
806 IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 5, OCTOBER 2016

Prototyping Wearables: A Code-First Approach
to the Design of Embedded Systems

Daniel Graham and Gang Zhou, Senior Member, IEEE

Abstract—As wearable devices become ubiquitous, there will
be an increased demand for platforms that allow engineers
and researchers to quickly prototype and evaluate new wear-
able devices. However, many of these platforms require that the
hardware be configured before the code is written, thereby lim-
iting the programmer to the limitations of the hardware. In this
paper, we present a platform that allows researchers and engi-
neers to quickly prototype new wearable devices using a code-first
approach. This approach allows software developers to create new
prototypes by first writing the code that the prototype is required
to run. Once the code has been written, the hardware that is
required to run the application can be generated by analyzing
the code that the software developer has specified. This code-first
approach is possible because of the system’s architecture which
is comprised of both a hardware and software component. The
hardware component consists of a main board with four expan-
sion ports, while the software platform is a modular middleware
which consists of a collection of stateless libraries that abstract
each hardware module. These modular abstractions allow us to
synthesize the hardware configuration from the software defini-
tion. We evaluated our design using it to prototype three wearable
devices: 1) an environmental exposure monitoring smartwatch;
2) an infrared indoor localization system; and 3) a step counter.

Index Terms—Firmware, hardware, wearable computing.

I. INTRODUCTION

I N 1988, the chief scientist at Xerox PARC, Weiser, coined
the term ubiquitous computing. He envisioned a future of

ubiquitous computing that he called: “calm computing.” He
believed that computers should create calm by being quiet and
invisible servants that help us to be more efficient in a way
that feels intuitive [39]. His vision has inspired several new
computing devices, including wearable devices.

These wearable devices have changed the way we perceive
personal computing devices. Devices such as the Galaxy Gear
[3], the Pebble [2], and the Fitbit [1] have created new ways
for us to track our health and check our mail. However, as
researchers and engineers begin to explore the potential of
wearable devices, they are faced with the challenge of devel-
oping and testing custom hardware prototypes.

As we begin to consider the question of prototyping devices
by generating hardware from code, there are two fundamen-
tal contexts in which the question should be considered. The
first context is automatically generating hardware prototypes

Manuscript received October 23, 2015; revised January 19, 2016; accepted
February 18, 2016. Date of publication March 09, 2016; date of current version
September 08, 2016.

The authors are with the Department of Computer Science, College
of William & Mary, Williamsburg, VA 23185 USA (e-mail: dggra-
ham@cs.wm.edu; gzhou@cs.wm.edu).

Digital Object Identifier 10.1109/JIOT.2016.2537148

by analyzing the code they are required to run, thereby allow-
ing software developers with limited hardware experience to
develop their own prototypes. The second context is that of
hardware/software co-design, where the experienced hardware
engineer is interested in optimizing a hardware design utiliz-
ing information from the code that the platform is required
to run. Thanks to research done by several researchers, we
know a great deal about problems related to hardware/software
co-design [11], [12], [14], [16], [36], [37].

In this paper, we consider the first context and attempt to
reduce the time that it takes to develop a hardware prototype
by proposing a code-first approach to the design of embed-
ded systems. A code-first approach allows a software developer
to begin developing a hardware prototype by first writing the
code that it will run. After the code has been written, it can
be analyzed to determine the hardware configuration that is
required. Once the configuration has been determined, a list of
modules and their appropriate ports are displayed and the sys-
tem can be configured by plugging in the appropriate modules.
After the software developer has tested the code on the con-
figured hardware prototype, he or she can then automatically
generate the design files that are required to fabricate a cus-
tom board. This is possible because the platform is comprised
of a collection of modular software and hardware components.
The hardware components consist of a main board with several
hardware modules, while the software component is a modular
middleware which consists of stateless libraries, which abstract
each hardware component. This modular abstraction creates a
direct relationship between the software module and the hard-
ware module, thereby allowing us to synthesize a hardware
configuration from a software definition. A code-first approach
to designing embedded systems can be achieved by creating
a direct mapping between a stateless modular middleware and
modular hardware.

The intuition behind the board’s design is that there are a
collection of interfaces (i.e., SPI, I2C, and UART interfaces)
that components normally use to interface with microproces-
sors. By abstracting these interface communication protocols
and directly exposing the associated pins, it is possible to design
a board that allows software developers to automatically gener-
ate the hardware configurations that are required to run their
software.

Fig. 1 shows a picture of the main board, which we call the E-
unit. The E-unit is comprised of four expansion ports. Each port
is designed to be compatible with a specific interface and there-
fore accommodates a particular type of module. The first port
is designed to be compatible with I2C interfaces and accom-
modates modules (such as an accelerometer and gyroscope).

2327-4662 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



GRAHAM AND ZHOU: PROTOTYPING WEARABLES: CODE-FIRST APPROACH TO DESIGN OF EMBEDDED SYSTEMS 807

Fig. 1. Layout of the mainboard (E-unit).

The second port is designed to interface with UART-based mod-
ules (such as a Bluetooth module). The third port is designed to
interface with analog sensing modules (such as a humidity sen-
sor or finger pulse sensor). The fourth and final port is an SPI
port that is designed to be compatible with a display module.

In the past, hardware platforms have helped to catalyze inno-
vation [19], [32]. In 2005, researchers at the University of
California Berkeley released the Telos mote along with the
TinyOS operating system. This platform provided computer
scientists with the tools to design and evaluate new protocols
for wireless sensor networks and devices. Unlike the Telos
platform, our proposed platform is reconfigurable. This means
that components can be added or removed from the platform.
Reconfigurable platforms for prototyping large-scale devices
are becoming increasingly popular.

This paper makes four contributions as follows.
1) It presents a platform for prototyping wearable computing

devices.
2) It proposes a code-first approach to the design of embed-

ded systems that allows programmers to synthesize hard-
ware configurations from software definitions.

3) It presents a method for automatically generating custom
schematics from a hardware configuration.

4) It presents an approach for automatically identifying port
conflicts in hardware/software co-designs.

II. SOFTWARE DESIGN

This section is divided into two subsections. In the first sub-
section, we present our proposal for a code-first approach to
developing embedded systems. In the second subsection, we
discuss the design of the modular middleware architecture that
is used in our reconfigurable platform.

A. Code-First Approach to Embedded System Design

A code-first approach allows software developers to write
an application without worrying about configuring its resource
dependencies. For example, Microsoft’s entity framework
allows software developers to abstract database models as
classes [9]. Once the user compiles the program, the frame-
work will automatically generate the database’s structure from
the class definitions. This increases the programmer’s produc-
tivity since she does not need to manage the database by writing

Fig. 2. Overview of the middleware architecture.

SQL queries to create, update, and delete tables. Instead, the
entity framework ensures that the database is compatible with
the programmer’s implementation.

A code-first approach to embedded system design allows
the framework to configure the hardware platform by analyz-
ing the code for hardware dependencies. These dependencies
are then used to generate the hardware configuration that is
needed to run the application. This is possible because of the
modular architecture that maps one software module directly
to one hardware component. This one-to-one mapping allows
hardware dependencies to be determined by analyzing the soft-
ware dependencies. However, it is not sufficient to only analyze
software dependencies, the microcontroller may have physical
constraints that may prevent a valid software model from being
executed. For example, the software developer may include two
UART libraries in their program. Though this is a valid soft-
ware model some microcontrollers such as the MPG430G2553
can only accommodate a single UART module without the use
of resource sharing hardware. To ensure that our approach only
produces valid hardware configurations we need to verify that
the software models are compatible with our hardware platform
and microcontroller. In the following sections, we discuss the
design of the modular architecture and demonstrate how it can
be used to construct the software models.

B. Modular Middleware Architecture for Embedded Systems

Developing embedded software is tedious. The software
developer needs to know what control registers to set and
what data registers to read. This means that the developer
needs to have intimate knowledge of the chip’s architecture
and the board’s layout, and therefore must spend hours read-
ing datasheets. In an effort to reduce the burden on the software
developer, several researchers have proposed a collection of
hardware abstractions to help address this problem [17], [18].
We take a similar approach by proposing a modular middleware
architecture that allows the software developer to quickly build
software for our platform. Fig. 2 shows an overview of the mod-
ular middleware architecture. The middleware is comprised of
a collection of libraries/software modules. Unlike previous sys-
tems that associate modules with generic functionality [13], our
middleware architecture associates software modules directly
with hardware modules. This allows the middleware to be



808 IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 5, OCTOBER 2016

tailored directly to the hardware platform’s current configura-
tion, resulting in a smaller code size.

Each software module is responsible for abstracting the hard-
ware configurations of its corresponding hardware module.
In particular, each software module is responsible for three
tasks: 1) managing the appropriate hardware control and data
registers; 2) performing the calculations associated with the
module; and 3) managing the system’s power. For example,
the light-sensing software module is responsible for setting the
control registers associated with controlling the MCU’s analog-
to-digital converter (ADC) and CPU. Since the sensing module
is allowed to set the CPU’s control registers, it can disable the
CPU to save power while it is waiting for the ADC to settle on a
value. Once the ADC has settled on a value, the sensing module
can wake up the CPU and perform the necessary calculations.

All software modules are required to be stateless. This means
that the libraries do not assume that the MCU’s control or
data registers are in a particular state. This is an important
requirement since memory limitations prevent us from using an
operating system to provide resource management and protec-
tion. The absence of an operating system would be concerning
if the platform was required to run multiple programs simul-
taneously. However, our platform is designed for specialized
embedded applications where resources such as memory are too
limited to support an operating system.

Extending the middleware is relatively easy, since it is a col-
lection of decoupled stateless modules. The stateless nature
of these modules allows a developer to extend the platform
without impacting the other libraries. If the software devel-
oper chooses to use these libraries in addition to controlling the
registers, he or she is able to do so without impacting the mid-
dleware since each module is stateless. Regrading the design of
the libraries, there are two seminal questions which we believe
need to be addressed. The first question is how do we partition
functionality between software and hardware and how does this
affect the performance of the design? This problem of divid-
ing the systems functionality between hardware and software is
known as the “partitioning problem.” Several researchers have
studied this problem and have proposed ways to achieve the
fastest or lowest cost solution [14], [21], [28], [40].

This implies that there are several partition options depend-
ing on the constraints of our design. So this leads us naturally to
the second question. How will a software developer with lim-
ited hardware experience choose and configure these different
hardware implementations? This is where the library abstrac-
tion proves to be extremely useful. One advantage of creating
a direct mapping between the hardware modules and the soft-
ware libraries is that new hardware/software partitions can be
selected by including different libraries. This means that a soft-
ware developer can select the appropriate partition by simply
including the library that meets their performance and cost
constraints, without having any knowledge of the underlying
hardware.

III. CONFIGURATION GENERATION PROCESS

In this section, we present an example that shows how
a hardware configuration can be generated from a software

Fig. 3. Example program written using the modular middleware that displays
the temperature on the LCD.

definition. In particular, we go through a detailed example of
how to implement an indoor temperature sensor with an LCD
using the proposed code-first approach. The example code in
Fig. 3 shows a program that was written in C using our modu-
lar middleware architecture. The program begins by including
three software modules/libraries. The first is an LCD module
which abstracts the display component. The second module is
the temperature sensing module. And the third module is the
helper module which includes helper functions. These helper
functions include the board_init() function that abstracts the
setup of the Watchdog Timer and the convertADC() function
that converts longs to formatted strings.

Lines 10–19 represent the program’s running loop. In the
loop, the program instructs the LCD screen to go to position
(0, 2) and write the string “AT” Once this step has completed,
the program calls the tempSense module which sets the appro-
priate control registers, reads the appropriate data registers,
and returns the result, which is then converted to a string and
displayed. The LCD software module supports unique char-
acters with special codes, e.g., 0x7f represents the degree (◦)
character.

A. Introducing Mathematical Abstraction and Notation

There are currently solutions for partitioning software and
hardware to create a performance optimized design using
microcontrollers [14]. However, we were unable to find any
research that addresses the problem of port conflicts that occur
when implementing a collection of partitioned designs. A port
conflict occurs when two partitions are included in the same
design and require the same port. Fig. 4 shows an intuitive
example of a port conflict between two hardware partitions.
If a port conflict occurs, it is not possible to implement the
design given current hardware/software partitions. Engineers at
Texas Instruments have developed a tool called pinMux that
helps resolve conflicts in complex designs [5]. However, the
port requirements must be specified before the software is writ-
ten. There are also cases in which the pinMux tool is unable
to find a solution and therefore port conflicts must be manually



GRAHAM AND ZHOU: PROTOTYPING WEARABLES: CODE-FIRST APPROACH TO DESIGN OF EMBEDDED SYSTEMS 809

Fig. 4. Example of a port conflict on the UART port of the microcontroller
reference design. BLE represents a Bluetooth module.

TABLE I
EXAMPLE OF THE SET P ′

resolved by modifying the design to more efficiently use the
ports. In this section, we present an approach for solving this
port conflict problem by abstracting the problem as a constraint
solving problem. The process is comprised of three steps:

1) abstracting the collection of hardware/software co-design
libraries as a set, which represents the system’s configured
state;

2) representing the microcontroller port limitation as a col-
lection of constraining set functions; and

3) applying the constraint set functions to the system set
to automatically identify the software/hardware partition
libraries that create port conflicts in the design.

B. Abstracting Libraries

The first step in the process of identifying port conflicts is
abstracting the hardware/software co-design libraries as a set
representing the system’s state. These state abstractions are best
explained by an example. Throughout our explanation, we will
use the code in Fig. 3 to show how each abstraction applies to
the specific example.

We can abstract each library as a tuple t which is comprised
of a library identifier λ and a set P which contains n properties
such that P is a subset of the defined set P ′ which contains the
set of all properties p. Table I shows an example of the set P ′

t = (λ, P = {p1, p2, ..., pn}). (1)

We define tλ as representing the library identifier of the tuple
and tp as representing the property set in the tuple. Each value
pi describes a particular property of the library. These proper-
ties are the requirements that the associated hardware partition
needs to interface with the software library. Table I shows a
collection of example properties. For example, p1 may mean
that the library is a UART-based library, while property p2 may
mean that the component has an operating voltage of 3.3 V.
Consider the “LCD.h” library from Fig. 3, it can be expressed
in tuple form as: (λ3, {p3, p4}). Table II shows a collection of
example library identifiers and their associated properties.

Now that we have presented an abstraction for the soft-
ware libraries and their associated properties, we can use this

TABLE II
EXAMPLE OF THE SET S′

approach to model the software system S as a collection of
tuples that are a subset of the defined set of tuples S′. Table II
shows an example of the set S′

S = {(λ1, P1), (λ2, P2) . . . (λn, Pn)}. (2)

Consider the following example code shown in Fig. 3. Now
that we have defined the sets P ′ and S′, we can determine
the system’s tuple representation by examining the library
dependencies of the program. The program may contain other
libraries that are not associated with hardware modules. By
checking the libraries in the program against a known set of
libraries it is possible to extract the relevant libraries from the
program. Consider the program in Fig. 3, it has three library
dependencies: “LCD.h,” “tempSense.h,” and “helpers.h.” We
construct the tuple set by checking for the library in the tuple
set S′. If the library is found we add it to the set S. For example,
the “tempSense.h” and “LCD.h” libraries are both in the set S′

so we add them to the subset S. However, the “helper.c” library
is not in the set S′ so we do not add it to the subset S. This
results in the following set:

S = {(λ3, {p3, p4}), (λ4, {p3, p5})}. (3)

C. Specifying the Constraints

Now that we have abstracted the hardware/software co-
design libraries as a set representing the system’s state, we need
to represent the microcontroller’s port constraints, so that they
can be checked against the system’s state. Recall that a port con-
flict occurs when there is a discrepancy between the system’s
state and the microcontroller’s port constraints. For example, a
program may include two libraries that have the UART prop-
erty. This means that both libraries require the use of universal
serial communication interface (USCI) module in the micro-
controller. However, the msp430g2553 microcontroller does
not have the required pins to support two UART devices, con-
sequently even though the software definition of the program is
correct, the hardware is unable to run it because the microcon-
troller does not have the required number of ports to support
the design. In order to verify that a hardware configuration
can be generated from the software model, we must show that
the software model does not violate any of the hardware con-
straints. Formally, we can think of these constraints as a set of
set functions

C = {c1(S), c2(S), . . . , cn(S)}. (4)

A constraint ci(S) is considered to be satisfied if it returns
an empty set ci(S) = {}. If a constraint is not satisfied, we say
that it is violated. For a software model to be considered valid



810 IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 5, OCTOBER 2016

it must satisfy all of the constraints in the set C. Each hard-
ware platform will have its own collection of constraints. For
example, the proposed platform has a port constraint for UART
modules p1. The platform can only accommodate one UART
module. We call this type of constraint a uniqueness constraint.
The following equation shows an example of an uniqueness
constraint for property p1:

c1(S) = {t|t ∈ S ∧ ∃t′ ∈ S : p1 ∈ tp ∧ p1 ∈ t
′
p ∧ t �= t

′}.
(5)

Another type of constraint is a universal property constraint.
An example of a universal property constraint is a power con-
straint, which requires all modules to meet the 3.3-V power
requirement. The following equation shows an example of a
universal property constraint for the property p3:

c2(S) = {t|t ∈ S ∧ p3 �∈ tp}. (6)

We can define the violation set V as the set of the constraints
that a system S violates

V (S,C) = {c|((c ∈ C) ∧ c(S) �= {})}. (7)

We say a system S is consistent with a constraint set C if the
violation set is empty. An empty violation set means that the
system set does not violate any of the hardware constraints.
This formalization is important because as the complexity of
the system grows we expect that these abstractions will form
the basis for explicitly specifying constraints, though we do not
expect to supplant formal systems such as TLA [24].

Now that we have defined the concept of a constraint, let us
consider it within the context of the hardware platform in Fig. 1.
Because of the microcontroller’s architecture and the design
of the reference platform, the platform has three uniqueness
constraints for properties p1, p2, p4 and one universal property
constraint for property p3. Now let us consider how these con-
straints can be used to check the system set from our running
example, shown in (3).

To ensure that the set represents a valid software model, we
must ensure that all constraints are satisfied. First, let us con-
sider the uniqueness constraint shown in (5). The uniqueness
constraint requires that a property pi is only found in a single
tuple in the set S. In the set S, the property p4 occurs only once
so the constraint is satisfied. Since properties p1 and p2 are not
in the set, their uniqueness constraints are also satisfied. Now
that we have shown that all the uniqueness constraints are sat-
isfied, we need to show that the universal property constraint in
(6) is satisfied. The universal property constraint requires that
all tuples in S have the property pi. This constraint is satisfied
for property p3 since all the tuples in S have the property p3.
Since all the constraints in C are satisfied, the software model
is considered to be valid.

It may be difficult to grasp the purpose of the constraints in a
scenario where they are not violated. So let us consider a system
where the constraints are violated. To see how the constraints
could be violated, let us extend the temperature display exam-
ple to include a GPS module and a Bluetooth module. Fig. 5
shows the code for the new design. By following the procedure

Fig. 5. Modification of indoor temperature sensor to include GPS and
Bluetooth. For this example, we assume the implementation of GPS module
and it corresponding library.

outlined, we can define a new system set S2 which presents
this new GPS and Bluetooth capable system. The following
equation shows definition of the new set:

S2 = {(λ3, {p3, p4}), (λ4, {p3, p5}),
(λ1, {p1, p3}), (λ5, {p1, p3})}. (8)

Now we have a definition for the system set, we can once
again apply the constraints. Notice that this time the uniqueness
constraint is violated by both the GPS module and the Bluetooth
module, since the GPS module and Bluetooth module both
require the use of the UART ports and there are not enough pins
on the microcontroller to accommodate. Notice also that the
constraint does not simply return true or false but instead returns
the violating tuples: {(λ1, {p1, p3}), (λ5, {p1, p3})}. These are
then returned to the programmers as an error, notifying them
of the libraries that have violated the limitation of the refer-
ence platform. Once these violation have been identified, the
programmer may select new libraries that implement simi-
lar functionality but do not violate the port constraint of the
microcontroller. For example, the programmer may choose a
GPS implementation whose hardware/software partition uses
an I2C interface instead.

D. Automating Microcontroller Selection

Currently our system is designed to be a proof of con-
cept, but commercial alternatives would allow engineers to
select from a wide variety of microcontrollers. This means that
these constraints could be used to inform processor selection.
If a particular microcontroller does not meet the constraints
of the application, these constraints could be used to search
for a microcontroller that might be capable of running the



GRAHAM AND ZHOU: PROTOTYPING WEARABLES: CODE-FIRST APPROACH TO DESIGN OF EMBEDDED SYSTEMS 811

TABLE III
EXAMPLE OF LIBRARY MAPPINGS

TABLE IV
EXAMPLE OF PORT MAPPING

application. In this case, the problem becomes an optimiza-
tion problem where the system is attempting to find the best
possible microcontroller whose constraints meet the require-
ments of a given application. Since companies such as Texas
Instruments currently offer more than 40 different microcon-
trollers [4], approaches that provide automatic microcontroller
selection would be extremely useful.

E. Generating the Hardware Configuration

Now that we have validated the software model, we can begin
synthesizing the hardware configuration. The synthesis process
is comprised of two steps. The first is to determine the list
of hardware modules that are needed. The second step is to
determine which ports each module plugs into. Our modular
middleware architecture simplifies the first step by providing a
mapping from the software libraries to the hardware modules.
Table III shows the mapping of the libraries to the hardware
modules. The design of the main board simplifies the second
step by providing four unique expansion ports. Once, we deter-
mine what hardware modules are required, we can look up the
associated port in Table IV.

Now let us consider the example in Fig. 3, we deter-
mined that the software model for this code was S =
{(λ3, {p3, p4}), (λ4, {p3, p5})}. Formally, we can think of the
synthesis process as a set function that converts the software
model set S to a hardware model set H . We define a hardware
model set H as a collection of tuples

H = {(α1,Υ1), (α2,Υ4), . . . , (αn,Υm)} (9)

where αi represents the hardware module id and Υi is the port
identifier. We perform the first step of the synthesis process by
identifying the corresponding hardware modules for libraries
λ3, λ4 which are α5, α4, respectively. Now that we know what
hardware modules we need, we can look up the corresponding
ports. This results in the tuple set H = P{(α3,Υ3), (α4,Υ4)}.
From this configuration, the software developer knows to plug
the LCD module into the display port and that the tempera-
ture sensor is already a part of the main board. The process
of generating the hardware configuration from the software
model can be easily automated since it is only a collection of
lookups. Fig. 6(a) shows a picture of the resulting hardware
configuration.

Fig. 6. (a) Temperature sensor with LCD display. (b) Overview of the steps in
automating the synthesis process.

F. Automating the Process

In this section, we present the system architecture that imple-
ments the proposed formalization. Fig. 6(b) shows an overview
of the system’s architecture. We implement an alpha version of
the system by developing an eclipse plug-in that is compatible
with Code Composure Studio [20].

The system is comprised of four stages: a parsing stage, a
constraint checking stage, a configuration generation stage, and
a schematic generation stage. A key insight for implementing
the system is realizing that the super sets S, H , and P can
be represented as relational tables. By representing the sets
as relational tables, it is possible to express and validate the
system constraints as queries against these relations. This SQL-
based architecture also allows the system to be updated as new
libraries and constraints are added, since the database can be
stored in a central location and queried remotely. However,
before constraints can be validated using queries, the system set
must be constructed. The system set is constructed by parsing
all the files in the project directory and extracting the relevant
include statements.

1) Parsing Step: During the parsing step, the system reads
all the files in the project folder and extracts all of the libraries
that are included in the system. This is done by examining the
include statements in the project files. Once all the libraries
have been extracted, the libraries that are not associated with
the middleware must be removed before the system definition
can be generated. This list is filtered by querying the tables
associated with the S relation. The libraries that exist within
the P relation are kept and those that do not, are discarded.
The remaining libraries represent the system set S. This sys-
tem set is then represented as an arraylist of library ids, and is
encapsulated as a member of a system node class.



812 IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 5, OCTOBER 2016

2) Constraint Checking Step: Now that the system set
has been determined, the next step is validating this system
set. A valid system set is one that does not violate any of the
constraints associated with the system. Since each constraint
can be expressed as a single SQL statement, it can be further
abstracted as a visitor class which operates on the system
node. When a visitor operates on the system node it returns
a violation set containing all of the libraries that violate the
constraint that is associated with the visitor. This violation set
is then added to a global violation set that is associated with the
system node class. Once all the visitors have visited the system
node, and if the global violation set is empty, the system set is
considered valid.

3) Configuration Generation Step: Now that the system
set has been validated, the next step is generating the hard-
ware configuration. The hardware configuration specifies which
hardware modules connect to a particular port. Recall that there
is a one-to-one relationship between hardware modules and
software libraries. This direct relationship allows us to query
the S and H relations to determine the appropriate port and
hardware module.

4) Schematic Generation Step: Once the programmer has
finished testing the hardware prototype by configuring the plat-
form, she may want to fabricate a custom hardware prototype.
However, in order to do this she will need a custom schematic
that represents her prototype. In this section, we explain that
it is possible to automatically generate a custom schematic
using the proposed code-first approach. Schematic generation
is possible because each hardware module maps directly to a
schematic block and since each hardware module directly maps
to a library, each library also maps to a schematic block.

Intuitively, this can be thought of as generating a schematic
of the current hardware configuration while removing the
unnecessary sections. A hardware schematic is normally repre-
sented using a .sch file. Fortunately, the .sch file is a xml-based
file. Since the schematic for each hardware module is known,
each module can be represented as a xml block. Because of this,
each block can be added as a child in the .sch xml files. Once
the schematic block is added to the schematic, it needs to be
appropriately wired. Given that the tree-based hardware config-
uration already presents the appropriate wiring, the wiring for
a particular schematic block can be determined by examining
the port associated with the appropriate parent node. Since the
connections from the ports to the modules are fixed, the appro-
priate wiring can simply be added to the schematic by looking
at the wiring for the associated port.

IV. EVALUATION

This section is divided into three subsections. In the first
subsection, we evaluate the design by building a step counter
that communicates with an Android application. In the sec-
ond subsection, we evaluate the flexibility of the design by:
1) prototyping a smartwatch that was designed to monitor the
user’s environmental exposure to temperature and light and
2) prototyping an indoor tracking module which tracks the
user’s location using a collection of landmark infrared trans-
mitters. Tables V and VI show the libraries that were used in
each prototype along with their associated properties.

TABLE V
SYSTEM AND ASSOCIATED LIBRARIES

TABLE VI
SYSTEM AND ASSOCIATED LIBRARIES

Fig. 7. Different possible configurations of the platform: (a) environmental
monitoring watch; (b) step counter; and (c) infrared system. (d) Screenshot of
the accompanying Android application.

A. Step Counter

To test the system on a nontrivial example, we developed a
prototype step counter and compared the results to the Fitbit.
Fig. 7(b) shows a picture of the prototype step detector. The
prototype was programmed to use a windowed peak detection
algorithm [7]. We evaluated the prototype by having two par-
ticipants wear the step counter for 2 days between the hours of
9 A.M. to 9 P.M. The results of each participant are shown in
Fig. 8(a).

To accompany the wearable platform we build an Android
application that is compatible with the platform. Fig. 7(d) shows
a screenshot of the application. The application displays a real-
time update of the readings that it receives from the platform.
The readings are sent to the application from the module via
Bluetooth. Once the Android application receives the values, it
updates the appropriate section of the interface.

B. Environment Monitoring Smartwatch

We prototyped a smartwatch designed to monitor the user’s
ambient temperature and light exposure. The watch was con-
structed using four components: 1) the LCD display mod-
ule; 2) 3.7-V battery pack; 3) the Bluetooth module; and
4) the mainboard. Once the components were placed on the



GRAHAM AND ZHOU: PROTOTYPING WEARABLES: CODE-FIRST APPROACH TO DESIGN OF EMBEDDED SYSTEMS 813

Fig. 8. (a) Results of the step detection experiment: results of the case study, in which two participants (Person 1 and Person 2) wore both the prototype and a
Fitbit for 2 days. (b) Readings from the IR sensor: results of the localization experiment. When the signal is high, it indicates that the prototype received the signal,
and when the signal is low, it indicates that the prototype has not received the signal. (c) and (d) Graphs of the light and temperature readings collected more than
a 1-h period at 10 min intervals. During the first 50 min, the device was placed indoors, and during the final 45 min, the device was placed outside.

mainboard, we developed software that captured the light and
temperature readings and displayed them on the LCD screen.
Fig. 7(a) shows a prototype of the watch. Fig. 8(c) and (d) shows
the results of the tests.

C. Infrared Indoor Localization Device

The third device that we prototyped was an indoor infrared
localization device. This wearable device localizes an individ-
ual using unique infrared signatures from landmark infrared
devices. Each landmark device is placed in a separate room and
produces a unique infrared signal. As the user moves from room
to room an infrared sensor located on the wearable device picks
up the unique infrared signature of the landmark device. Since
this infrared signature is unique to each room, this information
can be used to localize the user.

We used our platform to quickly prototype this device using
the mainboard and three modules: the infrared sensor, the
Bluetooth module, and the 3.7-V battery. Fig. 7(c) shows a
picture of the final prototype. This prototype is designed to
fit in the user’s shirt pocket, with the infrared sensor sitting
slightly above the rim of the pocket so that it can pick up the
infrared signatures from the landmark devices. The wearable
device communicated with a smartphone using the Bluetooth
module. However, if users would like to explore a lower power
option they may elect to remove the Bluetooth module and
replace the large 3.7-V battery with the smaller 3.3-V coin
battery. Though the Bluetooth module is compatible with the
3.3-V voltage battery, the smaller 3.3-V coin does not have the
capacity to sustain the Bluetooth module for long periods. So
instead of using the Bluetooth module to transmit readings to a
smartphone, the software developer can record the signature by
writing the signature values to the chip’s internal flash memory.
These values can be retrieved later by connecting the platform
to a PC and reading the chip’s internal flash memory. In our
evaluation, we used an infrared LED to present the landmark
devices. We tested the device by walking into the room with the
landmark device for 2 min and then walking out and waiting 2
min. The device was polled at 1 min intervals. Fig. 8(b) shows
the results of the experiment.

Recall that constraints are fixed and are associated with the
processor and do not change based on the application.

D. System’s Limitations

One of the requirements of this approach is that the
hardware/software partitions are sufficiently isolated. If the
components are not sufficiently isolated they can affect the

performance of the microcontroller and the other components.
We tested this isolation requirement by connecting a motor con-
troller circuit that was not sufficiently isolated to the E-unit. We
also connected a Bluetooth module that was sufficiently iso-
lated. We noticed failures in the Bluetooth module when both
components were operated at the same time.

Another limitation of the system is the fixed power require-
ment. Since the ports on the reference design only provide
3.3 V, it is not possible to connect a module that has a 5-V
requirement. Other researchers have proposed a custom port
design that has two power supplies: a 3.3-V supply and 5 V
[38]. Components that connect to a reference design simply
select the appropriate power pin. Adopting this alternate design
not only may help address these issues, but may also increase
the complexity of the schematic generation process.

E. Considerations for a Commercial Solution

1) Interrupt Vectors: Interrupt vectors may prove problem-
atic since the libraries are stateless and therefore cannot rely
on the state of the microcontroller’s interrupt vectors. This can
be resolved using wait loops (spin locks) in place of interrupts.
These spin locks limit the performance of the system where
real-time performance is required. However, this can be mit-
igated using a real-time operating system with appropriately
partitioned hardware/software libraries [6].

2) Operating Systems and Languages: In an ideal case, we
would like to support a variety of operating systems and lan-
guages. Supporting languages such as Python and Java would
make the approach more accessible to a wider variety of devel-
opers. However, the memory limitations of the microcontroller
used in our prototype make it difficult to run an operating sys-
tem and Java virtual machine, without which, it is impossible to
run Java byte code.

3) Repository of Reference Designs: Facilitating a com-
mercial implementation of the schematic generation process
would require a repository of partitioned hardware/software co-
design libraries that adhere to a specific format. Developing
this repository would require significant engineering effort as
both software libraries and hardware schematics would have
to be developed for each additional module, before it could be
leveraged by the synthesis process.

V. RELATED WORK

Research into rapid prototyping strategies can be divided
into two major categories: fixed platform approaches and
hardware/software co-design approaches. Fixed platforms use



814 IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 5, OCTOBER 2016

predefined designs, while hardware/software code design
approaches use co-synthesis strategies to generate efficient
hardware and software partitions.

The hardware/software co-design approaches that are the
most similar to our design can be grouped into two sub-
categories: 1) interface-based designs and 2) platform-based
designs. One of the earliest papers on interface-based design by
Rowson et al. proposed a methodology for separating a compo-
nent’s behavior from how it communicates with other compo-
nents in the system. Separating components in this way makes
it easier to formally verify the component’s behavior [33].
Since then, several researchers have explored this interface-
based design paradigm [10], [29], [30]. Though our platform
uses an interface-based approach that is similar to previously
proposed approaches, our approach extends the interface-based
paradigm beyond the verification of a single component to the
synthesis of an entire system.

The second hardware/software co-design approach is a
platform-based design approach. A platform-based approach
encourages the reuse of predesigned components through the
use of automatic mapping tools [22], [34]. These automatic
mapping tools use a layered approach to isolate and map
an abstracted top layer description to a more detailed lower
layer implementation. Consider the example of a field pro-
grammable gate array (FPGA), which uses a compiler to
provide isolation and automatic mapping from the top layer
VHDL abstraction to the lower layer implementation of logic
blocks. In our approach, the libraries provide the abstraction
for hardware/software partitions and the automatic mapping to
lower-level hardware implementation is done by the automatic
configuration generation process.

In addition to many hardware/software co-design
approaches, several fixed platform-based approaches have
also been proposed. Several companies and researchers have
developed platforms that allow researchers and engineers to
quickly prototype and test their new ideas. One of the earliest
prototyping platforms was the Phidgets platform, which was
developed in 2001 [15]. Afterward, in 2003, Plessl et al.
advocated for the inclusion of FPGAs in sensor nodes [31].
They presented a sensor hardware architecture which coupled
an FPGA with a CPU. By including the FPGA and allowing the
CPU to configure it, they were able to dynamically configure
the chips. Our approach does not use a reconfigurable chip.
Instead, we focus on extending the capabilities of the platform
by adding and removing external modules.

The earliest occurrence of an extensible platform that
we found in the literature was the MetaCricket [26]. The
MetaCricket consisted of a main board which connected to
other devices and sensors. The board consisted of a main master
controller and a supporting slave controller. The external sen-
sors and expansion boards connected to the master controller
while the slave controller controlled the board’s internal com-
ponents. Following the release of MetaCricket, researchers at
Stanford University introduced the GoGoBoard in 2004 [35].
The GoGoboard was a low-cost programmable control and
sensing board. The GoGoBoard was designed to be used as
a learning resource in developing countries. With this goal in
mind, the researchers focused on ensuring that the GoGoBoard

could be assembled in developing countries. This decision
influenced the board’s design and the components that were
selected. Unlike the GoGoBoard and the MetaCricket, our plat-
form consists of both hardware and software components which
make the process of prototyping easier.

In 2005, researchers at the University of California Berkeley
proposed the Telos platform along with the TinyOS operating
system [25]. The release of the reference platform and oper-
ating system sparked innovation in sensor network research.
Following the release of the Telos platform, researchers at the
University of California Berkeley released an updated plat-
form called the TelosB. In 2009, researchers at University of
California Berkeley [23] extended the capacity of the TelosB
motes by creating two extension boards. The first extension
board comprised of a triaxial accelerometer and a biaxial gyro-
scope. The second extension board provided electrocardiogram
(ECG), and electrical impedance pneumography (EIP) func-
tionality to the TelosB platform. These expansion boards
demonstrated the flexibility of the TelosB motes. However, as
new computing form factors emerge, such as body networks
and wearable devices, researchers will need a platform that
allows them to prototype devices for these new applications.
Unlike the Telos and TelosB motes, our proposed platform can
be extended using off-the-self components instead of custom
extension boards. More recently, in 2014, researchers at the
University of Florida have developed a reconfigurable RFID
sensing tag [27]. The platform provides three pins that can be
used to connect sensors to the platform. The platform also has
an RFID antenna and Cortex M3 microcontroller.

Large companies have also attempted to develop recon-
figurable platforms. For example, in 2008, Shimmer began
developing their wearable computing development kit [8]. The
Shimmer kit was a flexible health sensing kit which con-
sisted of a collection of prebuilt expansion modules. Following
the release of the Shimmer development kit, researchers at
Microsoft proposed the Gadgeteer platform in 2011. The
Gadgeteer platform is an extensible platform that allows
researchers and industry professionals to quickly prototype
hardware devices [38]. The Gadgeteer’s main board is designed
to use a collection of prebuilt modules which can be plugged
into the main board. Unlike the Gadgeteer and Shimmer plat-
forms, our proposed platform does not require custom modules.
It works with off-the-shelf devices.

VI. CONCLUSION

In this paper, we have proposed an open source platform
for prototyping wearable devices. The platform is comprised
of a main board and four types of modules: 1) a Bluetooth
module; 2) an LCD module; 3) a sensing module; and 4) a
battery module. We designed the platform so that it can be
built and assembled by researchers without having to depend
on an expensive manufacturer. We also designed the device so
that it can be easily programmed and debugged. We evaluated
the platform using it to prototype three wearable devices: step
counter, an environmental nb monitoring smartwatch, and an
infrared-based localization system.



GRAHAM AND ZHOU: PROTOTYPING WEARABLES: CODE-FIRST APPROACH TO DESIGN OF EMBEDDED SYSTEMS 815

REFERENCES

[1] “Fitbit Flex Product Page” [Online]. Available: https://www.fitbit.com/
flex, accessed on Jul. 8, 2014.

[2] “Pebble Smartwatch Pebble Steal” [Online]. Available: https://getpebble.
com/steel, accessed on Jul. 8, 2014.

[3] “Samsung Galaxy Gear” [Online]. Available: http://www.samsung.com/
us/mobile/wearable-tech/SM-V7000ZKAXAR, accessed Jul. 8, 2014.

[4] “Texas Instruments Development Kits and Software for Low-Power
MCUs” [Online]. Available: http://www.ti.com/lsds/ti/microcontrollers_
16-bit_32-bit/msp/tools_software.page, accessed on Oct. 14, 2015.

[5] “Texas Instruments Pinmuxtool” [Online]. Available: http://www.ti.com/
tool/PINMUXTOOL, accessed on Oct. 10, 2015.

[6] R. Barry, Using the FreeRTOS Real Time Kernel: A Practical Guide. Real
Time Eng., 2010, FreeRTOS.org.

[7] A. Brajdic and R. Harle, “Walk detection and step counting on uncon-
strained smartphones,” in Proc. ACM Int. Joint Conf. Pervasive Ubiq.
Comput., 2013, pp. 225–234.

[8] A. Burns et al., “SHIMMERTM—A wireless sensor platform for noninva-
sive biomedical research,” IEEE Sensors J., vol. 10, no. 9, pp. 1527–1534,
Sep. 2010.

[9] P. Castro, S. Melnik, and A. Adya, “ADO.NET entity framework: Raising
the level of abstraction in data programming,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2007, pp. 1070–1072.

[10] P. Chou, R. Ortega, K. Hines, K. Patridge, and G. Borriello,
“IPCHINOOK: An integrated IP-based design framework for distributed
embedded systems,” in Proc. 36th Annu. ACM/IEEE Des. Autom. Conf.,
1999, pp. 44–49.

[11] G. De Michell and R. K. Gupta, “Hardware/software co-design,” Proc.
IEEE, vol. 85, no. 3, pp. 349–365, Mar. 1997.

[12] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli,
“Design of embedded systems: Formal models, validation, and synthe-
sis,” in Readings in Hardware/Software Co-Design. Norwell, MA, USA:
Kluwer, 2001, vol. 86.

[13] D. R. Engler et al., Exokernel: An Operating System Architecture for
Application-Level Resource Management. New York, NY, USA: ACM,
1995, vol. 29.

[14] R. Ernst, J. Henkel, and T. Benner, “Hardware–software cosynthesis
for microcontrollers,” in Readings in Hardware/Software Co-Design.
Norwell, MA, USA: Kluwer, 2002, pp. 18–29.

[15] S. Greenberg and C. Fitchett, “Phidgets: Easy development of physical
interfaces through physical widgets,” in Proc. 14th Annu. ACM Symp.
User Interface Softw. Technol., 2001, pp. 209–218.

[16] R. K. Gupta and G. De Micheli, “Hardware-software cosynthesis for dig-
ital systems,” IEEE Des. Test Comput., vol. 10, no. 3, pp. 29–41, Sep.
1993.

[17] V. Handziski, J. Polastre, J.-H. Hauer, and C. Sharp, “Flexible hardware
abstraction of the TI MSP430 microcontroller in TinyOS,” in Proc. 2nd
Int. Conf. Embedded Netw. Sensor Syst., 2004, pp. 277–278.

[18] V. Handziski, J. Polastre, J.-H. Hauer, C. Sharp, A. Wolisz, and D. Culler,
“Flexible hardware abstraction for wireless sensor networks,” in Proc.
2nd Eur. Workshop Wireless Sensor Netw., 2005, pp. 145–157.

[19] J. L. Hill and D. E. Culler, “Mica: A wireless platform for deeply
embedded networks,” IEEE Micro, vol. 22, no. 6, pp. 12–24, Nov./Dec.
2002.

[20] Texas Instruments Incorporated, Code Composer Studio User’s Guide,
Texas Instrum. Lit. No. SPRU328B, 2000 [Online]. Available:
http://www.ti.com/lit/ug/slau157am/slau157am.pdf

[21] A. Kalavade and E. A. Lee, “A global criticality/local phase driven algo-
rithm for the constrained hardware/software partitioning problem,” in
Proc. 3rd Int. Workshop Hardware/Software Co-Des., 1994, pp. 42–48.

[22] K. Keutzer et al., “System-level design: Orthogonalization of concerns
and platform-based design,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 19, no. 12, pp. 1523–1543, Dec. 2000.

[23] P. Kuryloski et al., DexterNet: An open platform for heterogeneous
body sensor networks and its applications,” in Proc. 6th Int. Workshop
Wearable Implantable Body Sensor Netw. (BSN’09), 2009, pp. 92–97.

[24] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Reading, MA, USA: Addison-
Wesley/Longman, 2002.

[25] P. Levis et al., “TinyOS: An operating system for sensor networks,” in
Ambient Intelligence. New York, NY, USA: Springer, 2005, pp. 115–148.

[26] F. Martin, B. Mikhak, and B. Silverman, “MetaCricket: A designer’s kit
for making computational devices,” IBM Syst. J., vol. 39, no. 3.4, pp. 795–
815, 2000.

[27] M. S. Khan, M. S. Islam, and H. Deng, “Design of a reconfigurable RFID
sensing tag as a generic sensing platform toward the future Internet of
Things,” IEEE Internet Things J., vol. 1, no. 4, pp. 300–310, Aug. 2014.

[28] R. Niemann and P. Marwedel, “An algorithm for hardware/software parti-
tioning using mixed integer linear programming,” Des. Autom. Embedded
Syst., vol. 2, no. 2, pp. 165–193, 1997.

[29] R. Passerone, L. De Alfaro, T. A. Henzinger, and A. L. Sangiovanni-
Vincentelli, “Convertibility verification and converter synthesis: Two
faces of the same coin,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Des., 2002, pp. 132–139.

[30] R. Passerone, J. A. Rowson, and A. Sangiovanni-Vincentelli, “Automatic
synthesis of interfaces between incompatible protocols,” in Proc. 35th
Annu. Des. Autom. Conf., 1998, pp. 8–13.

[31] C. Plessl et al., “The case for reconfigurable hardware in wearable
computing,” Pers. Ubiq. Comput., vol. 7, no. 5, pp. 299–308, 2003.

[32] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low power
wireless research,” in Proc. 4th Int. Symp. Inf. Process. Sensor Netw.
(IPSN’05), 2005, pp. 364–369.

[33] J. A. Rowson and A. Sangiovanni-Vincentelli, “Interface-based design,”
in Proc. 34th Annu. Des. Autom. Conf., 1997, pp. 178–183.

[34] A. Sangiovanni-Vincentelli, “Defining platform-based design,” EEDesign
EETimes, 2002 [Online]. Available: http://www.eetimes.com/document.
asp?doc_id=1204965

[35] A. Sipitakiat, P. Blikstein, and D. P. Cavallo, “Gogo board: Augmenting
programmable bricks for economically challenged audiences,” in Proc.
6th Int. Conf. Learn. Sci., 2004, pp. 481–488.

[36] M. B. Srivastava and R. W. Brodersen, “Rapid-prototyping of hardware
and software in a unified framework,” in Proc. IEEE Int. Conf. Comput.
Aided Des. (ICCAD’91) Dig. Tech. Papers, 1991, pp. 152–155.

[37] K. Van Rompaey, I. Bolsens, H. De Man, and D. Verkest, “CoWare—
A design environment for heterogenous hardware/software systems,” in
Proc. Conf. Eur. Des. Autom., 1996, pp. 252–257.

[38] N. Villar, J. Scott, S. Hodges, K. Hammil, and C. Miller, “.net gadgeteer:
A platform for custom devices,” in Pervasive Computing. New York, NY,
USA: Springer, 2012, pp. 216–233.

[39] M. Weiser and J. S. Brown, “The coming age of calm technology,” in
Beyond Calculation. New York, NY, USA: Springer, 1997, pp. 75–85.

[40] W. H. Wolf, “Hardware–software co-design of embedded systems (and
prolog),” Proc. IEEE, vol. 82, no. 7, pp. 967–989, Jul. 1994.

Daniel Graham received the B.S. degree and M.Eng.
degree in systems engineering from the University
of Virginia, Charlottesville, VA, USA, in 2010 and
2011, respectively, and is currently working toward
the Ph.D. degree in computer science at the College
of William & Mary, Williamsburg, VA, USA.

He is currently with the Department of Computer
Science, College of William & Mary. His research
interests include intelligent embedded systems and
networks.

Gang Zhou (GSM’06–M’07–SM’13) received the
Ph.D. degree from the University of Virginia,
Charlottesville, VA, USA, in 2007.

He is currently an Associate Professor with the
Department of Computer Science, College of William
& Mary, Williamsburg, VA, USA. He has authored
more than 70 academic papers in the areas of ubiqui-
tous computing, mobile computing, sensor networks,
and wireless networks. The total citations of his
papers are more than 4500 according to Google
Scholar, among which five of them have been trans-

ferred into patents and his MobiSys04 paper has been cited 800 times. Thirteen
of his papers have each attracted more than 100 citations since 2004.

Dr. Zhou is a Senior Member of the ACM. He currently serves on the
Journal Editorial Board of the IEEE INTERNET OF THINGS, as well as Elsevier
Computer Networks. He was the recipient of an award for his outstanding ser-
vice to the IEEE Instrumentation and Measurement Society in 2008. He was
also the recipient of the Best Paper Award of the IEEE ICNP 2010 and the NSF
CAREER Award in 2013.


