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Abstract Driver distraction by mobile phones has been a huge threat that leads to unnec-
essary accidents and human casualties, especially in hazardous road conditions. In this
paper, we address a fundamental but critical issue of phone use during the driver behind
the wheel. We propose, design and implement SafeDrive which achieves the goal of auto-
matically determining driver phone use leveraging built-in smartphone sensors sensing
driving conditions. We explore GPS and accelerometer sensors on smartphones to col-
lect data, which can sufficiently capture driving conditions. With inputs of these data, we
provide an accurate driving condition classification algorithm, that classifies driving con-
ditions into five categories. Based on the classified driving conditions, SafeDrive makes
a flexible control of driver phone use. We excessively evaluate the classification accuracy
of our SafeDrive in local, highway, traffic jam, and complex conditions, respectively, and
the results demonstrate that it can achieve up to 87 % classification accuracy in complex
conditions.

Keywords Driver phone use · Smartphone · GPS · Accelerometer · Driving condition
classification

1 Introduction

Nowadays, mobile phones and motor vehicles take significant parts in our daily life. Mobile
phone users can be connected any time under any conditions, which greatly facilitates
connections and communications and sufficiently reduces time cost, while motor vehi-
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cles make it convenient for people to travel any place under any environment. Although
people are enjoying the fast communication and convenient transportation brought by
mobile phones and automobiles, they are also facing safety threats while driving, espe-
cially when a mobile phone is in use. Using mobile phone while driving (phone distraction)
has been a major factor in crashes (automobile accidents) that has led to 415 fatali-
ties (378 crashes, 12 % of fatalities in distraction-affected crashes) and 28,000 injuries
(7 % of injured people in distraction-affected crashes), according to Distracted Driving
2012 from National Highway Traffic Safety Administration released in April 2014 [37].
Given that the high rate of mobile phone in use while driving contributes to vehicle acci-
dents, many states have banned certain usage of phones in US, where 12 states prohibit
drivers from using hand-held phones, and 43 states have banned text messaging when
driving [10].

In fact, people are likely to use their mobile phones even while driving, such as
emergency calls and incoming calls. For convenience, various hand-free devices, such
as Buletooth and wireless earphones, are developed and implemented on motor vehi-
cles, but these devices do not really help drivers reduce the risks of distraction-affected
crashes [12, 21]. Therefore, how to assist drivers to make appropriate decisions of phone
use (such as incoming/outgoing phone calls) while driving is a crucially important field
of study.

The modern commercial smartphones are normally equipped with many useful features
of sensors for scientific research, including but not limited to: GPS, accelerometer, gyro-
scope, touch, and proximity, which provide us with various approaches for driver phone
use detection. We broadly categorize related works into three groups: special devices based
detection, applications based detection, and smartphone sensors based detection. More
specifically, some approaches based on special devices to detect driver distractions have
been investigated [2, 8, 19, 20, 22], but these approaches heavily rely on the assistance of
external devices. Some applications devoting to mitigating driver phone distractions have
been developed [5, 23, 24, 29, 34, 35, 38, 41], such as QC-Hold [29], and Negotiator [38].
Nevertheless, these studies either require prior knowledge of phone use by the driver or
blindly block calls/text of all the phones inside the vehicle. Some methods of built-in smart-
phone sensors dedicating to driver distractions have been studied, such as methods of using
accelerations and cellular signal strength [3, 9, 11, 26, 36], and using smartphone embed-
ded sensors to alert dangerous driving, monitor road conditions, and detect traffic accidents
[6, 13, 18, 27, 39]. However, these solutions do not provide an option for drivers to
determine whether to entitle phone control.

To eliminate driver distractions, we present SafeDrive, a driver phone use determining
system that automatically determines the driving conditions leveraging the built-in smart-
phone sensors and then makes a flexible control of driver phone use while driving, in this
paper. More specifically, we first explore GPS and accelerometer sensors on an Android
Samsung Galaxy S4 smartphones to collect data from a real road driving vehicle, which
can sufficiently capture driving conditions. With inputs of these data, we provide an accu-
rate driving condition classification algorithm, that classifies driving conditions into five
categories: {Local, Idle}, {Local, Busy}, {Highway, Idle}, {Highway, Busy}, and {Traffic
Jam}. Based on the classified driving condition, SafeDrive makes a flexible control of
driver phone use while driving. Finally, we excessively evaluate the classification accuracy
of our SafeDrive in local, highway, traffic jam, and complex conditions, respectively, and
the results demonstrate that it can achieve up to 87% classification accuracy in complex
conditions.

The main contributions of this work can be summarized as follows:
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• We present a driver phone use determining system, SafeDrive, that automatically deter-
mines the driving conditions leveraging the built-in smartphone sensors and then makes
a flexible control of driver phone use while driving.

• We provide an accurate driving condition classification algorithm, that classifies driving
conditions into five categories, with inputs of GPS and accelerometer sensor data.

• We excessively evaluate the classification accuracy of our SafeDrive in local, highway,
traffic jam, and complex conditions, respectively, and the results demonstrate that it can
achieve up to 87 % classification accuracy in complex conditions.

The remainder of this paper is organized as follows: Section 2 presents related works
on driver’s dangerous behavior detection. We describe the detailed SafeDrive architecture
including sensor data collection, classification algorithm and phone call determination in
Section 3 and evaluate the accuracy of SafeDrive in different driving conditions in Section 4.
In Section 5, we discuss advantages and disadvantages including limitations and latency
issues of SafeDrive in the experiments and introduce the future work, and conclude the
paper in Section 6.

2 Related work

There are tremendous works focusing on detecting driver’s dangerous behavior while driv-
ing, which can be broadly categorized into three groups: special device based detection,
application based detection, and smartphone sensors based detection.

2.1 Special devices based detection

Some approaches based on special devices to detect driver distractions have been investi-
gated [2, 8, 19, 20, 22]. The authors of [2] present a non-intrusive prototype computer vision
system for monitoring a driver’s vigilance in real time, which is based on a hardware system
for the real-time acquisition of a driver’s images using an active IR illuminator and the soft-
ware implementation for monitoring some visual behaviors that characterize a driver’s level
of vigilance. In [19], the authors propose a facility for monitoring the distraction of a driver,
which is able to detect the driver’s visual and cognitive workload by fusing stereo vision and
lane tracking data, running both rule-based and support-vector machine (SVM) classifica-
tion methods. In [20], Key2SafeDriving requires special devices installed inside the vehicle
to enable blocking cellular communications of a special phone based on the readings from
the vehicle’s speedometer or even rely on a radio jammer [8]. The authors of [22] explore
the potential for wearable devices to identify driving activities and unsafe driving, without
relying on information or sensors in the vehicle.

However, these approaches heavily rely on the assistance of external devices, which
increase the cost of the implementation and reduce the portability of the detection system.

2.2 Applications based detection

Some applications devoting to mitigating driver phone distractions have been developed
[23, 24, 29, 38, 41]. In [29], the authors propose QC-Hold, a Quiet Calls prototype, that
combines three buttons for responding to calls with a PDA/mobile phone unit to silently
send pre-recorded audio directly into the phone. The authors of [38] provide Negotiator that
embodies three main design requirements: support for negotiation, contextual information
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about when a recipient is available for a call, and lightweightness to reduce attention over-
head. In [23], the authors present BlindSight, a prototype application that users interact using
the phone keypad, without looking at the screen, which responds with auditory feedback.
The authors of [24] propose using context-awareness to implement burden-shifting, time-
shifting, and activity-based sharing to mitigate the problem of distracted driving caused by
mobile phones. In [41], the authors propose a machine-learning-based method for detecting
driver cell phone usage using a camera system directed at the vehicles front windshield.

Some applications focusing on blocking incoming or outgoing calls and texts for mobile
phones have been investigated [5, 34, 35]. In [5], DriveSmart can automatically direct
incoming calls to voicemail, defer messages and other data transactions and alert a parent
when overridden while driving. In [34], Textecution is designed for parents to install on their
teenage driver’s phone so they know their child is safer behind the wheel of the vehicle.
In [35], tXtBlocker is the leading supplier of solutions to prevent distracted while driving
incidents caused by using a mobile device while operating a motor vehicle.

Nevertheless, these studies either require prior knowledge of phone use by the driver
or blindly block calls/text of all the phones inside the vehicle. Our SafeDrive only blocks
incoming calls when the driver is under critical driving conditions such as on a highway or
on a busy local way, which uses data from the phone sensors to perform driving condition
classification.

2.3 Smartphone sensors based detection

Some built-in smartphone sensors dedicating to driver distractions have been studied. Some
methods using accelerations and cellular signal strength [3, 9, 11, 26, 36] to detect the mov-
ing vehicle have been developed. In [9], the authors indicate a potentially large improvement
using UMTS signalling data compared with GSM regarding handover location accuracy,
where these improvements can be used to generate real-time traffic information with higher
quality and extend the geographic usage area for cellular-based travel time estimation sys-
tems. The authors of [26] propose PEIR, the Personal Environmental Impact Report, which
is a participatory sensing application that uses location data sampled from everyday mobile
phones to calculate personalized estimates of environmental impact and exposure. In [36],
the authors describe a crowd-sourced alternative to official transit tracking, which we call
cooperative transit tracking. The authors of [3] consider the problem of tracking fine-grained
speeds variations of vehicles using signal strength traces fromGSM enabled phones. In [11],
the authors design an app on iPhone for reducing the smartphone-related distracted driving,
which can run in the background and can lock the smartphone screen with no passwords
required when it detects that the user is driving.

Other studies use smartphone embedded sensor to alert dangerous driving, monitor road
conditions, and detect traffic accidents [6, 13, 18, 27, 39]. The authors of [27] present
Nericell, that performs rich sensing by piggybacking on smartphones that users carry with
them in normal course. In [6], the authors propose a highly efficient system aimed at
early detection and alert of dangerous vehicle maneuvers typically related to drunk driving,
which requires only a mobile phone placed in vehicle and with accelerometer and orienta-
tion sensor. The authors of [18] propose a novel system that uses Dynamic Time Warping
(DTW) and smartphone based sensor-fusion (accelerometer, gyroscope, magnetometer,
GPS, video) to detect, recognize and record these actions without external processing. In
[39], the authors automatically detect traffic accidents using accelerometers and acoustic
data, immediately notifies a central emergency dispatch server after an accident, and pro-
vides situational awareness through photographs, GPS coordinates, VOIP communication
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channels, and accident data recording. The authors of [13] provide an analysis of iPhone’s
CurrentPowerlog.powerlogsystem file and Android device buffer logs, along
with their associated residual data, both of which can potentially be used to establish mobile
phone usage at the time of, or leading up to, a motor vehicle accident.

Smartphone sensors used to monitor road conditions have been investigated [7, 14, 15,
28, 32]. The authors of [7] describe a system and associate algorithms to monitor this impor-
tant civil infrastructure using a collection of sensor-equipped vehicles. In [28], the authors
describe a mobile sensing system for road irregularity detection using Android OS based
smart-phones. The authors of [32] present a vision based method to automatically determine
if a driver is holding a cell phone close to one of his/her ears (thus keeping only one hand
on the steering wheel) and quantitatively demonstrate the methods efficacy on challenging
Strategic Highway Research Program (SHRP2) face view videos from the head pose valida-
tion data that was acquired to monitor driver head pose variation under naturalistic driving
conditions. In [14], the authors present SmartRoad, a crowd-sourced road sensing system
that detects and identifies traffic regulators, traffic lights, and stop signs. The authors of [15]
utilize smartphone sensors to estimate the vehicle speed, especially when GPS is unavail-
able or inaccurate in urban environments. In particular, they estimate the vehicle speed by
integrating the accelerometer’s readings over time and find the acceleration errors can lead
to large deviations between the estimated speed and the real one.

Smartphone sensors used to detect driver phone have been studied [4, 40, 42, 43]. In [4],
the authors present a driver detection system (DDS) by utilizing multiple sensors (including
accelerometer, gyroscope, and microphone) in smartphones to capture the features of driver?
movement. However, this approach is sensitive to the behavior of each individual, and highly
depends on the position where drivers carry the phone, which is less practical. The authors
of [42, 43] introduce an acoustic relative-ranging system that classifies on which car seat
a phone is being used leveraging the car? audio infrastructure, which relies on the vehi-
cle? audio system. In [40], the authors utilize smartphone sensing of vehicle dynamics to
determine driver phone use, which can facilitate many traffic safety applications.

Different from these works, our SafeDrive outperforms for two reasons: 1) it provides
finer-grained classification for driving conditions, which means in certain cases (for exam-
ple, on an idle local way), the incoming calls are still allowed; 2) it gives user options of
whether they allow it to take control of their phones.

3 System design

To eliminate driver distractions, we present a driver phone use determining system,
SafeDrive, that automatically determines the driving conditions leveraging the built-in
smartphone sensors and then makes a flexible control of driver phone use while driving. In
this section, we first present the application requirements, and then describe our SafeDrive
hardware and application. Next, we describe the SafeDrive architecture in detail.

3.1 Application requirements

Our driver phone use determining system is motivated by the requirements of a safe drive
application for driver-passenger classification [40, 42, 43]. Data from multiple built-in sen-
sors are transmitted to a smartphone processor which makes classification decisions in
real time. The system is able to efficiently and accurately classify typical road conditions
including road type and road status, which are tabulated in Table 1.
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Table 1 SafeDrive classification categories

Road type Road status

Local Idle

Local Busy

Highway Idle

Highway Busy

H/L Traffic Jam

As illustrated in Table 1, we divide the driving conditions into five categories, where
road types are divided into Highway and Local, and road status into Idle, Busy, and
Traffic Jam. To this point, we actually have six combinations of the driving conditions.
However, Traffic Jam can happen on road types of Highway and Local. Since the
behavior of local traffic jam or highway traffic jam is actually similar with very slow speed
and intermittent stops, we merge these two kinds of road types into one as Traffic Jam.
In addition, we believe the category of Traffic Jam is indispensable, because drivers
are prone to checking their phones for a longer waiting in serve traffic jam driving con-
dition. Such road condition classification is quite useful for driver determining and safe
driving applications. The requirements to provide such a helpful driving condition deter-
mining system are: user-friendly, accurate and efficient classification, and less reliance on
ground truth.

• User-friendly. The hardware must be portable and lightweight, while the software must
provide an intuitive interface for adding, removing, and configuring different sensors
geared to detect the driver intended conditions.

• Accurate and efficient classification. The systemmust be able to handle both easy and
difficult to detect road conditions, and adapt the variable orientation of the smartphones.
The system must be energy efficient since a smartphone usually is powered by energy-
constrained batteries.

• Less reliance on ground truth. Classification systems are often deployed with mini-
mal labeled training data, therefore, the need to train a system online requests ground
truth labels only when absolutely necessary. A reduced request of ground truth reduces
the burden on the user to label training data.

3.2 SafeDrive hardware and application

To achieve accurate and efficient classification for built-in smartphone sensors, we provide
a description of hardware and software used in our system. In this section, we first introduce
the hardware used in the system, and then describe the graphical user interface (GUI).

3.2.1 Hardware description

The modern commercial smartphones are equipped with many useful features of sensors
for scientific research, including but not limited to: GPS, 3-axis accelerometer, 3-axis gyro-
scope, touch, and proximity. These devices are powerful, inexpensive and versatile research
platforms that make data collection accessible to the general public. Our SafeDrive system is
solely deployed on a Samsung Galaxy S4 smartphone with Android operating system 4.2.2
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(Jelly Bean), and sensors of GPS, accelerometer, gyroscope, gesture, and proximity. In par-
ticular, the reason we choose GPS to navigate SafeDrive is that GPS is often preferred over
its alternatives such as GSM/WiFi based positioning systems since it is known to be more
accurate [16, 30, 33]. It is well known that GPS is power hungry, but it is not a key issue for
drivers’ smartphones because they can be always charged by their vehicles or mobile power
banks.

3.2.2 Android application

To provide a user-friendly front end for SafeDrive, we implement an Android application
to allow for vehicle speed evaluation, driving condition detection, current time illustration,
data storage and upload for analysis, as illustrated in Fig. 1. The GUI provides an option for
driver to decide whether to entitle our system phone control. That is, the GUI allows phones
to receive incoming calls when the drivers are in a relatively good driving condition [1].

3.3 SafeDrive architecture

The basic idea of our SafeDrive system is to eliminate driver distractions from phones when
they are in critical driving conditions. In this section, we first describe the SafeDrive system
overview in general, and then describe the core of our SafeDrive platform in detail.

Our SafeDrive system resides solely on an Android smartphone with no reliance on
a backed server. Multiple built-in sensors on phones such as GPS and accelerometer

Fig. 1 SafeDrive GUI
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sample data at a default configured rate for road status classification. We choose a con-
figured time window to collect data. Then the data are logged on the phone locally and
the types of stored data are (time stamp, vehicle speed, acceleration),
where acceleration is a 3-dimensional field with elements of x-, y-, and z-axis values.
Next, the data of configured time interval are fed into the SafeDrive classification system at
an interval to make a classification decision. Further, based on the obtained driving condi-
tions, the SafeDrive system can automatically manage the user phones as long as the users
have allowed the application to take control (a box to check is provided in SafeDrive). A
typical and distinct scenario of the SafeDrive system is that if the user is driving in a busy
highway, the phone will block all incoming phone calls to help the driver stay focused. We
now describe the core of our SafeDrive system:

3.3.1 Sensor data collection

We introduce how we collect the speed data from GPS and how we use the data from x, y, z

axes of acceleration.

GPS data Android operating system supports a location class, in which a set of APIs are
provided. The location class encapsulates the speed function, where the speed is calculated
from the distance of two GPS locations (such as latitude and longitude) over a time interval.
We exploit the location.getSpeed() function to obtain the current vehicle speed
with the default sampling rate 1 Hz [1]. We do not tune this rate since it is the fastest rate
that works in most of phones, and we desire high accuracy [17].

Accelerometer data We directly read the values of x, y, and z axes from the accelerome-
ter. The three dimensions are defined as shown in Fig. 2, where the x and y axes are parallel
to the phone screen, and the z-axis is perpendicular to the screen. However, the gravity

force is always influencing the device, so the acceleration can be calculated as −g −
∑

F

mass
.

Therefore, the magnitude of acceleration is 9.81m/s2 when the phone is still. An essential
problem is that the orientation of phone impacts the real values because of 3-dimensional

Fig. 2 Dimensions of
accelerometer
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acceleration. In order to obtain the true values of the acceleration, we need to find a solution
to eliminate the effect of gravity, even though the 3-dimensional acceleration is difficult to
decompose. We provide two potential solutions: 1) a low-pass filter, which is able to isolate
the force of gravity, and then take out the gravity force along the 3 axes; 2) a fixed orien-
tation, that is, put the phone at a certain orientation. Suggested by Android web site [1],
we implement the low-pass filter solution, however, we find that it not only filters out the
gravity force, but also filters out much useful and valuable information, such as turning and
slight brake. The reason is likely to be that vehicles usually have slow accelerations under
normal operations, which are prone to be filtered out. As for the solution of fixed orienta-
tion, it is lightweight and cheap for the phone to do gravity decomposition. Therefore, we
choose the fixed orientation of phones to eliminate the effect of gravity in our SafeDrive
system, as illustrated in Fig. 3, where the smartphone screen is parallel to the ground, facing
upwards, and the head points forward. In the experiment, we place the phone horizontally
with head pointing forwards, which adds the gravity force solely on the z axis. We discard
the z-axis data since this dimension of acceleration does not really work on our driving
condition classification.

3.3.2 Classification algorithm

As illustrated in Table 1, we divide the driving conditions into five com-
binations: {Local, Idle}, {Local, Busy}, {Highway, Idle}, {Highway,
Busy}, and {Traffic Jam}. We describe the classification algorithm in Algorithm 1 and
with a flowchart of Fig. 4, respectively. Using Algorithm 1, we classify driving conditions
into {type, status} with inputs of speed from GPS and y-axis values from accelerome-
ter (speed, Y acceleration). Illustrated in Algorithm 1, we first configure a time window
of 30 seconds for data sampling, that is, t = 30. We use this 30-second data includ-
ing speed and Y acceleration to do the classification. Then, we count the peak number
of Y acceleration and assign the corresponding value to pa, and calculate the highest
speed by max(speed). Next, we compute the ratio of the number of speed that is less
than 5 mph over the number of speed , which is a threshold to classify the driving con-
ditions. With these results, if ratioi > 0.2 and pa > 8, then we classify road status
as Traffic Jam; otherwise, if (vmax > 55), we classify road type as Highway, or if
(vmax ≤ 55), classify it as Local; if pa > 5, we classify road status as Busy, and if
pa ≤ 5, classify road status as Idle. With the classified {type, status}, SafeDrive will
determinate wether to alert drivers or block the phone directly, which we discuss in the
following section.

Fig. 3 Device orientation
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3.3.3 Phone use determination

We aim to protect drivers from phone distractions by blocking incoming phone calls
under critical conditions or alerting drivers under good conditions. In App level,
SafeDrive uses the TelephonyManager class and its method listen to register
a listener PhoneStateListener that will detect PHONE State CHANGED noti-
fied by TelephoneRegistry in Framework level. If call state is changed from
CALL State IDLE to CALL State RINGING, SafeDrive will determine whether block
the phone call or not based on the classification. We define three driving conditions as crit-
ical conditions: {Highway, Busy}, {Highway, Idle}, and {Local, Busy}. Once
driver’s smartphone is classified that the driver is under any one of the three conditions, our
SafeDrive on the smartphone automatically blocks any incoming calls. On the other hand,
once the driver is under the other two conditions {Local, Idle} and {Traffic Jam},
SafeDrive believes the driver is in a safe and good driving condition and it will alert the
driver, so that phone calls can come in.

In addition, SafeDrive respects the driver’s will. If a driver does not feel comfortable let-
ting SafeDrivemanage the phone call, the driver can uncheck the box on the GUI, as shown
in Fig. 1, thereby disabling SafeDrive’s managing mechanism. On the GUI, SafeDrive
still reports some useful information, such as current speed and current driving condition,
without SafeDrive’s management.
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Fig. 4 Flow of the classification algorithm

4 Performance evaluation

We evaluate SafeDrivewith real driving tests. In this section, we first describe our evaluation
setup, then present accuracy evaluation of SafeDrive in different driving conditions, and
finally compare SafeDrive with other related systems.

4.1 Evaluation setup

In the experiments, we solely implement SafeDrive on a Samsung Galaxy S4 smartphone,
and place the smartphone on the middle of the dashboard of a vehicle. As described in
Section 3.3.1 and Fig. 3, the smartphone is mounted in a fixed orientation so that we can
directly retrieve data from different axes. Then, we drive the car in different conditions
for about two hours, and obtain data from GPS and accelerometer. In order to perform
quantitative analysis, SafeDrive automatically logs its readings from GPS and accelerometer
into the smartphone’s internal storage.

In order to evaluate SafeDrive’s accuracy in vehicle speed measurement and driving con-
dition classification, we need to record real vehicle speed and driving conditions. To achieve
this, we maintain synchronized video logs while SafeDrive is collecting data. In the video
logs, we record readings from the vehicle’s speedometer, which serve as ground truth for
driving speed.
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4.2 Accuracy evaluation

In this section, we evaluate the accuracy of SafeDrive in terms of speed, acceleration, and
different driving conditions including local, highway, traffic jam, and complex conditions,
respectively.

4.2.1 Speed measurement

In order to evaluate the accuracy of vehicle speed measurement by SafeDrive, we compare
speed values from SafeDrive with the corresponding ground truth. Since SafeDrive updates
its vehicle speed measurement every second, then we conduct the comparison every sec-
ond. We randomly choose 2-minute data from SafeDrive and video logs, respectively, for
comparison. We calculate the accuracy of vehicle speed measurement by (1).

Accuracyspeed = 1 −
∑ |c − s|

∑
s

× 100 % (1)

where “c” represents the obtained speed from GPS and “s” represents the readout of
speedometer from video logs. Based on the calculation, the accuracy is up to 98 % over our
2-minute GPS data.

In addition, since the vehicle’s speedometer only displays a digital readout in for-
mat of integer, we define that SafeDrive is reliable if the difference between SafeDrive
measurement and ground truth is within 0.5 mph. For instance, if SafeDrive updates the
measurement with a readout of 45.8345 mph, while vehicle speedometer (or ground truth)
displays 46 mph at that time point, we say SafeDrive measurement is reliable. On the other
hand, if the vehicle speedometer displays 45 mph, we say this measurement is unreliable.
Under this definition, the overall reliability is very high, and among those, we detect only
9 unreliable cases. Therefore, we can say that the speed data from GPS are fairly accurate,
and are sufficiently used as inputs of classification algorithm.

4.2.2 Acceleration measurement

We start with a 6-minute raw data of local conditions from y axis of the acceleration to
evaluate acceleration accuracy.

With the selected raw data, we plot the y axis of acceleration in m/s2 and the cor-
responding vehicle speed in mph, where the vehicle runs on {Local, Busy} and then
turns to {Local,Idle}, and the speed reaches 50 mph but does not exceed 55 mph.
As illustrated in Fig. 5, x axes correspond to elapsed time, while the y axis of the upper
subfigure represents acceleration, and that of lower subfigure indicates the corresponding
vehicle speed. From the upper subfigure, we can see that signals from accelerometer are
more noisy, partially due to its higher sample rates and partially due to its high sensitiv-
ity. In real experiment, from 60th second to 130th second, the vehicle runs on a straight
road, and then experiences two sudden brakes because of unexpected driving conditions.
These are reflected in two negative spikes in acceleration and the corresponding changes in
speed. More over, at around 150th second, the vehicle first slows down and stops at a signal
light for around 10 seconds; then turns right, and enters a quiet and idle road. We can see
variations in acceleration are much smaller, and the speed is mostly stable.

From the analysis, we deduce that changes in accelerations reflect the frequency of
applying brakes and speeding up, which are indicators of the road traffic. That is to say,
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Fig. 5 Example of local conditions (raw data)

there are more spikes in acceleration if there is much traffic. As a result, we use the num-
ber of peaks to differentiate busy driving conditions from idle. Median Filtering is used
to perform noise reduction, which runs through data and replaces each data point by the
median of all neighboring data points. In SafeDrive, we explore zero padding to address
boundary issue and the size of sliding window is 10, which works very well in filtering
out noise while preserving real information. Peak-Finding technique is used to detect
positive and negative peaks in acceleration, which conventionally locates the maximum of
every three data points. In SafeDrive, we make two modifications that: 1) set a threshold
when detecting peaks for reducing false positives; 2) penalize peaks that are very close to
each other to avoid duplicated peaks. Based on Fig. 5, we plot the filtered acceleration sig-
nal with detected peaks in the upper subfigure of Fig. 6, where yellow lines represent raw
acceleration, blue lines indicate the filtered acceleration signal, red circles indicate posi-
tive peaks, and black circles indicate negative peaks. From this subfigure, we can clearly
see that there are 3 negative peaks associated with 3 brakes and 12 positive peaks from
60th second to 180th second. In contrast, there are only 3 positive peaks and no nega-
tive peak starting from 120th second. This phenomenon perfectly matches our intuition
that when there is a lot of traffic, the vehicle will speed up or slow down more fre-
quently. In the lower subfigure, green “ + ” represents {Local, Idle} and red “ + ”
represents {Local, Busy}. Note that the reason that positive peaks after 120th second
do not lead to a noticeable increase in speed is that Median Filtering performs the noise
reduction.

4.2.3 Different driving conditions

Driving conditions can be classified into 5 groups as illustrated in Table 1. In this section, we
present and analyze SafeDrive’s accuracy and efficiency of classification in local, highway,
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Fig. 6 Example of local conditions (data processing and classification)

traffic jam, and complex conditions, respectively. As introduced in Algorithm 1, SafeDrive
takes the speed and acceleration in the past 30 seconds as input, and then classifies driving
conditions into one of the five groups.

Local conditions As with previous example, SafeDrive conducts 150 estimations and the
results are marked as the lower subfigure of Fig. 6, where “+ ” indicates type = Local,
meaning that driving condition is estimated as “Local”, and red “ + ” denotes status
= Busy while green “ + ” indicates type = Idle. The comparison of SafeDrive’s
estimations and ground truth is listed in Table 2, where numbers in the second and third
columns indicate time ranges that SafeDrive’s estimations or ground truth fall into the cor-
responding driving conditions. For instance, from 78th second to 118th second, and 142nd
second to 202nd second, our SafeDrive classify the driving condition into {Local,Busy},
while the ground truth is that from 80th second to 212nd second the driving condition is
{Local,Busy}. For other time intervals, the driving condition is {Local,Idle}. Based
on the comparison, 132 out of the 150 estimations are correct, which indicates that our
SafeDrive has 88% classification accuracy for local conditions.

Highway conditions We then discuss the accuracy of highway condition classification.
We plot the obtained data in Fig. 7. In the experiment, the vehicle run steadily on highway

Table 2 Results of local conditions example

Driving conditions SafeDrive Ground truth

{Local,Busy} 78–118, 142–202 80–212

{Local,Idle} Others Others



Multimed Tools Appl (2016) 75:16959–16981 16973

240 270 300 330 360 390 420 450 480 510 540
−4

−2

0

2

4

A
cc

 in
 y

−
ax

is
 (

m
/s

2 )

240 270 300 330 360 390 420 450 480 510 540
0

20

40

60

80

S
pe

ed
(M

P
H

)

Elapsed Time (s)

Fig. 7 Example of highway conditions

except for two cases where brakes apply, at 270th and 344th seconds, respectively, and
then the vehicle slows down and exits the highway at around 466th second. Our SafeDrive
conducts the estimations, and the corresponding results are illustrated on the lower subfigure
of Fig. 7, where “ + ” indicates type = Highway, meaning that driving condition is
estimated as “Highway”, and green “ + ” indicates {Highway,Idle} while red “ + ”
represents {Highway,Busy}. The comparison of our SafeDrive’s estimations and ground
truth is summarized in Table 3. As illustrated in Table 3, 96 out of the 150 estimations
are correct, which demonstrates that the SafeDrive has 64 % accuracy of classification for
highway conditions. Among those missed cases, 19 of them are caused by the latency when
the vehicle exits the highway, which we will discuss in Section 5.

Traffic jam conditions We next discuss a scenario where we experience a traffic jam as
shown in Fig. 8. The estimations made by our SafeDrive is plotted on the lower subfig-
ure, where red “ + ” represents {Local,Busy} while black “ � ” indicates {Traffic
Jam}. The results are summarized in Table 4, where 121 out 150 cases are correct,
which demonstrates that our SafeDrive has 81 % accuracy of classification for traffic jam
conditions.

Table 3 Results of highway conditions example

Driving conditions SafeDrive Ground truth

{Highway,Idle} Others 240–262, 380 – 464

{Local,Idle} 496–540 466–540

{Highway,Busy} 276–314, 360–394 264 – 378
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Fig. 8 Example of traffic jam

Complex conditions In order to show the overall accuracy of our SafeDrive under any
conditions, we obtain 56-minute data by driving our vehicle in the experiment. With these
data, we conduct 1695 estimations made by the SafeDrive, and the corresponding results
are listed in Table 5, where the second column represents the total number of SafeDrive’s
estimations, the third denotes the number of correct cases, and the last indicates the cor-
responding accuracy. From the table, our SafeDrive can correctly classify the driving
conditions in 1472 cases, and achieve the overall accuracy up to 87 %. The overall accu-
racy is higher than that of single condition we illustrated. The reason is that when driving
conditions are in transition, the accuracy is reasonably lower. In fact, driving conditions are
probably in transition, our SafeDrive can effectively and accurately classify the driving con-
ditions, and we also believe that the overall accuracy can even be much higher if the driving
conditions do not vary so much.

4.3 Comparison with other systems

In order to make a comparison, we incorporate Google Map Navigation and Waze into
SafeDrive on two Samsung Galaxy S4 smartphones to determine driver phone use, respec-
tively, where Google Map Navigation is a turn-by-turn navigation application, andWaze is a
community-based traffic and navigation application. To avoid confusion, we simply refer to

Table 4 Results of traffic jam example

Driving conditions SafeDrive Ground truth

{Traffic Jam} 2–8, 26–58, 192, 236–254, 288–298 All

{Local,Busy} Others None
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Table 5 Results of overall evaluation

Driving conditions Estimations Correct cases Accuracy

{Local,Busy} 433 388 90 %

{Local,Idle} 446 395 89 %

{Highway,Busy} 340 303 89 %

{Highway,Idle} 267 217 81 %

{Traffic Jam} 209 169 81 %

Overall 1695 1472 87 %

the two incorporated driver phone use determination systems as GMNDrive andWazeDrive,
respectively. In the experiment, we vertically place the three smartphones on the middle
dashboard of a vehicle. With the same settings to SafeDrive, we evaluate the accuracy of
GMNDrive, WazeDrive and SafeDrive under any conditions by obtaining 30-minute data
with real vehicle driving, respectively. With these data, we conduct 895 estimations for the
three systems, and the corresponding comparison results are illustrated in Table 6. As illus-
trated in Table 6, the correctly classified cases by GMNDrive, WazeDrive and SafeDrive
are 792, 780 and 782, respectively, and the overall accuracies are 88 %, 87 % and 87 %,
respectively. Moreover, WazeDrive and SafeDrive have high accuracies in local road types,
while GMNDrive have high accuracy in highway road types. This is probably because
these applications are designed for different navigation environments. However, GMNDrive
and WazeDrive require more smartphone storage for the applications and need an Internet
connection, which greatly consumes the battery.

5 Discussion and future work

In this section, we first discuss advantages and disadvantages including limitations and
latency issues of our SafeDrive, and then introduce the future work.

5.1 Discussion

Our SafeDrive can determine driver phone use leveraging built-in smartphone sensors
sensing driving conditions, while the related systems such as GMNDrive and WazeDrive
leverage live traffic maps and need Internet connection, which require more smartphone

Table 6 Comparison results

Driving All GMNDrive WazeDrive SafeDrive

Conditions Estimations Correct Cases Accuracy Correct Cases Accuracy Correct Cases Accuracy

{Local,Busy} 212 186 88 % 191 90 % 190 90 %

{Local,Idle} 225 193 86 % 205 91 % 201 89 %

{Highway,Busy} 162 147 91 % 137 85 % 142 88 %

{Highway,Idle} 159 147 92 % 133 84 % 134 84 %

{Traffic Jam} 137 119 87 % 114 83 % 115 84 %

Overall 895 792 88 % 780 87 % 782 87 %
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storage and battery energy. Our SafeDrive prototype classifies driving conditions based
on GPS and accelerometers with a classification algorithm, and a SafeDrive product can
significantly reduce vehicle accidents.

We have observed a few weak predictions in our performance evaluation of
the SafeDrive, which is largely due to two factors: information limitation and
latency.

Limitations We do not consider history information, so we have unexpected standing
out wrong predictions. For example, in Fig. 6, our results show that the driving condi-
tion is {Local,Idle} between 120th second and 142nd second. However, the ground
truth is different. It is reasonable to expect driving conditions to be continuous, that
is, driving conditions should be smoothly changing instead of jumping back and forth.
Considering history information can help control such wrong predictions, however, we
have not implemented more complex algorithm in SafeDrive currently. Although there
are some wrong predictions standing out, it is likely that the drivers will not receive
a call during a short duration. Note that the probability of incoming phone calls while
driving follows the uniform distribution in statistics. Therefore, we believe the SafeDrive
can still be very useful even with such a limitation. In addition, we ignore the turning
information in our SafeDrive because it is too weak to observe. Under highly noisy envi-
ronment, it is quite hard to identify a turn when a driver changes a lane or makes a slight
turn for the accelerometer, and only sharp turns can be clearly captured in our exper-
iments. Therefore, we discard this type of information, using only y-axis acceleration
information.

Latency There is sometimes a latency in our estimations. One example is that the vehi-
cle has exited the highway at the 466th second, however, SafeDrive did not change
the road status to {Local,Idle} until the 496th second, as shown in Fig. 7. This
is because the inputs of our SafeDrive are previous 30-second data, which are used
to determine current driving conditions. So the number of peaks, maximum speed
within a sliding window (30 seconds) in the algorithm cannot be changed promptly
as we promptly enter another driving condition. Therefore, there would be a gap
between our estimation and the ground truth. Nevertheless, the latency is a short
time of a few seconds, which does not influence a long period of driving condition
classification.

5.2 Future work

There can be much to do based on our current system. First, we can add more func-
tions on the protection mechanism of SafeDrive, such as delaying SMS and notifica-
tions from other applications. We can also make customized blocking plan or provide
blacklist and white list. Second, we can investigate a better solution to eliminate the
gravity force on the accelerometer. We currently place our phones at a fixed posi-
tion to benefit classification. This may need to be further improved to increase driver
experience. Finally, we can reduce or even eliminate the use of GPS since it is
quite energy hungry. We may take advantage of accelerometer to calculate the speed
using integration of acceleration [25, 31], and may consider vehicle board comput-
ers. In addition, we may consider how driving styles of drivers affect the performance
of SafeDrive.
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6 Conclusion

As mobile devices have been widely used in human daily life, people start using them in
inappropriate cases, even when they are driving. It has been common sense that using a
mobile phone while driving is dangerous and numerous reports have proved the threat of
driver distractions. Even law has banned certain usage of mobile phones in some states in
US. Although being informed of the potential danger, people still keep using their phones
while driving.

To eliminate driver distractions, we present SafeDrive, a driver phone use determin-
ing system that automatically determines the driving conditions leveraging the built-in
smartphone sensors and then makes a flexible control of driver phone use while driving.
More specifically, we first explore GPS and accelerometer sensors on an Android Sam-
sung Galaxy S4 smartphones to collect data from a real road driving vehicle, which can
sufficiently capture driving conditions. With inputs of these data, we provide an accurate
driving condition classification algorithm, that classifies driving conditions into five cate-
gories: {Local, Idle}, {Local, Busy}, {Highway, Idle}, {Highway, Busy}, and {Traffic Jam}.
Based on the classified driving condition, SafeDrive makes a flexible control of driver
phone use while driving. Finally, we excessively evaluate the classification accuracy of
our SafeDrive in local, highway, traffic jam, and complex conditions, respectively, and
the results demonstrate that it can achieve up to 87 % classification accuracy in complex
conditions.
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