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Abstract—As personal computing platforms, smartphones are
commonly used to store private, sensitive, and security infor-
mation, such as photos, emails, and Android Pay. To protect
such information from adversaries, continuous authentication on
smartphone users becomes more and more important. In this
paper, we present a novel authentication system, SensorAuth,
for continuous authentication of users based on their behav-
ioral patterns, by leveraging the accelerometer and gyroscope
ubiquitously built into smartphones. We are among the first to
exploit five data augmentation approaches including permutation,
sampling, scaling, cropping, and jittering to create additional
data by applying them on training data. With the augmented
data, SensorAuth extracts sensor-based features in both time and
frequency domains within a time window, then utilizes the one-
class SVM to train the classifier, and finally authenticates users.
We evaluate the authentication performance of SensorAuth in
terms of the impact of window size, accuracy on each of and
combinations of data augmentation approaches, time efficiency,
energy consumption, and comparisons with the representative
classifiers and with the existing approaches, respectively. The
experimental results show that SensorAuth performs highly accu-
rate and time-efficient continuous authentication, by reaching the
lowest median equal error rate (EER) of 4.66%, and consuming
a short authentication time of approximately 5 seconds.

Index Terms—Continuous authentication, data augmentation,
one-class Support Vector Machine (SVM), accelerometer and
gyroscope, equal error rate (EER).

I. INTRODUCTION

Smartphones are becoming the most commonly used de-
vices in human daily life as personal platforms [1], [2].
People prefer to store important, private, sensitive, and security
information, such as photos, emails, and credit card connected
Android Pay, on smartphones for their convenience. However,
information leakage and stolen smartphones become major
concerns for smartphone users [3]. Therefore, to protect the
critical information from adversaries who masquerade as legit-
imate users, researchers and developers have been exploring
user authentication mechanisms on smartphones.

Current smartphone operating systems, such as Andorid
OS and iOS, have been integrated with one-time user au-
thentication mechanisms. One-time user authentication has
been a dominant authentication mechanism on smartphones
for decades, and includes passwords or personal identification
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numbers (PINs), graphical patterns, and fingerprints; how-
ever, they offer limited security since they are susceptible to
guessing [5], video capture [4], and spoofing [6]. Moreover,
since these mechanisms authenticate users only once at the
time of initial login, unauthorized users are easily able to
physically gain access to unattended smartphones after initial
authentication has been performed, which can incur security
issues. These security issues have excited the investigation
of continuous authentication mechanisms, which can continu-
ously monitor a user’s interactions with the smartphone even
after initial login to ensure that the initially-authenticated user
is still the one using the phone.

Continuous authentication has been a promising mecha-
nism to alleviate the above security issues, by frequently
authenticating users via biometrics-based approaches. These
authentication approaches can be broadly categorized into
physiological biometrics based approaches and behavioral
biometrics based approaches. More specifically, the former
approaches rely on static physical attributes, such as face
patterns [7]–[11], fingerprints [12], [13], iris patterns [14],
[15], voice [16] and pulse [17], but they require user direct
participation in the process of the authentication. Behavioral
biometrics based approaches exploit user behavioral patterns,
such as touch gestures [18]–[25], gait [26], [27], and GPS
patterns [28]. These approaches identify invariant features of
user interactions with the smartphones by using sampling data
from built-in sensors and accessories, such as the accelerom-
eter, gyroscope, megnetometer, and touch screen. However,
to authenticate users with a high accuracy, they need a large
amount of data to train classifiers, which consumes lots of
time on data collection.

Data augmentation has been widely used in the field of im-
age recognition, which leverages limited data by transforming
existing samples to create new ones [29]. In image recognition,
operations such as permutation, scaling, cropping, and jittering
on an image that do not change its label, can be used as label-
preserving data augmentation methods. These approaches can
expand data sets and enhance robustness. However, in the field
of sensor data, data augmentation approaches have not been
studied. We are among the first to apply data augmentation
technology to the field of wireless sensors, which is the major
contributions of this work.

In this paper, we present a novel sensor-based authentication
system, SensorAuth, for continuous authentication of users
based on their behavioral patterns. More specifically, Senso-
rAuth consists of data collection, data augmentation, feature
extraction, classifier, and authentication. The operation of Sen-
sorAuth includes the enrollment phase for data and classifier
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training (including Data Augmentation, Feature Extraction,
and Classifier training) and the continuous authentication
phase for testing (involving Feature Extraction, Classifier test-
ing, and Authentication). Data collection captures behavioral
patterns of users by leveraging two sensors of accelerometer
and gyroscope ubiquitously built into smartphones. We are
among the first to exploit five data augmentation approaches
including permutation, sampling, scaling, cropping, and jitter-
ing to create additional data by applying them on training data.
Then, 32 sensor-based features are extracted in both time and
frequency domains from the augmented data within a time
window. From these features, the most discriminable ones are
selected by the Fisher score ranking, and with the selected
features, we use the one-class Support Vector Machine (SVM)
to train the classifier in the enrollment phase. With the trained
classifier and testing features, SensorAuth classifies the current
user as a legitimate user or an impostor in the continuous au-
thentication phase. We evaluate the authentication performance
of SensorAuth in terms of the impact of window size, accuracy
on each of the data augmentation approaches, and accuracy
on the combinations of data augmentation approaches, time
efficiency, energy consumption, and comparisons with the
representative classifiers and with the existing approaches,
respectively. The experimental results show that SensorAuth
performs highly accurate and time-efficient continuous au-
thentication, by reaching the lowest median equal error rate
(EER) of 4.66%, 12.11% lower than solutions without data
augmentation, and costing a short authentication time of
approximately 5 seconds.

The main contributions of this work are summarized as
follows:
• We design SensorAuth, a novel continuous authentica-

tion system on smartphones that exploits ubiquitously built-
in sensors of accelerometer and gyroscope to capture users’
behavioral patterns running as background service. SensorAuth
consists of data collection, data augmentation, feature extrac-
tion, classifier, and authentication.
• We are among the first to explore five data augmentation

approaches of permutation, sampling, scaling, cropping, and
jittering on training data, which create additional data by
applying these transformations on the training data.
•We evaluate the authentication performance of SensorAuth

in terms of the impact of window size, accuracy on each
of and combinations of data augmentation approaches, and
time efficiency, energy consumption, and comparisons with the
representative classifiers and with the existing approaches. The
experimental results show that SensorAuth reaches the lowest
median EER of 4.66%, and consumes 5-second authentication
time.

The remainder of this paper is organized as follows: Section
II reviews the existing literature on continuous authentication
on smart devices. We present the detailed SensorAuth architec-
ture consisting of data collection, data augmentation, feature
extraction, classifier, and authentication in Section III. In
Section IV, we elaborate the data augmentation approaches of
permutation, sampling, scaling, cropping, and jittering applied
to the system. Then, we describe our experiment setup in
terms of dataset, classifier, metrics and parameter in Section V.

In Section VI, we evaluate the authentication performance of
SensorAuth on window size, accuracy, time efficiency, energy
consumption, and comparisons with representative classifiers
and with existing approaches, respectively, and conclude this
work in Section VII.

II. RELATED WORK

There are a wide range of works focusing on continu-
ous authentication on smart devices, which can be broadly
categorized into two groups: physiological biometrics based
approaches and behavioral biometrics based approaches.

A. Physiological biometrics based approaches

Physiological biometrics based approaches rely on static
physical attributes, such as face patterns [7]–[11], fingerprints
[12], [13], iris patterns [14], [15], voice [16] and pulse
[17]. There are some significant works devoted to continuous
authentication based on physiological biometrics. In [7], the
authors propose a new sensor-assisted facial authentication
method by using motion and light sensors to defend against
2D media attacks and virtual camera attacks without the
penalty of authentication speed. The authors of [8] present an
application of the scale invariant feature transform approach
in the context of face authentication. In [9], the authors
investigate the effectiveness of methods for fully-automatic
face recognition in solving the active authentication problem
for smartphones. The authors of [10] propose a part-based
technique for real time detection of users’ faces on mobile
devices, which is specifically designed for detecting partially
cropped and occluded faces captured using a smartphone’s
front-facing camera for continuous authentication. In [11],
the authors consider face detection and authentication in
mobile phones and experimentally analyze a face authenti-
cation scheme using Haar-like features with AdaBoost for
face and eye detection, and local binary pattern approach
for face authentication. The authors of [12] present a phase-
only correlation method based on the phase component of
images for matching, which is highly robust against noise,
brightness change, and image shifting. The authors of [13]
develop a prototype biometrics system which integrates face
recognition and fingerprint verification. This system incorpo-
rates a decision fusion module to improve the identification
performance. In [14], the authors investigate iris recognition by
using gabor filters and multiscale zero-crossing representation.
The authors of [15] propose a novel iris localization method
and user-specific automatic iris authentication approach based
on feature selection. In [16], the authors present a modular
scheme of the training and test phases of a speaker verification
system. The authors of [17] propose a new biometric based
on the human body’s response to an electric square pulse
signal. They explore how this biometric can be used to enhance
security in the context of two example applications: (1) an
additional authentication mechanism in PIN entry systems, and
(2) a means of continuous authentication on a secure terminal.

However, physiology biometrics based authentication re-
quires user direct participation in the process of the authenti-
cation. We are different in that our system solely makes use
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of two common sensors, the accelerometer and gyroscope, on
smartphones without any additional hardware devices. Also,
we differ in that the system does not require root permissions
to obtain sensor data for protecting users’ privacy.

B. Behavioral biometrics based approaches

Behavioral biometrics based approaches aim at identifying
invariant features of human behaviors during different activi-
ties, such as touch gestures, gait, and GPS patterns. There are
some valuable works focusing on continuous authentication
based on behavioral biometrics.

Continuous authentication based on touch gestures with
features extracted from touching screen data is significantly
investigated [18]–[20]. In [18], the authors adopt a continuous
and passive authentication mechanism based on a user’s touch
operations on the touchscreen. The authors of [19] present
a touch based identity protection service that implicitly and
unobtrusively authenticates users in the background by con-
tinuously analyzing touch screen gestures in the context of
a running application. In [20], the authors propose a novel
biometric-based system to achieve continuous and unobserv-
able re-authentication for smartphones by using a classifier to
learn the owner’s finger movement patterns and checking the
current user’s finger movement patterns against the owner’s.

Continuous authentication based on touch gestures with fea-
tures extracted from sensor data during a touch event is deeply
researched [21]–[24]. The authors of [21] present a framework
to authenticate users silently and transparently by exploiting
the user touch behavior biometrics and leveraging the inte-
grated sensors to capture the micro-movement of the device
caused by user’s screen-touch actions. In [22], the authors
propose a new mobile system framework using passive sensory
data to ensure the security of applications and data on mobile
devices. Specifically, they provide a probabilistic approach to
model user’s gesture patterns using a generative continuous n-
gram language model. The authors of [23] present a new set of
behavioral biometric features of hand movement, orientation,
and grasp (HMOG). HMOG uses accelerometer, gyroscope,
and magnetometer readings to unobtrusively capture subtle
hand micro-movements and orientation patterns generated
when a user taps on the screen. In [24], the authors propose
an implicit and continuous authentication system based on
a user’s behavioral characteristics, by leveraging the sensors
already ubiquitously built into smartphones.

Continuous authentication based on gait and GPS patterns
is developed [26]–[28]. In [26], the authors present a new
identification method for personal devices using the accelera-
tion signal characteristics produced by walking. The authors
of [27] extract several features from the gait data and use
the k-Nearest Neighbour algorithm for classification. In [28],
the authors present an n-gram based model for a user’s mo-
bility patterns, which models the user’s idiosyncratic location
patterns through a collection of n-gram geo-labels, each with
estimated probabilities.

Behavioral biometrics based authentication exploits users’
behavioral patterns to authenticate their identities by collecting
a large amount of sensor data for training, and needs to train

a new model based on fresh sensor data obtained at certain
intervals in order to maintain reliability. However, our work
differs in that we utilize data augmentation approaches to
create additional sensor data, thereby greatly reducing the
time on data collection, which can enhance the robustness and
generalization ability of the system.

III. SYSTEM DESIGN

In this section, we present the architecture of our continuous
authentication system, SensorAuth, as illustrated in Fig. 1. As
shown in Fig. 1, SensorAuth consists of five modules: Data
Collection, Data Augmentation, Feature Extraction, Classifier,
and Authentication. The operation of SensorAuth includes
two phases for learning and classifying user’s behavioral
patterns: the enrollment phase (including Data Augmentation,
Feature Extraction, and Classifier training) and the continuous
authentication phase (involving Feature Extraction, Classifier
testing, and Authentication). SensorAuth learns a profile of the
legitimate user in the enrollment phase and then authenticates
users in the continuous authentication phase. In particular,
the Data Augmentation module can create additional data by
applying transformations to the limited raw sensor data in
the enrollment phase, which is detailed in Section IV. In
the remainder of this section, we introduce the other four
modules: Data Collection, Feature Extraction, Classifier, and
Authentication, respectively.

A. Data Collection

To collect data for our authentication system, we select
the two sensors in smartphones: the accelerometer, and the
gyroscope. The reasons are that: (1) the two sensors are
commonly embedded in the current smartphones and do not
need any support from external sensors; (2) the accelerometer
and the gyroscope provide different levels of information about
users’ behavior, respectively. The accelerometer records larger
motion patterns of users, such as how they move their arms
or walk, while the gyroscope records fine-grained motions of
users, such as how they hold their smartphones; (3) the two
sensors do not require user permission when requested by
mobile applications, which makes them useful for background
monitoring; (4) the two sensor data usually do not contain
private or sensitive information of users, such as GPS and
voice. In the system, the Data Collection module captures
every subtle movement during the user’s operation of the
smartphone, and records the instantaneous readings of the two
sensors when the screen is on. The recorded sensor readings of
the accelerometer and gyroscope are the values in x, y, and z
axes, respectively. In our system, this module is implemented
as a listener which listens to all user events on smartphones,
and the collected raw data are either stored in a protected
buffer for Data Augmentation as training data in the enrollment
phase or used for Feature Extraction as testing data in the
continuous authentication phase (see Fig. 1).

B. Feature Extraction

The Feature Extraction module consists of feature con-
struction and feature selection. We first propose sensor-based
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Fig. 1. Architecture of SensorAuth

features in time and frequency domains, and then describe how
to conduct feature selection.

1) Feature construction: We segment sensor readings into
a series of time windows. In each window, we extract sensor-
based features from the time domain and the frequency
domain. Let x, y, and z be sensor readings (accelerometer
or gyroscope) in three axes and we calculate the magnitude
mag =

√
x2 + y2 + z2. Discarding direct use of sensor read-

ings, we extract our features based on the magnitude of sensor
readings.

Time domain features characterize the motion patterns of
users with meaningful statistics during the operation of the
smartphones. In the time domain, we extract eleven statistical
features of the magnitude for each sensor in a time window,
including the mean, median, standard deviation, maximum,
minimum, range, kurtosis, skewness, and 25%, 50%, 75%
quartiles of magnitude of sensor readings. In particular, the
range of the magnitudes in a time window indicates the
difference between the maximum magnitude and the minimum
one, which can differentiate users with different ranges of the
magnitudes. The kurtosis feature represents the width of peak
for magnitudes in a time window, and the skewness feature
indicates the orientation of peak for magnitudes.

Frequency domain features depict the frequency domain
information of user actions in the process of operating the
smartphones, and frequency domain information is obtained
by implementing the Fast Fourier Transform (FFT) on sensor
readings. In the frequency domain, we extract five features,
involving energy, entropy, peak1, peak2f, and peak2.

Combining the features from the time domain and frequency
domain, we have 32 sensor-based features (2 sensors × 16
features) in total. In order to save space, we only list the 16
features based on one set of sensor readings (accelerometer or
gyroscope) in a time window in Table I.

2) Feature selection: Given the extracted 32 features based
on the sensor readings of the accelerometer and gyroscope,
Feature Extraction then conducts feature selection to remove
poor features and select features with high discriminability.
We exploit Fisher score ranking to do feature selection, where
a higher Fisher score indicates higher discriminability of the
corresponding feature. In our experiment, using ten-fold cross

TABLE I
SENSOR-BASED FEATURES.

Aspect Feature Explanation

Time
domain

Mean Mean value of the magnitudes of sensor
readings

Median Median value of the magnitudes of sensor
readings

Standard de-
viation

Standard deviation of the magnitudes of
sensor readings

Maximum Maximum value of the magnitudes of sensor
readings

Minimum Minimum value of the magnitudes of sensor
readings

Range Difference between the maximum value and
minimum value of the magnitudes of sensor
readings

Kurtosis Width of peak of the magnitudes of sensor
readings

Skewness Orientation of peak of the magnitudes of
sensor readings

Quartiles 25%, 50%, 75% quartiles of magnitudes of
sensor readings

Frequency
domain

Energy Intensity of the magnitudes of sensor read-
ings

Entropy Dispersion of spectral distribution of the
magnitudes of sensor readings

Peak1 Amplitude of the first highest peak of the
magnitudes of sensor readings

Peak2f Frequency of the second highest peak of the
magnitudes of sensor readings

Peak2 Amplitude of the second highest peak of the
magnitudes of sensor readings

validation, we test feature subsets whose sum of Fisher scores
accounted for 90% of the sum of Fisher scores for all features.

C. Classifier

After features are extracted and selected, they are passed to
Classifier for training and testing, respectively. We implement
the one-class SVM classifier [30]–[32], which exploits a kernel
function to map data into a high dimensional space, and
considers the origin as the only sample from other classes.
In the enrollment phase, the classifier is established by using
training feature vectors of the owner’s data with a radial basis
function (RBF) kernel. In the continuous authentication phase,
the trained classifier projects the testing feature vectors onto
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the same high-dimensional space, and classifies the testing
feature vectors from all users.

To do the user authentication, the classifier only needs to
classify whether the current user is the owner. When training,
one-class SVM classifier just requires the owner’s features,
rather than other users’. When testing, the classifier compares
the trained features of the owner with the current user’s to do
the classification. We select one-class SVM because it provides
high accuracy, is effective in high dimensional spaces, and
is flexible in modeling diverse sources of data [33], [34].
Moreover, it is demonstrated that SVM performs well in
detecting user patterns in various applications, such as motion
pattern [35].

D. Authentication

Based on the testing feature vectors and the trained classi-
fier, Authentication classifies the current user as a legitimate
user or an impostor. In the continuous authentication phase,
the legitimate user’s profile generated from the training data
in the enrollment phase is compared against the current user’s
features. If the current user is classified as an impostor,
SensorAuth will require initial login inputs; otherwise, it will
continuously authenticate the user.

IV. DATA AUGMENTATION

In image processing, operations such as scaling, cropping,
and jittering on an image do not change its label, which can be
used as label-preserving data augmentation methods. We use
data augmentation methods to create additional data by trans-
forming the collected raw data, which can be considered as an
injection of prior knowledge about the invariant properties of
the data against certain transformations. With data augmenta-
tion, SensorAuth can save time on data collection for classifier
training in the enrollment phase. Moreover, augmented data
can cover unexplored input space, prevent overfitting, and
improve the generalization ability of the SVM model [29].
Therefore, such additional data improve the accuracy of the
continuous authentication. In this section, to augment sensor
data, we apply five data augmentation approaches on the
training data: permutation, sampling, scaling, cropping, and
jittering.

Before describing these methods, we first introduce the
structure of the collected raw data. In our Data Collection, the
collected data are stored in a format of a matrix in smartphone
buffers, and the readings of the accelerometer and gyroscope
are saved as n × 3 matrices Ma and Mg , respectively:

Ma =


xa1 ya1 za1
xa2 ya2 za2
...

...
...

xan yan zan


and Mg =


xg1 y

g
1 zg1

xg2 y
g
2 zg2

...
...

...
xgn y

g
n zgn


.

For convenience, we take matrix Ma of accelerometer read-
ings as an instance to describe data augmentation approaches.

A. Permutation

Permutation randomly perturbs the temporal location of
within-window events, which relates to the act of arranging

all the elements of a dataset into some sequence or order.
Permutation of sensor data can reduce the dependency of the
element location and obtain weakly-invariant features over
various locations of the elements.

In order to perturb the location of the sensor data within a
time window, we first slice matrix Ma by row into s same-
length segments with each segment n/s rows as:

M ′a =


Ma (1)
Ma (2)
...

Ma (s)


, where Ma (i) =


xa(i−1)n/s+1 ya(i−1)n/s+1 za(i−1)n/s+1
xa(i−1)n/s+2 ya(i−1)n/s+2 za(i−1)n/s+2
...

...
...

xa
in/s

ya
in/s

za
in/s


, (i ∈ [1, s]).

There are s! number of permutation sequences for M ′a and
we randomly select one of the permutations shown as:

M pt
a =


Ma (t1)
Ma (t2)
...

Ma (ts)


, where t1, t2, ..., ts is a permutation order

of 1, 2, ..., s. In our experiment, we set s = 4.
Then, after data are augmented by the permutation ap-

proach, we obtain a new data matrix of accelerometer readings,
as shown in Eq. (1)

Mapt
a =

[
Ma

M pt
a

]
(1)

B. Sampling

Sampling samples from a time window can be regarded as
perturbing the data with local translations. That is, irregular
intervals by random sampling distort the timestamps between
the samples, thus, introducing variability due to local transla-
tions in time.

For convenience, we take the z axis of the accelerometer
as an instance and use Za to denote the readings of the
z axis of the accelerometer in a time window, expressed
as: Za = {za1 , z

a
2 , ..., z

a
n }. In our experiments, we sample m

samples in a time window n, where we set m = 90% × n.
Supposing ζi is uniformly distributed within [1, n], denoted
as ζi ∼ U (1, n), m samples in z axis are sampled as:
Z sp
a = {zaζ1

, zaζ2
, ..., zaζi , ..., z

a
ζm
}. Then, the sampling matrix

of the accelerometer readings can be written as: M sp
a =

[(X sp
a )⊤, (Y sp

a )⊤, (Z sp
a )⊤], where ⊤ denotes the transpose of

a vector.
Then, after data are augmented by the sampling approach,

we obtain a new data matrix of accelerometer readings, as
shown in Eq. (2):

Masp
a =

[
Ma

M sp
a

]
(2)

C. Scaling

Since sensor data gathered from the accelerometer or gyro-
scope may contain sensor noise, scaling introduces window-
wise multiplicative noise to the training data, thereby increas-
ing robustness against noise.
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Scaling is applied to a time-window data of sensor readings.
In a time window, the augmented data by scaling can be

expressed as: M sc
a = ζMa =


ζ xa1 ζ ya1 ζ za1
ζ xa2 ζ ya2 ζ za2
...

...
...

ζ xan ζ yan ζ zan


, where

ζ ∼ U (a, b). In our experiment, we set a = 0.99 and b = 1.01.
Then, after data are augmented by the scaling approach, we

obtain a new data matrix of accelerometer readings, as shown
in Eq. (3)

Masc
a =

[
Ma

M sc
a

]
(3)

D. Cropping

Cropping is a primitive approach to diminish the depen-
dency on the event location, which can reduce the length
of time-series input, and thus decrease the variability due to
different event locations.

In a t-second time window, we crop m samples. Suppos-
ing ζi ∼ U (1, b) and b = t − m, we obtain the cropped
samples: Zcp

a = {zaζi , z
a
ζi+1
, ..., zaζi+m }. Then, the matrix of

the accelerometer readings by cropping can be written as:
Mcp

a = [(Xcp
a )⊤, (Y cp

a )⊤, (Zcp
a )⊤]. Finally, a new data matrix

Macp
a can be obtained by cropping, as shown in Eq. (4):

Macp
a =

[
Ma

Mcp
a

]
(4)

E. Jittering

Due to noise in sensor data, jittering can introduce element-
wise additive noise to increase robustness against noise.

Jittering is applied to each element of sensor readings.
Supposing ζi is Gaussian noise and conforms ζi ∼ N (µ, σ2),
we add noise to z axis sensor readings of the accelerometer
as: Z j t

a = {za1 + ζ1, z
a
2 + ζ2, ..., z

a
n + ζn }. Then, the matrix

of the accelerometer readings by jittering can be written as:
M j t

a = [(X j t
a )⊤, (Y j t

a )⊤, (Z j t
a )⊤]. Finally, a new data matrix

Ma jt
a can be obtained, as shown in Eq. (5):

Ma jt
a =

[
Ma

M j t
a

]
(5)

V. EXPERIMENTS

In this section, we first describe the dataset used by Senso-
rAuth. We then discuss the experimental process of classifier
training and testing, and present different metrics that we use
to evaluate the proposed system.

A. Dataset

To investigate the accuracy of SensorAuth, we use sensor
data from a public multi-modal dataset [23]. The dataset
contains sensor readings of the accelerometer and gyroscope
collected by ten Samsung Galaxy S4 smartphones with the
sampling rate of 100Hz from 100 users (53 male, and 47
female), and the same user might receive a different device
during each visit. In data collection, each user devotes to ap-
proximately 2 to 6 hours of behavior traits including document

reading, text production, and navigation on a map locating a
destination.

Among all 100 users, there were 2 users whose data were
manually discarded due to extremely abnormal values. Among
the remaining 98 users, to ensure that users have the same
amount of data, we select the first 100 minutes of data for
each user with a 6-second window size. Accordingly, a 6-
second window should have 600 sample data; however, some
windows have fewer sample data due to data missing. To create
same-length inputs and calculate the frequency domain feature
conveniently, we use 512 samples for each time window and
these samples are extracted from an approximately 5-second
time window in our experiments.

B. Parameter selection

Since we use RBF kernel for one-class SVM classifier,
we perform a grid search to find the values for parame-
ters γ and µ. For both γ and µ, we first search through
0.01, 0.02, ..., 0.1, 0.2, ..., 0.5, and then use ten-fold cross val-
idation on training data to select the appropriate parameter
values.

C. Classifier training

We utilize ten-fold cross validation to train the one-class
SVM classifier, since it can properly avoid overfitting. We
specify one of the 98 users as a legitimate user and the
rest as impostors. That is, we have positive feature samples
from one legitimate user and negative feature samples from
97 impostors. Based on these samples, we train the classifier
as follows:

Step 1: We randomly divide all positive samples into k (k =
10) equal-size subsets, where k − 1 positive subsets are used
to train the one-class SVM model, and one subset to test the
model.

Step 2: We randomly select negative samples with the same
size as positive ones from all the negative samples, which are
also divided into k (k = 10) equal-size subsets. One of the 10
negative subsets is exploited to test the model.

Step 3: The above 2 steps are repeated 10 times until each
subset of negative samples and each subset of positive samples
are tested exactly once.

Step 4: We repeat steps 1, 2, and 3 twenty times to account
for the effect of the randomness.

D. Metrics

We describe three metrics that we used for analyzing the
authentication accuracy of SensorAuth.
• False acceptance rate (FAR): the ratio of the number

of falsely accepted unauthorized users to the total number
of invalid requests made by impostors trying to access the
system. A lower FAR is preferred in cases where security is
very important [36].
• False rejection rate (FRR): the ratio of the number of

falsely rejected requests to the total number of valid requests
made by legitimate users trying to access the system. A lower
FRR is preferred for user convenience [37].
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• Equal error rate (EER): the point where FAR equals to
FRR. FAR or FRR cannot provide the whole picture, because
there is a trade-off between them. We use EER as a metric to
evaluate the accuracy of SensorAuth [38], [39].

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results on the
authentication performance of SensorAuth. More specifically,
we first explore the impact of training dataset size on raw
data (no data augmentation) as a baseline, and then investigate
the impact of time window size on the performance. Next,
we present the authentication accuracy on each of and the
combinations of the proposed data augmentation approaches,
respectively, the time efficiency, and energy consumption
of the system. Finally, we compare our approach with the
representative classifiers and with the existing approaches,
respectively.

A. Impact of dataset size

Training dataset size is of importance and has a significant
impact on authentication accuracy. We evaluate the impact
of training dataset size on authentication accuracy, with sizes
ranging from 100 to 1000. This experiment is conducted on
raw data, without data augmentation, which is considered
baseline. Fig. 2 shows the experimental results of EERs with
mean points connected against variable training data sizes.
As shown in Fig. 2, the EER decreases as the dataset size
increases. More specifically, the mean EER achieves up to
29.3% with 100 samples in the dataset, while with 800 samples
the mean EER reaches down to 16.68%, approximately a
12.62% reduction. The lowest EER is approximately 15.69%,
when the training sample size comes to 1000.

We observe that the authentication accuracy gradually be-
comes saturated as training dataset size increases. However,
we notice that the larger the training dataset size is, the
longer the training process will take. Therefore, there is a
tradeoff between authentication accuracy and user applicability
in practice.

B. Impact of time window size

The size of the time window is a significant system pa-
rameter for determining the time that the system requires to
perform user authentication.

We vary the window size from 1 second to 20 seconds
to select the appropriate window size for SensorAuth. Given
each window size, for each of 98 users, we utilize ten-fold
cross-validation for training and testing. We plot the EER with
mean points connected against different window sizes in Fig.
3, with standard deviations (SDs) in the parentheses, where
the training dataset size is 1000. As illustrated in Fig. 3, the
EER gradually decreases as the time window size increases,
and when the time window size is larger than 10 seconds,
little performance improvement can be obtained. Moreover,
the standard deviation decreases as the window size increases,
which indicates the EER corresponding to each window size
tends to be stable as the window size increases. However, the
smaller the time window size is, the higher the frequency of
user authentication is. Taking the authentication accuracy and
the experience of user authentication into account, we set the
time window size as 5 seconds.

C. Accuracy on data augmentation approaches

In this section, we investigate the authentication accuracy
on each of the data augmentation approaches that consist of
permutation, sampling, scaling, cropping, and jittering.

Fig. 4 shows box plots of EERs with different data aug-
mentation approaches on different dataset sizes. For each data
augmentation approach, we vary the dataset size from 100
to 800. For each dataset size, we plot boxes of EERs with
no augmentation (red box plot) and that with augmentation
approach (blue box plot), respectively, for comparison. As
illustrated in Fig. 4, for all the five data augmentation ap-
proaches, the EERs with data augmentation approaches show
significant lower values than those without data augmentation
for all dataset sizes.

Table II lists the medians with SDs in parentheses of
EERs with different data augmentation approaches on different
dataset sizes, where the standard deviations indicate robustness
of the system. As shown in Table II, the worst median EER
is 11.56% (when dataset size is 500), which indicates that all
the five data augmentation approaches exhibit certain improve-
ments in authentication accuracy. In particular, the permutation
approach achieves the best performance among other data
augmentation approaches, with a 7.85% median EER and
4.85% SD at the best circumstances. As described in Section
IV-A, the reason why the permutation approach achieves the
best performance is that it diminishes the dependency of the
event location, and consequently acquires weakly-invariant
features over various locations of the events. Moreover, the
best median EERs of jittering, scaling, sampling and cropping
approaches reach about 11.56%, 10.41%, 8.33% and 10.09%,
respectively.

In addition, the EER in raw data gradually decreases and
ultimately becomes stable as the dataset size increases; how-
ever, the EER in data augmentation initially shows an obvious
growth, and then exhibits a slight rise as the dataset size in-
creases. That is, the EERs under data augmentation approaches
are still smaller than those without data augmentation. A
reasonable explanation is that data will become more and more
complex as the dataset size increases, which further illustrates
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Fig. 4. EER with different data augmentation approaches on different dataset sizes: (a) Permutation. (b) Sampling. (c) Scaling. (d) Cropping. (e) Jittering.

TABLE II
MEDIAN (SD) EER (%) WITH DIFFERENT DATA AUGMENTATION APPROACHES ON DIFFERENT DATASET SIZES.

Approach \ Dataset size 100 200 300 400 500 600 700 800
No Augmentation 30.58 (12.35) 26.82 (13.09) 22.76 (12.25) 22.05 (11.67) 20.76 (10.54) 18.72 (8.48) 17.46 (8.17) 16.77 (7.21)
Permutation 28.90 (12.57) 23.12 (12.20) 19.08 (9.18) 13.84 (5.16) 7.85 (4.85) 10.14 (5.35) 10.82 (5.57) 11.85 (5.79)
Sampling 28.99 (12.53) 23.08 (12.17) 19.35 (9.19) 13.97 (5.19) 8.33 (4.82) 10.27 (5.43) 11.01 (5.57) 11.86 (5.57)
Scaling 29.83 (12.60) 23.14 (12.16) 18.96 (8.76) 13.57 (4.77) 10.41 (4.13) 11.83 (4.46) 12.64 (4.77) 13.29 (5.18)
Cropping 28.92 (12.64) 23.19 (12.20) 19.52 (9.38) 14.92 (5.55) 10.09 (5.21) 10.80 (5.81) 12.53 (6.04) 12.78 (6.16)
Jittering 28.21 (13.21) 24.79 (12.57) 20.53 (9.45) 15.54 (6.86) 11.56 (7.21) 12.47 (7.60) 13.19 (7.76) 13.85 (7.96)

that data augmentation approaches can be applied at certain
circumstances with small datasets, such as difficulties in data
collection and limited data collection time.

Discussion: Data augmentation technology could increase
errors on data, because the raw data collected by sensors could
include errors. In fact, as shown in Fig. 4, the average EERs
under the five data augmentation approaches obviously de-
crease comparing with that without data augmentation. That is,
the error caused by data augmentation technology introduces
less impact on authentication results. The reason could be that
data augmentation technology cancels the errors caused by
data collection to some extent. Therefore, data augmentation
technology can achieve sufficient performance for SensorAuth
with practical values. In addition, the influence brought by
data augmentation can be regarded as a balance between
the augmentation technology and the system accuracy. This
is because there is a parameter that controls each of the
data augmentation approach, such as the segment length for
permutation, sample rate for sampling, scale factor for scaling,

length of crop sample for cropping, and Gaussian noise for
jittering.

D. Accuracy on combinations of different data augmentation
approaches

In this section, we investigate the authentication accuracy
on combinations of data augmentation approaches that include
permutation + sampling, permutation + jittering, scaling +
cropping, permutation + sampling + scaling, permutation +
sampling + scaling + cropping, and permutation + sampling +
scaling + cropping + jittering. These combinations are mainly
determined by the performance of each data augmentation
approach in Section VI-C.

Fig. 5 and Table III present box plots and medians (with SDs
in parentheses) of EERs against the combinations of different
data augmentation approaches on different dataset sizes. As
depicted in Fig. 5 and Table III, the EERs decrease as the
number of the combinations of data augmentation approaches
increases; however, there is a slight drop when all the data
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Fig. 5. EER with combinations of different data augmentation approaches on different dataset sizes: (a) Combination of permutation and sampling. (b)
Combination of permutation and jittering. (c) Combination of scaling and cropping. (d) Combination of permutation, sampling and scaling. (e) Combination
of permutation, sampling, scaling, and cropping. (f) Combination of permutation, sampling, scaling, cropping and jittering.

augmentation approaches are combined. More specifically, the
best performance in all approaches is achieved by permutation
+ sampling + scaling + cropping, where the median EER
achieves as low as 4.66%, 12.11% lower than that with no
augmentation. The median EERs of permutation + sampling
+ scaling approach and permutation + sampling + scaling
+ cropping + jittering approach reach 7.13% and 6.29%,
respectively.

In addition, the combination of permutation and sampling
exhibits the best performance within two-approach combi-
nations, which achieves a median EER of 6.86%, 9.91%
lower than that without data augmentation. The reason is that
the permutation diminishes the temporal variability, and its
generalization ability is improved in some degree due to a
regularization effect by the complex data augmentation. More-
over, the median EERs of permutation + jittering approach and
sampling + scaling approach reach about 8.26% and 9.99%,
respectively.

We notice that the effectiveness of the combinations of
different data augmentation approaches is extraordinarily dis-
tinct in small datasets, comparing with that without data
augmentation approach.

E. Time efficiency

A practical continuous authentication system not only iden-
tifies the legitimate users and impostors with high accuracy,
but also authenticates users in time efficiency. In this section,

we analyze the time performance of SensorAuth at the enroll-
ment and continuous authentication phases, respectively.

1) Time on enrollment phase: In the enrollment phase,
SensorAuth spends time on data collection for training clas-
sifiers and data processing, denoted by Ttrain_total . Then,
the total training time can be represented by: Ttrain_total =

Ttrain_sensor + Ttrain_processing , where Ttrain_sensor is the
time that the system needs to collect sensor data (the
accelerometer and gyroscope) for training classifiers, and
Ttrain_processing denotes the time that the system needs
to process sensor data including data augmentation, feature
extraction and training.

In [24], the authors indicate that data collection time of
their system is significantly larger than the processing time,
and their data collection time Ttrain_sensor = 80 minutes. The
training accuracy increases as Ttrain_sensor increases, but user
experience quality declines. In our system, Ttrain_sensor = 16
minutes and Ttrain_processing = 20 seconds, with a 4.66%
median EER by applying the data augmentation approach
of the combination of permutation, sampling, scaling and
cropping.

Therefore, the training time Ttrain_total for SensorAuth is
roughly 16 minutes. Our training time is approximately 1/5
that of the training time for systems without data augmentation
(16.77% of median EER and Ttrain_sensor = 80 minutes
[24]).
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TABLE III
MEDIAN (SD) EER (%) WITH AUGMENTATION APPROACH COMBINATIONS ON DIFFERENT DATASET SIZES.

Approach \ Dataset size 100 200 300 400 500 600 700 800
Per+Samp 26.92 (10.60) 17.95 (7.49) 8.35 (3.18) 6.86 (3.85) 8.47 (4.66) 9.94 (5.36) 10.61 (5.57) 11.72 (5.67)
Per+Jit 26.24 (11.75) 18.06 (7.84) 10.28 (4.56) 8.26 (5.84) 9.67 (7.29) 10.80 (7.75) 11.62 (7.97) 12.14 (8.02)
Scal+Crop 27.08 (10.93) 18.44 (7.32) 11.07 (3.37) 9.99 (3.74) 11.17 (4.41) 12.87 (4.85) 13.13 (5.11) 13.50 (5.42)
Per+Samp+Scal 24.94 (9.80) 11.86 (3.59) 7.13 (3.11) 8.99 (3.71) 10.23 (4.26) 11.75 (4.75) 12.36 (5.15) 13.22 (5.23)
Per+Samp+Scal+Crop 22.02 (8.62) 4.66 (2.77) 7.70 (3.17) 9.10 (3.69) 10.76 (4.48) 12.41 (5.02) 12.58 (5.21) 13.5 (5.53)
Per+Samp+Scal+Crop+Jit 19.04 (7.39) 6.29 (3.48) 8.74 (3.90) 10.56 (4.87) 12.66 (5.97) 14.15 (6.33) 14.79 (6.47) 14.92 (6.68)

2) Time on continuous authentication phase: In the con-
tinuous authentication phase, SensorAuth spends time on
data collection for authenticating users and user authentica-
tion, denoted by Tauth_total . Then, the total authentication
time can be expressed as: Tauth_total = Tauth_sensor +

Tauth_processing , where Tauth_sensor represents the time that
the system needs to collect sensor data for user authentication,
and Tauth_processing denotes the time that the system needs
to process sensor data including feature extraction and user
authentication.

The authentication accuracy increases as Tauth_sensor in-
creases, but usability and security of users become worse. In
our system, the measured authentication time Tauth_processing
is less than 13 milliseconds. As we discussed in VI-B,
Tauth_sensor corresponds to the time window size 5 seconds.
Therefore, the authentication time Tauth_total for our system
is approximately 5 seconds.

F. Energy consumption

To measure the energy consumption of SensorAuth on the
smartphone, we consider two comparable testing scenarios
that 1) the smartphone is under use and SensorAuth is off; 2)
the smartphone is under use and SensorAuth is running. The
testing smartphone is Mi 6 with a 5.15in screen, a 2.45GHz
Snapdragon 835 processor, 6GB RAM and a 3350mAh battery.
Note that SensorAuth is robust to some brands of smartphones,
as we conduct experiments on different devices. For each
testing scenario, the smartphone is fully charged. During the
test, the user uses the smartphone for 20 minutes every other
5 minutes. The total testing time is two hours. For scenario
1 (SensorAuth off), the energy consumption is 25.5% and
30.9% for scenario 2 (SensorAuth on). Therefore, SensorAuth
consumes 5.4% more battery power within 100 minutes, which
is acceptable for daily usage.

G. Comparison with other classifiers

To investigate the advantage of our one-class SVM, we
select two representative classifiers for comparison: kernel
ridge regression (KRR) and k-nearest-neighbors (kNN).

1) KRR: The KRR is a regularized least square method for
classification and regression [24], [40]. The goal of KRR is
to learn a model that assigns the correct label to an unseen
testing sample, which can be viewed as learning a function
f : X → Y that maps each data x to a label y. The parameters
for KRR are α and γ for training.

 KRR (25%~75%)

 Median Line  Outliers  Range within 1.5IQR  Mean

Sampling

Fig. 6. Comparison with classifiers of KRR and kNN under five data
augmentation approaches.

2) kNN: The kNN classifier takes every new observation
and locates it in feature space with respect to all training ob-
servations. The classifier identifies the k training observations
that are closest to the new observation. Then, it selects the
label that the majority of the k closest training observations
have [41], [42].

We choose data augmentation approaches of permutation,
sampling, scaling, cropping, and jittering with dataset size
500 to train our one-class SVM classifier. We use the same
training method (see Sec. V-C) to train the two classifiers KRR
and kNN. The parameters α and γ for KRR are set in the
range of [2,3,4], respectively, and the parameter k for kNN
is set in the range of [2,3,4]. We show the average EERs for
classifiers KRR and kNN under the five data augmentation
approaches in Fig. 6. As depicted in Fig. 6, the one-class
SVM shows the highest average EER when there is no data
augmentation, but exhibits the lower or lowest EERs when data
augmentation approaches apply (except jittering), comparing
with the classifiers KRR and kNN. In addition, KRR and kNN
are two-class classifiers, which require the training data from
both legitimate user and impostors.

H. Comparison with existing authentication approaches

In order to show the difference between the proposed
approach and the existing authentication approaches, we con-
duct a quantitative comparison and a qualitative comparison,
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respectively, based on the dataset from [23]. We carefully
selected the representative state-of-the-art approaches: Zhu et
al. [22], Sitová et al. [23], Kayacik et al. [43], and Lee
et al. [44]. Note that we choose our approach with data
augmentation of sampling and data size 500 for comparison.

1) Quantitative comparison with existing approaches: We
first conduct a quantitative comparison with the four repre-
sentative approaches as shown in Table IV. As illustrated in
Table IV, we compare the sensors used, classifiers selected, the
average FARs and FRRs of the approaches. More specifically,
we select ubiquitously deployed sensors for data collection: the
accelerometer and gyroscope, which could save certain energy
on smartphone usage, and achieve the average FAR of 7.65%
and the FRR of 9.01%, which performs better than others.
Note that the table just provides the preliminary comparative
results, and it is hard to conclude that a certain approach is
better than another. Each approach has its own advantages and
disadvantages under different conditions.

2) Qualitative comparison with existing approaches: We
then conduct a qualitative comparison with the four represen-
tative approaches as shown in Table V. As demonstrated in
Table V, we show the sensor sources, training data sources,
participants in the experiments, and authentication results of
all the approaches. In the table, Zhu et al. [22] and Sitová et al.
[23] make the authentication decision in a short time period,
but the accuracies are as low as 71.30% TPR and 13.10% FPR
in [22], and 10.05% EER in [23]. Both Kayacik et al. [43] and
Lee et al. [44] consider behavior data from the accelerom-
eter, orientation and magnetometer for authentication and
obtain 93.90% accuracy and the authentication time around
20 seconds, and 53.21%∼99.49% detection rates in different
attack cases and time larger than 122 seconds, respectively.
Moreover, both the results are based on a relatively small
number of participants with 7 users in [43] and 4 in [44].
In addition, it is not quite realistic in practice that [43] and
[44] use data from both legitimate user and impostors to train
the authentication models. However, our approach relying on
the accelerometer and gyroscope, has less types of sensor
data sources, a larger number of participants, a more carefully
chosen set of behavioral metrics than the four approaches, but
achieves a high authentication accuracy with an EER of 8.33%
and a short authentication time of around 5 seconds.

VII. CONCLUSION

Most existing continuous authentication systems consume
lots of time on data collection, in order to achieve a high
authentication accuracy. To address the time consumption
on data collection, we introduce a novel sensor-based au-
thentication system, SensorAuth, for continuous authentication
of users based on their behavioral patterns in this paper.
SensorAuth is composed of data collection, data augmentation,
feature extraction, classifier, and authentication. With sensor
data collected by the built-in accelerometer and gyroscope on
smartphones, our data augmentation module creates additional
data by applying the proposed approaches on the collected data
during the enrollment phase. The benefits are three-folds: 1)
it greatly shortens the time for data collection; 2) it improves

the generalization ability of the SVM and the authentication
accuracy; 3) it prevents over-fitting and covers unexplored
input space. Based on the augmented data, SensorAuth extracts
and selects sensor-based features in both time and frequency
domains for training one-class SVM classifier. With the trained
classifier and the testing features, SensorAuth authenticates the
testing user as a legitimate user or an impostor in the con-
tinuous authentication phase. For authentication performance,
we evaluate our system in terms of the impact of window
size, accuracy on each of and combinations of data aug-
mentation approaches, time efficiency, energy consumption,
and comparisons with the representative classifiers and with
the existing approaches, respectively. The experimental results
show that our system achieves a high accuracy with the lowest
median EER of 4.66% and an efficient time of 5 seconds for
continuous authentication.
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