
Poster: Towards Reducing Smartphone Application Delay
through Read/Write Isolation

David T. Nguyen>, Gang Zhou>, Guoliang Xing†

>College of William and Mary, USA †Michigan State University, USA
{dnguyen, gzhou}@cs.wm.edu, glxing@cse.msu.edu

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design studies

Keywords

Smartphone App Delay; I/O Optimizations; App Launch

1. INTRODUCTION AND APPROACH
A recent analysis[3] indicates that most user interactions with

smartphones are short. Specifically, 80% of the apps are used for

less than two minutes. With such brief interactions, apps should be

rapid and responsive. However, the same study reports that many

apps incur significant delays during launch and run-time. This work

addresses two key research questions towards achieving rapid app

response. (1) How does disk I/O performance affect smartphone

app response time? (2) How can we improve app performance with

I/O optimization techniques?

We address the questions via following contributions. First, thro-

ugh a large-scale measurement study based on the data collected

within 130 days from 1009 Android devices using an app[2] we

developed, we find that Android devices spend a significant por-

tion of their CPU active time (up to 58%) waiting for storage I/Os

to complete, also known as iowait (Figure 1). This negatively af-

fects the smartphone’s overall app performance, and results in slow

response time. Further investigation reveals that a read experiences

up to 626% slowdown when blocked by a concurrent write. Ad-

ditionally, the results indicate significant asymmetry in the slow-

down of one I/O type due to another. Finally, we study the speedup

of concurrent I/Os, and the results suggest that reads benefit more

from concurrency.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

iowait (in %)

E
m

p
ir

ic
a

l 
C

D
F

Iowait of 1009 Devices

Figure 1: Iowait.

Second, we implement a system

called SmartIO that shortens app de-

lays by prioritizing reads over writes.

SmartIO allows reads to be completed

before writes, and delays writes as long

as there are reads, while avoiding write

starvation. To achieve this, a third level

of I/O priority is added into the current block layer[1], assigning

higher priority to reads and lower to writes. This third priority level

has a lower priority than the original block layer’s priorities.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage, and that copies bear this notice and the full ci-

tation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s). Copyright is held by the

author/owner(s).

MobiSys’14, June 16–19, 2014, Bretton Woods, New Hampshire, USA.

ACM 978-1-4503-2793-0/14/06.

http://dx.doi.org/10.1145/2594368.2601458.

Write starvation is avoided by applying a maximal period of time

assigned to a process (100ms). Additionally, SmartIO issues I/Os

with optimized concurrency parameters that are obtained during in-

stallation. The parameters include the optimal number of sequential

or random reads (writes) that benefit most from concurrency.

2. PERFORMANCE EVALUATION
We evaluate our system using 20 popular apps and show that

SmartIO reduces launch delays by up to 37.8%, and run-time de-

lays by up to 29.6% (Figure 2). SmartIO’s performance gain during

launch is due to its read-intensive nature. Specifically, the aver-

age number of reads observed during launch on the 20 apps is five

times higher than writes. The smaller performance gain during the

run-time is caused by its modest I/O activity. The average number

of I/Os observed during launch is 2 times higher than during run-

time. SmartIO’s read performance improvement comes with little

cost due to the read/write discrepancy nature of the flash storage

(reads take much faster to complete). Although, writes may en-

counter slight slowdowns. In another experiment, we install the 20

apps researched, and the writes are on average 7.6% slower with

SmartIO. However, at the same time, many other processes in the

background may benefit from SmartIO. Based on our large-scale

study, there are on average 255 processes running on each device

at any point of time, from which 98 have some I/O activity and

generate a workload. These processes are expected to have faster

response time with SmartIO.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

T
im

e
 (

s
)

(a) Launch Delay: SmartIO Disabled

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

T
im

e
 (

s
)

(b) Launch Delay: SmartIO Enabled

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

T
im

e
 (

s
)

(c) Run−time Delay: SmartIO Disabled

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

T
im

e
 (

s
)

(d) Run−time Delay: SmartIO Enabled

user system network I/O disk I/O

Figure 2: Launch and Run-time Delay. 1:Angry Birds; 2:GTA;

3:Need for Speed; 4:Temple Run; 5:The Simpsons; 6:CNN; 7:Nightly

News; 8:ABC News; 9:YouTube; 10:Pandora; 11:Facebook; 12:Twitter;

13:Gmail; 14:Google Maps; 15:AccuWeather; 16:Accelerometer M.;

17:Gyroscope Log; 18:Proximity Sensor; 19:Compass; 20:Barometer.

3. REFERENCES
[1] Block layer. http://goo.gl/SwdLZ5, 2014.

[2] Storebench download. http://goo.gl/ava9eV, 2014.

[3] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu. Fast app

launching for mobile devices. In Proc. of ACM MobiSys, 2012.

378

http://goo.gl/SwdLZ5
http://goo.gl/ava9eV

	1 Introduction and Approach
	2 Performance Evaluation
	3 References



