE ICNP 2010
and the NSF CAREER Award in 2013.


