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Abstract According to New York Times, 5.6 million people in the United States are para-
lyzed to some degree. Motivated by requirements of these paralyzed patients in controlling
assisted-devices that support their mobility, we present a novel EEG-based BCI system,
which is composed of an Emotive EPOC neuroheadset, a laptop and a Lego Mindstorms
NXT robot in this paper. We provide online learning algorithms that consist of k-means
clustering and principal component analysis to classify the signals from the headset into
corresponding action commands. Moreover, we also discuss how to integrate the Emotiv
EPOC headset into the system, and how to integrate the LEGO robot. Finally, we evaluate
the proposed online learning algorithms of our BCI system in terms of precision, recall,
and the F-measure, and our results show that the algorithms can accurately classify the
subjects’ thoughts into corresponding action commands.

Keywords EEG · BCI system · k-means clustering algorithm · Principal component
analysis

1 Introduction

Wireless sensors have been successfully applied in medicine. Medical applications such as
artificial pancreas and wireless pulse oximeter sensors have proved to be fruitful avenues of
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research. Researchers have also applied wireless sensors to aid in improving patient mobil-
ity. One of such mobility applications is the use of an electroencephalogram (EEG) headset
that allows patients to control a wheelchair with their minds [1, 9, 10, 17, 25, 39]. An EEG-
based brain-computer interface (BCI) is a system that enables people to control devices
using signals from their scalps, which can be used to assist patients who have highly com-
promised motor functions, such as completely paralyzed patients with amyotrophic lateral
sclerosis. Typically, a BCI is composed of modules of preprocessing, feature extraction,
classification and feedback.

Using an EEG headset to control a wheelchair may prove to be challenging: most learn-
ing algorithms that collect information from EEG headsets are trained not online but offline.
Online algorithm is referred to as that a learning algorithm can directly process a col-
lection of data without pretreatment process and offline training process, while offline
algorithm means that the learning algorithm is presented, apriori, with a collection of data
that are used to train the hypothesis. This hypothesis remains the same even as new data
are encountered. Since a learning algorithm is not able to adjust to the diversity of sig-
nals that a patient may produce while using the headset, the static nature of this algorithm
limits learning of the hypothesis. Nevertheless, human brain is self-learning, and it can
automatically adjust as it receives stimulus or feedback from different systems. Consider
an example in which a patient is asked to train an algorithm by thinking about mov-
ing the wheelchair forward and backward. During the test, when the patient is asked to
create the thought of moving the chair forward, the wheelchair probably cannot distin-
guish the movement commands, because the learning algorithm is likely to misinterpret the
signal [44].

There are a number of related works on the design of BCIs. Birbaumer et al. present the
first BCI, a spelling system using slow cortical potentials (SCPs), which is validated with
severely disabled patients [2], but SCP BCIs have several disadvantages [3]. Then, BCIs
based on event-related (de)synchronization (ERD or ERS) have been widely investigated
[4, 21, 30, 32, 33, 35, 40], but some patients cannot use ERD BCIs, because they are unable
to modulate sensorimotor rhythms for effective control [18, 22, 31]. BCIs based on steady-
state visual evoked potentials (SSVEPs) have also been significantly researched [16, 23, 26,
36, 38], but SSVEP BCIs do not work for some patients [27, 28]. EEG-based BCIs have
been studied as well [5, 6, 11, 29, 41], but most of them are not under an online processing.
Exploring EEG headsets to control cyber-physical systems is not new. Several researchers
have explored this notion of EEG based control, but these applications are extremely
inaccurate. Neurofeedback has been used in a variety of training applications. One such
application is the focus training in patients suffering from ADHD [5]. However, we believe
that our proposed BCI system is able to enhance the accuracy of EEG based control
algorithms.

In this paper, we present a novel EEG-based BCI for online robot control, which is a
solution to problems of diversity in the signals and dynamic nature of the brain, and can
be used for paralyzed patients in controlling assisted-devices that support their mobility.
Our prototype of BCI system consists of an Emotive EPOC neuroheadset, a laptop and
a Lego Mindstorms NXT robot. More specifically, the Emotiv EPOC headset is a neuro-
signal acquisition and processing wireless neuroheadset with 14 saline sensors being able
not only to detect brain signals but also users’ facial expressions, which uses a set of 14 sen-
sors to tune into electrical signals produced by the brain to detect the participants’ thoughts,
feelings and expressions in real time. The EPOC is a wireless EEG system with 14 chan-
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nels. The laptop is used to collect data from the neuroheadset, classify them, and then
transmit activity commands to the robot. The robot will perform the corresponding activ-
ities according to the received commands. To enable the BCI system to control the robot
effectively and accurately, we present online learning algorithms of k-means clustering and
principal component analysis to classify the signals from the headset into corresponding
action commands. In particular, we use a modified version of the online k-means clus-
tering algorithm in which cluster centroids are updated dynamically as new examples are
received, and explore principal component analysis to perform a reduction in the feature
space [34].

Our main contributions can be summarized as follows:

• We present a novel EEG-based BCI for online robot control, which can be used for
paralyzed patients in controlling assisted-devices that support their mobility.

• We provide online learning algorithms of k-means clustering and principal component
analysis to classify signals from a headset into corresponding activity commands.

• We evaluate online learning algorithms of our BCI system in terms of precision,
recall, and the F-measure, and the results show that our algorithms can accurately
classify the subjects’ thoughts into action commands.

The remainder of this paper is organized as follows: Section 2 covers related works, and
Section 3 provides the design of our BCI system including the system motivation, hardware
components, and system architecture in detail. Then, we present online learning algorithms
of k-means clustering and principal component analysis in Section 4, and discuss the com-
munication protocol of BCI system in Section 5. We evaluate our online learning algorithms
of the BCI system in Section 6, and conclude the paper in Section 7.

2 Related work

There are a wide range of works on the design of BCIs. We broadly classify these efforts
into two categories: BCIs based on event-related (de)synchronization (ERD or ERS) [4, 21,
30, 32, 33, 35, 40], and BCIs based on steady-state visual evoked potentials (SSVEPs) [16,
23, 26, 36, 38]. Then, we discuss some works that use Emotiv EPOC EEG headsets [5, 6,
11, 29, 41].

2.1 BCIs based on event-related (de)synchronization (ERD or ERS)

The authors in [4] report the performance of BCI novices (not from their laboratories) in
their first BBCI feedback session in the framework of a broader study. A rigorous inves-
tigation of EMG signals demonstrates that the success cannot be ascribed to concurrent
EMG activity during motor imagery. In [21], the authors suggest that four people severely
disabled by ALS learned to operate a BCI with EEG rhythms recorded over sensorimotor
cortex. These results suggest that a sensorimotor rhythm based BCI could help maintain
quality of life for people with ALS. The authors of [30] describe how a completely par-
alyzed patient, diagnosed with severe cerebral palsy, was trained over a period of several
months to use an EEG-based BCI for verbal communication. In [32], the authors discuss
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that motor imagery can modify the neuronal activity in the primary sensorimotor areas in a
very similar way as observable with a real executed movement. One part of EEG-based BCI
is based on the recording and classification of circumscribed and transient EEG changes
during different types of motor imagery such as imagination of left-hand, right-hand, or
foot movement. The authors of [35] present an asynchronously controlled three-class brain-
computer interface-based spelling device virtual keyboard (VK), operated by spontaneous
electroencephalogram and modulated by motor imagery.

However, about 22 % of people cannot use ERD-based BCIs, since some patients are
unable to modulate sensorimotor rhythms for effective control [18, 22, 31].

2.2 BCIs based on steady-state visual evoked potentials (SSVEPs)

In [16], the real-time performance of a novel method for detecting SSVEP is evaluated in a
BCI spelling task. At the core of this method is a spatial filtering algorithm for extracting
SSVEP responses, which in previous offline studies has shown significantly improved
classification performance. The authors of [23] present the application of an effective EEG-
based BCI design for binary control in a visually elaborate immersive 3D game. The BCI
uses the SSVEP generated in response to phase-reversing checkerboard patterns. In [26], a
new multistage procedure for a real-time BCI is developed. The developed system allows a
BCI user to navigate a small car (or any other object) on the computer screen in real time,
in any of the four directions, and to stop it if necessary. The authors of [36] provide an opti-
mization strategy for SSVEP-based BCI, especially in spelling program application. In [38],
the authors develop and test two EEG-based BCI for users to control a cursor on a computer
display. The system uses an adaptive algorithm, based on kernel partial least squares clas-
sification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor
controls.

However, SSVEP-based BCIs do not work for some patients [27, 28].

2.3 Some works on Emotiv EPOC EEG headset

In our experiments, we use the Emotiv EPOC EEG headset. Several researchers have con-
ducted studies using this kind of headset. The authors in [11] conduct a study in which
they evaluate scientific validity of results obtained using a commercial EEG headset. Their
results are promising, and show that the Emotiv EPOC is a scientifically-viable device.
In [12], the authors conduct experiments in which they compare the Emotiv EPOC to a med-
ical device. Nevertheless, their results conflict those in the study of [11]. They found that
the Emotiv headset performed significantly worse when compared to the medical system.
However, from these studies, it is unclear whether the Emotiv headset provides accurate
enough readings to make it a viable device for conducting scientific experiments. In our
work, we explore this question and report on our results. Other researchers such as [42],
where the authors explore the idea of controlling a NXT Robot using the Emotiv EPOC
and NeuroSky headsets. In their experiments, they use the attention level calculated by the
software to accelerate and decelerate the robot. However, they did not employ any online
learning algorithm or neurofeedback. Applications of learning algorithms to EEG data are
not new [7, 20]. In [41], the author in his thesis on raw EEG data classification and applica-
tions, uses support vector machines to classify signals obtained from a headset and direct a
robot.
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Fig. 1 Motivation of our BCI system

3 BCI system overview and architecture

In this section, we first discuss the motivation of our BCI system, then describe the hardware
components of the system, and finally detail our BCI system architecture.

3.1 System motivation

Our BCI system design is motivated by requirements of paralyzed patients in controlling
assisted-devices that support their mobility, as illustrated in Fig. 1. Data generated from
neuroheadsets (such as Emotive EPOC) on the patients’ brains are reported by wireless
to mobile devices (such as smartphones or laptops) on which classification decisions are
made in real time, and then mobile devices transmit the decision demand to assisted living
facilities (such as wheelchairs) by wireless as well [19, 43]. Our BCI system must be able
to accurately and effectively classify typical moving directions for daily activities, such as
moving forward, moving backward, turning left, and turning right. Such activity recognition
is quite useful for paralyzed patients to implement what they are thinking and where they
intend to go, because they can manipulate assisted living facilities through their conscious
thoughts.

3.2 Hardware of our system

To achieve accurate and efficient activity recognition for neuroheadsets and mobile devices,
we provide an extensive hardware support system, which we describe in this section.

Our BCI prototype consists of an Emotive EPOC neuroheadset, a laptop and a Lego
Mindstorms NXT robot, as illustrated in Fig. 2. More specifically, the Emotiv EPOC headset
is a neuro-signal acquisition and processing wireless neuroheadset with 14 saline sensors
being able not only to detect brain signals but also participants’ facial expressions, which
uses a set of 14 sensors to tune into electrical signals produced by human brains to detect
the users’ thoughts, feelings and expressions in real time [14]. The EPOC is a 14-channel
wireless EEG system with channel names of AF3, AF4, F3, F4, F7, F8, FC5, FC6, P3
(CMS), P4 (DRL), P7, P8, T7, T8, O1, O2 [13, 15]. The laptop is used to collect data from
the neuroheadset, classify them, and then transmit activity commands to a robot. The robot
will perform the corresponding activities according to received commands [8, 24]. In the
system, the EPOC neuroheadset first generates data by sensors sampling electrical signals
on human brains, and then transmits raw data to the laptop via Bluetooth. Then, the laptop
executes online learning algorithms to classify these brain signals into corresponding action
commands, and then sends these commands to the NXT robot via Bluetooth. Finally, with
action commands, the robot will perform the basic maneuvering (such as moving forwards,
moving backwards, turning left, and turning right).
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Fig. 2 Prototype of our BCI system

3.3 System architecture

In order to show a detailed description, we illustrate our system architecture in Fig. 3. As
illustrated in Fig. 3, our system resides solely on EPOC headset sensors and on a laptop
installed online learning algorithms. The EPOC headset, containing 14 sensors of differ-
ent modalities, is attached on-head. The sensors on the headset start sampling brain signals
by turning on the sample controller, at a user configured rate. The headset communicates
wirelessly with the laptop via a built-in Bluetooth (dotted lines), which aggregates data
from each sensor and then transmits them to the laptop for online learning. On the lap-
top, the aggregated data are first processed by the signal processing module and then fed
into the activity classification system to make a classification decision. The signal proces-
sor, k-means clustering, is to gather readings from the headset and associates them with
corresponding actions. The classifier, principle component analysis, is initially trained with
each predefined activity ground truth. With classification results, the laptop sends the cor-
responding commands to the robot via Bluetooth. The robot performs the corresponding
activity by movement controller. We now describe the core of our system architecture:

Fig. 3 Architecture of our BCI
system
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Data acquisition We use the API provided by the SDK for the Emotiv EPOC headset to
acquire data from sensors [13]. With the API, we just read in raw data values of each sensor,
convert them to a vector, and pass it to the online learning algorithms for processing and
classification.

Signal processing We use k-means clustering, an online clustering algorithm, as our sig-
nal processor that resides on a laptop. k-means clustering aims to partition n observations
into k clusters in which each observation belongs to the cluster with the nearest mean,
serving as a prototype of the cluster. Note that online algorithm is referred to as the algo-
rithm can directly process the data without offline training process. With this approach, we
are able to associate each of the fourteen readings generated by the headset with a closest
action.

Activity classification We explore principal component analysis (PCA), an ensemble
online learning algorithm, as our activity recognition classifier which resides entirely on a
laptop as well. PCA uses orthogonal transformation to convert a set of observations of pos-
sibly correlated variables into a set of values of linearly uncorrelated variables. With PCA,
we can select the most suitable features by performing a reduction in the feature space.

Movement controller With the received action command, the robot performs the corre-
sponding activities.

4 Online learning algorithms

To begin, we first use an online k-means clustering algorithm to associate input vectors
with a nearest centroid (or action), and then explore principal component analysis algorithm
to perform a reduction in the feature space.

4.1 Online k-means clustering

The core of our activity classification approach uses the online ensemble learning, specif-
ically k-means clustering. In this section, we explain how we adapt k-means to run on a
laptop for use with a headset. We choose k-means clustering algorithm to process outputs
of the Emotiv EPOC headset. Since the headset has 14 sensors on it, we will receive 14 sig-
nal values for each reading, that is, each value corresponds to a sensor. Then we perceive
each reading as a vector, which is used as the input of the k-means clustering algorithm.
We discuss the online k-means clustering algorithm in Algorithm 1. In Algorithm 1, we
define a set of activities c = {c1, c2, ..., ck}, initially referred to as centroids, and a vector
v = [v1, v2, ..., vs], which correspond to the headset sensors of 14 readings. Since there is
a significant diversity between clusters, we first adjust the centroid values c for each activ-
ity by enforcing a distance requirement on the placement of the original centroids, where
ε represents the diversity value and is learned in an online processing. We then convert
signal values from each sensor on the headset into a vector v = [v1, v2, ..., vs], where
each element represents the reading of one sensor. Then, the vector is processed by alter-
nating between two steps. Finally, we obtain a centroid c associated with thoughts to an
action.
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For instance, we plot the signals collected from the EEG headset by using k-means
clustering algorithm in Fig. 4.

Fig. 4 An instance of k-means clustering algorithm for signals collected from the headset
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4.2 Principal component analysis

In this section, we perform a dimension reduction of headset readings that converts the 14-
dimensional vector to a 2-dimensional vector by exploiting the principal component analysis
algorithm, which is detailed in Algorithm 2. As we can see fromAlgorithm 2, it is comprised
of three steps. First, we calculate the co-variance matrix C of the collection cluster centroids
c from Algorithm 1. We then calculate the singular value decomposition of the co-variance
matrix. Finally, we project each of the 14-dimensional vectors unto the first two eigenvectors
of the unitary matrix U , which gives the representation of the points in the reduced space.
Note that the input of Algorithm 2 is the output of Algorithm 1, that is, these two algorithms
sequentially process the original data.

As a case, we plot the signals collected from the EEG headset on their principal compo-
nents in Fig. 5. Note that the central cluster part constitutes the real neutral thoughts, while
the surrounding part jutting out constitutes other thoughts.

5 Protocol design

In this section, we discuss how to integrate the Emotiv EPOC headset into the system, and
how to integrate the LEGO robot as well.

Fig. 5 A case of principal component analysis for signals collected from the headset
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5.1 Headset integration

We first require an SDK for the Emotiv EPOC headset, as the sensors are encrypted
otherwise. Once obtained and set up, we need to connect the readings to our hybrid k-
means/PCA programs. To achieve this, we modify our hybrid programs to read in sensor
readings using the API provided by the SDK for the Emotiv EPOC headset.

Using the API, we enable data acquisition from the headset. Following this, we check
the connection and signals of the sensors to make sure that they are of good quality. Then,
we can read in the raw signal values of each sensor, convert them to a vector, and pass it to
the online k-means/PCA algorithms. Once the thought is clustered and the corresponding
action command sent to the robot, we then proceed to read in the next thought. Note that
we read the next thought until the robot executes the action, instead of the action command
being sent to the robot buffer. This is to reduce a backlog of actions sent to the robot,
because of a situation that the participant’s thought is probably far ahead of the actions
before performance which would be extremely difficult to make an association between a
thought and an action.

5.2 Robot integration

The LEGO NXT robot is a simple “car” robot that has four commands: moving forwards,
moving backwards, turning left, and turning right. Since only one command can be pro-
cessed at a time, the robot cannot move forwards and turn left at the same time. Using a java
package with support for driving the robot via Bluetooth, we write a simple program that
has the robot listen for key presses, and when a certain key is pressed, the robot performs
the appropriate action. While the robot does not have a buffer for saving inputs, we decide
to abandon the use of it.

Once the headset is integrated properly into the hybrid k-means/PCA programs, we next
focus on having the program connect to a java driver installed on the LEGO robot. Because
we already have the LEGO robot set up to respond to certain key presses, we interpret
the actions that are sent to the program by the headset as key presses, thereby allowing
versatility in testing the headset in other applications that require key presses. We could
have the actions directly sent to the LEGO robot, but this would limit functionality in that it
only works with the LEGO robot.

Now that the headset and robot integrations are complete, we have a detailed description
of BCI protocol: with LEGO robot and headset turned on, a participant wears the headset,
and begins to think a thought; by reading in the k-means/PCA programs, the thought is
clustered to a centroid and the corresponding action is then sent to the robot driver, which
simulates a key press for the action; by receiving the action command, the robot executes
the action. Note that once the action is executed by the robot, the clustering program will
listen for another thought.

6 Performance evaluation

In this section, we first discuss the evaluation setup of the system. Then, we evaluate our
online learning algorithms of the BCI system in terms of precision, recall, and the F-
measure.
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6.1 Evaluation setup

The setup of our BCI system consists of an Emotive EPOC headset, a laptop and a NXT
robot. More specifically, the headset samples electrical signals produced by a subject’s
thoughts in his/her brain in real time. The laptop is used to collect data from the headset,
classify them, and then transmit activity commands to the robot. The robot will perform
the corresponding activities according to received commands. Subjects (participants) in the
experiment are 6 healthy students, who are constituted of 3 men and 3 women with age
range of 18-30 years. The personal information of the subjects is summarized in Table 1. All
subjects are free of neurological or psychiatric disorders or medications known to adversely
affect EEG recording. None has prior experience with EEG recording or BCIs. The nature
and purpose of the experiment are explained to each subject before preparation for EEG
recording. In the experiment, each subject wears the Emotive EPOC headset on head sitting
in a comfortable chair, one meter from the laptop, who is asked to think a moving direction
within 5 seconds, and there is a 10-second time interval between thoughts, where the total
time for each subject is 2 minutes. Since we have 6 subjects, we have 12-minute data for
evaluation. Then, the headset sends the collected data to the laptop via Bluetooth for online
processing.

6.2 Accuracy evaluation

To evaluate the accuracy of our BCI system, we first introduce three metrics precision,
recall, and F-measure (or F1-score). In a classification task, precision for a class is
defined as the number of true positives (i.e. the number of items correctly labeled as belong-
ing to the positive class) divided by the total number of elements labeled as belonging
to the positive class (i.e. the sum of true positives and false positives, which are items
incorrectly labeled as belonging to the class). Recall is referred to as the number of true
positives divided by the total number of elements that actually belong to the positive class
(i.e. the sum of true positives and false negatives, which are items which were not labeled
as belonging to the positive class but should have been). In our experiment, the F-measure
is a weighted harmonic mean of precision and recall, where precision is the accuracy
to which each cluster is classified, and recall measures the percentage of elements in each
cluster that we classified. The formulas for precision, recall, and F-measure are expressed
as: Precision = true posi tive

true posi tive+ f alse posi tive , Recall = true posi tive
true posi tive+ f alse negative , F1 =

2 × precision×recall
precision+recall .

We evaluate our BCI system by comparing the accuracy (F-measure or F1-score) of our
online learning algorithms with statically-trained algorithms. Note that the statically-trained

Table 1 Personal information of
subjects Gender Age Major Number

Male 21/30 Computer Science 2

Male 26 Mathematics 1

Female 18 Computer Science 1

Female 25 Finance 1

Female 27 Psychology 1



8010 Multimed Tools Appl (2016) 75:7999–8017

algorithms are the same as online algorithms, but the algorithms need to be trained and the
classification is offline. Our accuracy evaluation is comprised of four steps: 1) we write a
small program which is able to collect and record the signals from the headset, and save
the signal data as a .csv file; 2) collect signals by running the statically-trained algorithm,
and record the number of true/false positives and false negatives, respectively; 3) execute
our online learning algorithm with inputs of the stored .csv file value; 4) calculate the F-
measure for online learning algorithms and the statically-trained algorithms, respectively.
We now describe the steps in detail as follows.

Control signal collection Before conducting our experiment, we first gather a collection
of signals for the headset as control signals. With these signals, we discover the amount
of noise associated with a sensor. Figures 6 and 7 illustrate the collected signals when the
headset is put on a table. Note that several of the signals are highly correlated, in terms of
noise.

We have now profiled the device for noise. We can determine the lowest value of ε in
Algorithm 1. The value of ε must be greater than maximum noise vector, which ensures
that noise from points associated with one cluster does not affect the other. Using the same
program as for collecting control signals, we ask subjects to clench their teeth for 5 seconds,
and there are 10-second time interval between each clench. We record the number of true
positive and false negative, respectively.

Online learning Algorithms The online learning algorithms runs similarly to the
statically-training algorithm with inputs of the data collected from the headset by the 6 sub-
jects and outputs of the corresponding classification results. We then calculate the number
of true positive and false negative for calculation of F-measure.

F-measure calculation As defined, F-measure is the harmonic mean of precision and
recall, where precision is the accuracy to which each cluster is classified, and recall
measures the percentage of elements that is in each cluster that we classified. We then
calculate F-measure based on the equation.

Fig. 6 Signals for the Emotiv Headset for sensors AF3, FC5 and T7
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Fig. 7 Signals for the Emotiv Headset for sensors O2, O1 and P7

6.3 Analysis of results

Based on the above evaluation, we analyze the obtained results in this section. In order to
show the comparison of online learning algorithms and the static-training algorithms, we
first tabulate the true/false positives and false negatives of online learning algorithms in
Table 2, and the true/false positives and false negatives of the statically-trained algorithm
in Table 3, respectively. Note that the data are collected from 6 subjects with 12 minutes of
experiments.

Table 2 True positive and false
negative for online training
algorithms

EM GT TP FN

T T TRUE FALSE

T T TRUE FALSE

T T TRUE FALSE

T T TRUE FALSE

F T FALSE TRUE

T T TRUE FALSE

T T TRUE FALSE

T T TRUE FALSE

T T TRUE FALSE

T T TRUE FALSE

F T FALSE TRUE

F T FALSE TRUE

T T TRUE FALSE

T T TRUE FALSE

F T FALSE TRUE

T T TRUE FALSE

T T TRUE FALSE



8012 Multimed Tools Appl (2016) 75:7999–8017

Table 3 True positive and false
negative for statically-trained
algorithms

EM GT TP FN

T T TRUE FALSE

F T FALSE TRUE

T T TRUE FALSE

T T TRUE FALSE

T T TRUE FALSE

F T FALSE TRUE

T T TRUE FALSE

F T FALSE TRUE

F T FALSE TRUE

T T TRUE FALSE

T T TRUE FALSE

T T TRUE FALSE

F T FALSE TRUE

T T TRUE FALSE

T T TRUE FALSE

T T TRUE FALSE

F T FALSE TRUE

As illustrated, Tables 2 and 3 are composed of four columns: the first column represents
the prediction of the Emotiv headset; the second column indicates the ground truth presented
by subjects; the third column is the number of true positives; and the last column represents
the number of false negatives.

With Tables 2 and 3, we calculate the precision and recall, and finally compute
the F-measure, for statically-trained algorithms and online learning algorithms, respec-
tively, shown in Table 4. As demonstrated in Table 4, both the algorithms have the same
precision 1. Our algorithm has a higher recall (0.765 = 13

17 ) than statically-trained algo-
rithms (0.647 = 11

17 ), which indicates that our algorithm has a higher accuracy of the activity
classification. Moreover, our algorithm has a higher F-measure (0.867 = 2× 1×0.765

1+0.765 ) than

statically-trained algorithms (0.787 = 2 × 1×0.647
1+0.647 ), which verifies the higher accuracy of

our algorithm in another perspective.
Figure 8 shows the classification obtained by online training algorithms. As illustrated in

Fig. 8, we can distinguish 2 centroids: one is above 0, and the other is below 0. In addition,
there is the third centroid around 0. This indicates that our algorithm can accurately classify
the received signals into distinguishable centroids.

Table 4 The precision, recall,
and F-measure for the two
algorithms

Measure Static Online

Precision 1 1

Recall 0.647 0.765

F1 0.787 0.867
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Fig. 8 Positions of the 3 centroids used to conduct the above experiment

7 Conclusions

In this paper, motivated by the paralyzed patients in controlling assisted-devices that sup-
port their mobility, we present a novel EEG-based BCI system, which is composed of an
Emotive EPOC neuroheadset, a laptop and a Lego Mindstorms NXT robot. We provide
online learning algorithms that consist of k-means clustering and principal component anal-
ysis to classify the signals from the headset into corresponding action commands. We also
discuss how to integrate the Emotiv EPOC headset into the system, and how to integrate
the LEGO robot. We evaluate online learning algorithms of our BCI system in terms of
precision, recall, and the F-measure. The results show that our online learning algorithms
can accurately classify the participants’ thoughts into corresponding actions.
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