
Reducing Smartphone Application Delay
through Read/Write Isolation

David T. Nguyen>, Gang Zhou>, Guoliang Xing†, Xin Qi>, Zijiang Hao>, Ge Peng>, Qing Yang>

>College of William and Mary
McGlothlin-Street Hall 126

Williamsburg, VA 23185, USA
{dnguyen, gzhou, xqi, hebo, gpeng, qyang}@cs.wm.edu

†Michigan State University
3115 Engineering Building

East Lansing, MI 48824-1226, USA
glxing@cse.msu.edu

ABSTRACT
The smartphone has become an important part of our daily lives.
However, the user experience is still far from being optimal. In par-
ticular, despite the rapid hardware upgrades, current smartphones
often suffer various unpredictable delays during operation, e.g.,
when launching an app, leading to poor user experience. In this
paper, we investigate the behavior of reads and writes in smart-
phones. We conduct the first large-scale measurement study on
the Android I/O delay using the data collected from our Android
application running on 2611 devices within nine months. Among
other factors, we observe that reads experience up to 626% slow-
down when blocked by concurrent writes for certain workloads.
Additionally, we show the asymmetry of the slowdown of one I/O
type due to another, and elaborate the speedup of concurrent I/Os
over serial ones. We use this obtained knowledge to design and
implement a system prototype called SmartIO that reduces the ap-
plication delay by prioritizing reads over writes, and grouping them
based on assigned priorities. SmartIO issues I/Os with optimized
concurrency parameters. The system is implemented on the An-
droid platform and evaluated extensively on several groups of pop-
ular applications. The results show that our system reduces launch
delays by up to 37.8%, and run-time delays by up to 29.6%.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies; C.5.3 [Computer
System Implementation]: Microcomputers-Portable devices

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Smartphone Application Performance; Flash Disk I/O Optimiza-
tions; Application Response Time; Application Launch

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys’15, May 18–22, 2015, Florence, Italy.
Copyright c© 2015 ACM 978-1-4503-3494-5/15/05 ...$15.00.
http://dx.doi.org/10.1145/2742647.2742661.

1. INTRODUCTION
The number of smartphones used worldwide increases each year.

According to International Data Corporation, smartphone vendors
shipped a total of 918.6 million smartphones in 2013, up 27.2%
from the 722.4 million units shipped in 2012 [15]. With their
increasing use, smartphone users tend to demand better perfor-
mance. Moreover, smartphone users are increasingly using phones
for work-related activities such as processing emails, reading docu-
ments, etc. A study by Forrester Research [9] found that one quar-
ter of work devices were smartphones and tablets. Therefore, it is
crucial to study application performance in smartphones. In partic-
ular, reducing the application delay can greatly improve user pro-
ductivity. In addition, a recent analysis [43] indicates that most
user interactions with smartphones are short. Specifically, 80% of
the applications are used for less than two minutes. With such brief
interactions, applications should be rapid and responsive. However,
the same study reports that many apps incur significant delays (up
to 10 seconds) during launch and run-time.

Our study reveals that Android devices spend a significant por-
tion of their CPU active time (up to 58%) waiting for storage I/Os
to complete. This negatively affects the smartphone’s overall appli-
cation performance, and results in slow response time. Therefore,
in order to improve the application performance, it is essential to
investigate possible reasons of such waits. This paper addresses
two key research questions towards achieving rapid application re-
sponse. (1) How does disk I/O performance affect smartphone ap-
plication response time? (2) How can we improve application per-
formance with I/O optimization techniques?

In order to address the first research question, we study the be-
havior of read and write I/Os. First, the slowdown of reads in the
presence of writes is investigated. This slowdown can be one of
the main reasons causing the slow launch of applications due to the
dominance of reads while launching. Next, the difference in the
slowdown of one I/O type due to another may require better I/O
scheduling and prioritizing. Therefore, this slowdown asymmetry
is researched. Finally, we look at the speedup of concurrent I/Os
over serial ones. This provides insights into what type of I/Os ben-
efit more from concurrency.

To address the second research question, we design and imple-
ment a system prototype called SmartIO on the Android platform.
SmartIO measures optimal concurrency parameters for each type
of I/O, and issues I/Os with the use of the obtained concurrency
parameters. The system reduces the application delay by applying

287

a set of I/O optimizations. Specifically, it assigns higher priority to
reads, lower priority to writes, and groups the I/Os based on these
priorities. The approach proves to have smaller performance im-
provement on launch delays of applications currently running in
the background (warm launch). This is expected, since once an app
is already in memory, its launch is much faster (on average by 65%
based on our experiments). Because there is little I/O traffic go-
ing to the flash disk during warm launch, SmartIO reduces warm
launch delays on average only by 6.8%. Our work focuses on re-
ducing launch delays of applications currently not running in the
background (cold launch).

Little work in the research community directly relates to ours.
Kim et al. [29] present an analysis of storage performance on An-
droid smartphones and external storage devices. Their discovery of
a strong correlation between storage and application performance
degradation serves as motivation for our work. Yan et al. [43]
propose a system predicting application launch using context such
as user location and temporal access patterns. Their system re-
duces perceived delay through application prelaunching. However,
the proposed system does not address the issue of slow application
launch from the root, but instead lessens its impact.

In summary, the contributions of our paper are as follows:

• First, through a large-scale measurement study based on the
data collected from 2611 devices using an app we developed,
we find that Android devices spend a significant portion of
their CPU active time (up to 58%) waiting for storage I/Os
to complete. This negatively affects the smartphone’s overall
application performance, and results in slow response time.
Further investigation reveals that a read experiences up to
626% slowdown when blocked by a concurrent write. Ad-
ditionally, the results indicate significant asymmetry in the
slowdown of one I/O type due to another. While the slow-
down ratio of a read is up to 6.15, the slowdown ratio of a
write is only up to 1.6. Finally, we study the speedup of con-
current I/Os, and the results suggest that reads benefit more
from concurrency.

• Second, we design and implement a system prototype called
SmartIO that shortens the application delay by prioritizing
reads over writes, and grouping them based on assigned pri-
orities. SmartIO issues I/Os with optimized concurrency pa-
rameters.

• Third, we evaluate our system using 40 popular applications
from four groups (games, streaming, miscellaneous, and sens-
ing) and we show that SmartIO reduces launch delays by up
to 37.8%, and run-time delays by up to 29.6%. Moreover,
SmartIO also reduces power consumption by 6%.

The remainder of this paper is organized as follows. Section 2
presents the related work. In Section 3, we introduce the back-
ground of our work. Section 4 provides preliminary measurements
and motivation. In Section 5, we present the system architecture of
our solution to improve smartphone application performance, and
Section 6 elaborates implementation details. Section 7 evaluates
our implementation, and Section 8 provides discussion with future
work. We conclude our work in Section 9.

2. RELATED WORK
The previous work can be classified into four categories: smart-

phone storage, smartphone application delay, Linux I/O schedulers,
and enterprise solutions.

Smartphone Storage. Kim et al. [29] present an analysis of stor-
age performance on Android smartphones and external flash stor-
age devices. Their discovery of a strong correlation between stor-
age and application performance degradation serves as motivation
for our work. We take one step further and investigate possible
reasons of such performance degradation, and propose a system to
reduce application response using smart I/O optimizations. Nguyen
et al. [33] study the impact of the flash storage on smartphone en-
ergy efficiency, while the main focus of our paper is the application
performance. Finally, Jeong et al. [28] propose novel journaling
methods that, however, are not our focus. We use obtained knowl-
edge from the study of I/O behaviors to design and implement a
system that improves the response time by prioritizing reads over
writes, and grouping them based on assigned priorities.

Smartphone Application Delay. Yan et al. [43] propose a system
that predicts which apps are to be launched using the context such
as user location and temporal access patterns. Their system then
provides effective application prelaunching that reduces perceived
delay. Parate et al. [36] propose another prediction algorithm to
reduce the launch delay. Compared to the previous work, their ap-
proach does not require prior training or additional sensor context.
However, mis-predictions of the proposed approaches will lead to
significant memory and energy overhead. We address the prob-
lem of slow application launch by analyzing possible reasons of
the slowdowns in the granularity of read and write I/Os. With this
knowledge, we design a system that improves the response time by
prioritizing reads over writes. This has a positive impact on the ap-
plication performance beyond delay.

Linux I/O Schedulers. The default I/O scheduler since Linux ker-
nel version 2.6 is the Complete Fair Queuing scheduler (CFQ) [17].
This scheduler has also been adopted as the default one in most
Android smartphones, including the ones used in our experiments.
However, not optimized for smartphone environments, CFQ may
cause long application response time that is the main focus of our
work. Other available I/O schedulers (Noop and Deadline [2]) are
only used for specialized workloads.

Enterprise Solutions. Flash technology has been recognized in
enterprise systems. This is mainly due to its technical merits high-
lighted in [16, 25], including low power consumption, compact
size, and fast random access. This motivated researchers to pro-
pose I/O schedulers for flash memory based Solid State Drives in
computer storage systems [26, 30, 31]. Inspired by these works,
we study I/O characteristics of smartphones that have some differ-
ences, and require careful design considerations for optimal perfor-
mance. For instance, while large block sizes dominate in conven-
tional systems, small 4KB I/Os account for up to 65% of smart-
phone operations [32]. Our proposed solution is simple, and re-
duces application delays by up to 37.8%, while still being power
efficient. Other enterprise solutions focus on fairness policies [37,
40]. SmartIO builds upon the default Linux I/O scheduler, and
adds an additional priority level that preserves the original priori-
ties. Further fairness optimization is beyond the scope of this work.

3. BACKGROUND
First, we introduce the background of our work. In particular, the

kernel components on the I/O path are discussed, with the emphasis
on the block layer and the flash disk that are directly related to our
work. We illustrate the main kernel components affected by a block
device operation on the I/O path in Figure 1. The figure is adapted
from the literature [21].

288

Figure 1: Kernel Components on the I/O Path.

3.1 Block Layer
At the block layer [8], the main work is scheduling I/O requests

from above and sending them down to the device driver. The Linux
kernels on recent Android smartphones offer 3 scheduling algo-
rithms: Complete Fair Queuing (CFQ), Deadline, and Noop.

CFQ scheduler presented in [17] is the default I/O scheduler in
Android smartphones. It attempts to distribute available I/O band-
width equally among all I/O requests. There are two priority levels:
one is the class, and the other is the priority within the class. There
are three classes: real-time, best effort, and idle. Real-time class
requests have the highest priority, followed by the best effort class
whose disk access requests are granted only when there is no real-
time request left. The idle class is given a disk access only when
the disk is idle. Within the real-time and best effort classes, there
are eight additional priorities [0(highest) to 7(lowest)]. Requests
are placed into queues where each of the queues gets a time slice
allocated. There are 8 queues in the real-time class, 8 queues in the
best effort class, and 1 queue in the idle class.

3.2 Flash Disk
The last level to be reached by the I/Os is the storage subsys-

tem that contains an internal NAND flash memory, an external SD
card (optional), and a limited amount of RAM. The subsystem con-
tains different numbers of partitions, depending on the manufac-
turer. The partitions can be found in the /dev/block directory.

Flash disk differs significantly from the conventional rotating
storage. While rotating disks suffer from the seek time bottleneck,
flash disks do not. Although providing superior performance com-
pared to conventional storage, flash does have its own limitations.
For instance, the erase-before-write limitation requires erase before
overwriting a location. This leads to a substantial read/write speed
discrepancy, which, among other issues, is discussed in the follow-
ing subsections as a motivation for our work.

4. MEASUREMENT STUDY
In order to understand how disk I/O performance affects smart-

phone application response time, we conduct a measurement study.
First, we investigate what portion of the CPU active time is spent
in storage waiting for I/Os to complete. When the time the CPUs
spend in the storage subsystem is significant, this will negatively
affect the smartphone’s overall application performance, and re-
sult in slow response time. To identify what may be causing such
waits, we learn more about I/O activities and their properties. The
first property that may be a reason of such waits is I/O slowdown,
which quantifies how one I/O type is slowed down due to presence
of another. If one I/O activity (e.g., read) is slowed down by an-
other (e.g., write), there will be certain cases in the application life
cycle that will suffer from such slowdown (e.g., launch, since reads

Figure 2: StoreBench Storage Benchmark.

dominate during launch). The impact of such slowdown on the ap-
plication delay may vary depending on its ratio. This is studied in
the slowdown asymmetry subsection. Another property to be re-
searched is concurrency. Depending on hardware characteristics,
different devices may benefit differently from concurrency. There-
fore, in the last subsection we study the speedup of concurrent I/Os
over serial ones. Finally, we discuss the measurement results and
their implications.

4.1 Measurement Setup
In a small-scale study, a Samsung S5 phone with Android 4.4.2 is

utilized. The phone is normally used daily by the first author. Dur-
ing measurements, our Samsung S5 has all radio communication
disabled, and the screen is off. Additionally, no app is in the fore-
ground or background, and the cache is cleared before each mea-
surement. To verify small-scale key observations, we design and
implement a storage benchmarking tool called StoreBench [12] as
an Android app, and make it available for free download on Google
Play [11]. StoreBench is utilized to collect data for a large-scale
study.

In the large-scale study, through StoreBench we obtain data from
2611 Android devices (complete list at [13]) that installed our bench-
mark from Google Play (97% of the devices run Android 4.0 or
higher) in the period of nine months (November, 2013 - July, 2014).
StoreBench tests the I/O performance of the internal flash storage
and external SD card. Specifically, the tool measures the I/O band-
width, response time, and CPU active time spent waiting for disk
I/Os to complete (iowait). Additionally, it measures the launch and
run-time delay of 20 popular apps. With the permission of users,
results are submitted to our online database for further analysis
and performance ranking. Our app anonymizes all data to main-
tain users’ privacy. Note that we do not collect or derive any data
from human subjects. Instead, we only collect technical informa-
tion of the devices. Therefore, no IRB approval is required in our
case. The dataset of the large-scale storage performance study will

289

49.1%

19.4%

31.5%

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

iowait (in %)

E
m

p
ir

ic
a
l
C

D
F

(b) Iowait of 2611 Devices

system

iowait

user

(a) Samsung S5 CPU Breakdown

Figure 3: Iowait Values.

be made available at [12]. StoreBench requires a rooted [10] de-
vice with Android 3.0 or higher, and installed BusyBox [1] on the
device. The app’s screenshot is in Figure 2.

4.2 Storage Contribution
To investigate what portion of the CPU active time is spent in

storage, we use the iostat [4] shell command to output the I/O
statistics of our Samsung S5 phone. The statistics from 30 days
of use include detailed numbers of reads/writes of each block de-
vice in the flash disk. More importantly, the information includes
the breakdown of the CPU active time spent in three domains:

• iowait - the percentage of time that the CPUs were idle dur-
ing which the system had an outstanding disk I/O request,
which simply means the time spent waiting for disk I/Os to
complete. This does not include the wait for network I/Os.

• user - the percentage of CPU utilization that occurred while
executing at the user level (application).

• system - the percentage of CPU utilization that occurred while
executing at the system level (kernel).

The output of iostat for each domain is illustrated in Figure 3(a).
The results show that a decent portion of time is spent in storage
(19.4% of total active time), corresponding to 61.6% of system
level time and 39.5% of user time. The output values observed
are stable, and the standard deviation is as little as 0.1%. Note that
the numbers are from the total use of all apps through the whole
time period. Hence, some more I/O intensive apps can spend con-
siderably longer than 19.4% waiting for disk I/Os to complete.

Since the measurements may be different from device to device,
we also extract the iowait results from our large-scale study ob-
tained through StoreBench to verify the pattern. The iowait empir-
ical cumulative distribution function across 2611 Android devices
is plotted in Figure 3(b). 40 percent of the devices have iowait
values between 13% and 58%, which represents a significant por-
tion of CPU active time. The averaged standard deviation is 0.1%.
These results are also consistent with those of the Samsung S5.

Although the statistics vary for different devices and usage pat-
terns, it is safe to say that CPUs in Android devices spend a signif-
icant amount of time waiting for disk I/Os. Then a following ques-
tion is, what may be the main causes of such I/O waits? To answer
this question, we study several important properties of Android I/O
activities, including I/O slowdown, slowdown asymmetry, and con-
currency.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Run

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

seq. read alone

seq. read w/ concurrent write

rand. read alone

rand. read w/ concurrent write

(a) Samsung S5 I/O Slowdown

Sequential I/O Random I/O
0

2

4

6

S
lo

w
d

o
w

n
 R

a
ti

o

ReadSlowdown

WriteSlowdown

(b) Samsung S5 Slowdown Asymmetry

Figure 4: I/O Slowdown.

4.3 I/O Slowdown
In the following experiment, the goal is to understand how one

I/O type is slowed down due to another, in particular, how reads
are slowed down by concurrent writes. For this purpose, we utilize
the Linux flexible I/O tester named fio [18] to issue read and write
I/Os from/to the Samsung S5 phone’s internal flash disk. We port
fio to Android OS, patch the modifications to the original fio code,
and cross-compile it. We make fio’s binary available for interested
readers at [3].

First, we want to measure the response times of reads when they
are running alone. We start by sequentially reading a 128MB file
(32768 read I/Os, each I/O size of 4KB), and calculating the aver-
age response time of a read I/O as the total response time divided
by the number of I/Os. This is repeated for 10 runs. The average
response time of a sequential read when running alone is 0.072ms,
and standard variation is 2.3%. The choice of a 128MB file is to
ensure that this workload is large enough to provide statistically
significant measurements but at the same time does not overwhelm
the phone’s storage capacity. We use this size throughout the pa-
per unless otherwise stated. The choice of the 4KB block size in
our workloads is due to the fact that the default file system (Ext4)
employed in recent Android devices utilizes this block size. There-
fore, only 4KB is considered throughout this paper, even though it
has been reported that large block sizes can improve performance
[20]. Smartphone manufacturers use this small block size, since
4KB I/Os account for up to 65% of smartphone operations [32].

Next, we record the response times of reads in the presence of
concurrent writes. We start by sequentially reading a 128MB file
and concurrently writing a 256MB file (larger write size to assure
there is concurrent write running when we read), and calculate the
average response time of a read I/O. This is repeated for 10 runs.
The average response time of a sequential read in the presence of

290

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Response Time (ms)

E
m

p
ir

ic
a
l
C

D
F

seq. read

seq. write

rand. read

rand. write
0 1 2 3 4

0.7

0.8

0.9

Figure 5: Response Time ECDF of 2611 Devices.

a concurrent write is 0.445ms, and standard variation is 3.1%. The
two concurrent workloads are issued via fio as two separate pro-
cesses. Buffers and caches are bypassed to obtain native properties.
The above experiment is repeated for random I/Os. The average re-
sponse time of a random read when running alone is 0.187ms, and
standard variation is 3.3%. The average response time of a ran-
dom read in the presence of a concurrent write is 0.595ms, and
standard variation is 3.7%. The results of the two experiments are
illustrated in Figure 4(a). There are a few observations from the
figure. A sequential read experiences on average 515% slowdown
(6.15 times slowdown) and up to 626% slowdown when blocked by
a concurrent write. Similarly, a random read experiences on aver-
age 218% (3.18 times slowdown) and up to 293% slowdown when
blocked by a concurrent write. This is important since it can be one
of the main sources of slow application launch, when loading data
is being blocked by a concurrent write. The root cause of the slow-
downs is the flash read/write speed discrepancy (reads take much
faster to complete). Additionally, reads become less predictable
and the response times vary significantly over runs in the presence
of a concurrent write.

Finally, we can observe that random reads are about 2.6 times
slower than sequential reads. Although there is no seek time as
in conventional rotating storage, random I/Os still suffer from pro-
cessing overhead. When random I/O requests are issued, the CPUs
have to coalesce the requests, and the storage controller has to in-
terpret and pass them down to the correct block device, where a
proper ordering is determined. Moreover, random file operations
often involve file table access, which adds additional delay.

4.4 Slowdown Asymmetry
The next property that may affect I/O performance (and iowait

as a result) is slowdown asymmetry. In the following we compare
the average slowdown ratio of a read and a write. The slowdown
ratios are calculated as follows:

• ReadSlowdown = Response time of a read in the presence of
a concurrent write / Response time of a read when running
alone

• WriteSlowdown = Response time of a write in the presence
of a concurrent read / Response time of a write when running
alone

The Samsung S5 results for both sequential and random I/Os with
standard deviations are displayed in Figure 4(b). For sequential
I/Os, while the slowdown ratio of a read is 6.15, the slowdown
ratio of a write is only 1.13. For random I/Os, while the slowdown
ratio of a read is 3.18, the slowdown ratio of a write is only 1.6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

200

400

600

800

B
a
n

d
w

id
th

 (
M

B
/s

)

seq. read seq. write rand. read rand. write

Figure 6: Storage Performance of Top 20 Models. 1:LG
Nexus 5; 2:OnePlus One (A0001); 3:Motorola Nexus 6; 4:Bq
Aquaris E10; 5:Motorola Moto G; 6:Samsung Galaxy Note 2 (GT-
N7100); 7:Sony Xperia Z Ultra (XL39h); 8:Samsung Galaxy S3
(GT-I9300); 9:LG G2 (LG-D800); 10:Nubia Z7 Max (NX505J);
11:Sony Xperia Z1 (C6903); 12:Samsung Galaxy Note 3 (SM-
N9002); 13:Asus Nexus 7; 14:Sony Xperia Z2 (D6503); 15:LG
L70 (LG-D321); 16:Lenovo A328; 17:Hisilicon Hi3798CV100;
18:LG Optimus F6 (LGMS500); 19:HTC One M8; 20:LG G3
(LG-D850).

This large asymmetry in the slowdowns has a following reason.
Writes in the flash storage take already significantly longer than
reads, hence, there is a smaller impact of the slowdown. While
the response time of a sequential write running alone is on average
0.19ms, a sequential read running alone takes only 0.072ms. While
the response time of a random write running alone is on average
0.41ms, a random read running alone takes only 0.187ms.

To understand the trend in the large scale, we plot the response
time distributions obtained via StoreBench benchmark in Figure 5.
In general, writes take longer than reads, and random I/Os take
longer than sequential ones. This is consistent with the small-scale
study using Samsung S5.

We also add Figure 6 with storage performance ranking obtained
from the devices submitted by our users. Specifically, the figure
includes the total bandwidth of the top 20 devices in MB/s. If a
model has more devices in the ranking, then it is represented by its
top device. An interesting observation is that a more recent model
does not necessary mean higher ranking. For instance, while Nexus
5 (2013) tops the whole chart, Nexus 6 (2014) only occupies the 3rd
place. Nexus 5 manufactured by LG mainly dominates thanks to its
strong random write performance.

4.5 Concurrency
The next property that may affect I/O performance (and iowait

as a result) is concurrency. An obvious approach to speeding up the
application response is to issue I/Os concurrently. However, a large
number of concurrent I/Os may overwhelm the processing capacity,
and thus cause performance degradation. Therefore, it is necessary
to find a sweet spot in concurrency to achieve maximal speedup.
The last experiment’s goal is to study the speedup of the concurrent
I/Os over serial ones in the Samsung S5 phone. This is done for
reads and writes separately. First, we issue two serial reads, each
of size 32MB, and record the total response time. Then we issue
two concurrent reads, each of size 32MB, and record the response
time (use the larger result of the two reads if they differ). The
speedup is calculated as the ratio of the two response times (serial /
concurrent). This is repeated with four reads, eight reads, 16 reads,

291

1 2 4 8 16 32
0

0.5

1

1.5

Number of Concurrent I/Os

S
p

e
e

d
u

p
 o

v
e

r
S

e
ri

a
l

I/
O

seq. read

seq. write

rand. read

rand. write

Figure 7: Samsung S5 Speedup over Serial I/O.

and 32 reads, respectively. The choice of smaller workloads in this
section (32MB) is because we issue up to 32 of such workloads
concurrently, and do not want to overwhelm the phone’s storage
capacity.

To see how writes benefit from concurrency, we repeat the above
with writes. First, two serial writes are issued, each of size 32MB,
and the total response time is recorded. Then we issue two con-
current writes, each of size 32MB, and record the response time
(use the larger result of the two writes if they differ). The speedup
is calculated as the ratio of the two response times. This is again
repeated with four writes, eight writes, 16 writes, and 32 writes,
respectively. The speedup of concurrent I/Os over serial I/Os is
illustrated in Figure 7.

We obtain four concurrency parameters from the figure. The
number of concurrent sequential reads with maximal speedup (1.45)
is 2, and the number of concurrent sequential writes with maximal
speedup (1.29) is 4. The number of concurrent random reads with
maximal speedup (1.55) is 4, and the number of concurrent random
writes with maximal speedup (1.41) is 2. The speedup of reads is
higher than the one of writes for both cases, which implies that
reads benefit more from concurrency. This is expected. Intuitively,
with growing processing time, the wait time also increases. More-
over, if the processing needs exceed the processing capacity, then
there is no well-defined average waiting time because the queue
can grow without bound. Since writes take longer to process than
reads, it is expected that writes would overwhelm the processing
capacity sooner, and thus benefit less from increased concurrency.
In addition, different devices may benefit differently from concur-
rency, since they may have different speedup represented by con-
currency parameters. Since these concurrency parameters may dif-
fer for various devices, a solution with the maximum benefits from
concurrency requires a design that is capable of adapting to each
phone’s concurrency characteristics.

4.6 Summary
The above experiments lead to several important observations

that shed light on how to improve smartphone application perfor-
mance, and we summarize them below.

First, Android devices spend a significant portion of their CPU
active time waiting for storage I/Os to complete. Specifically, 40%
of the devices have iowait values between 13% and 58%. This neg-
atively affects the smartphone’s overall application performance,
and results in slow response time. Therefore, in order to improve
the application performance, it is essential to investigate possible
causes of such waits.

One of the reasons causing such waits is I/O slowdown. Our first
experiment studies slowdown of one I/O type due to presence of
another, and reveals significant slowdown of reads in the presence

Figure 8: SmartIO.

of writes. Specifically, a sequential read experiences on average
515% slowdown and up to 626% slowdown when blocked by a
concurrent write. Similarly, a random read experiences on average
218% and up to 293% slowdown when blocked by a concurrent
write. This significant read slowdown may negatively impact the
application performance during the life cycles when the number of
reads dominates. A good example is application launch.

Next, the impact of such slowdown on the application delay may
vary depending on the slowdown ratio of a read and a write. As
demonstrated earlier, there is a significant asymmetry in read and
write I/O slowdown. Specifically, for sequential I/Os, while the
read slowdown ratio is 6.15, the write slowdown ratio is only 1.13.
For random I/Os, while the read slowdown ratio is 3.18, the write
slowdown ratio is only 1.6.

Finally, the last property researched is concurrency. Our exper-
imental study reveals that different devices may benefit differently
from concurrency. The above results also suggest that reads benefit
more from concurrency. However, in order to optimize the appli-
cation performance, we need to be able to adapt to the concurrency
characteristics of each device. Such characteristics include four
concurrency parameters of the maximal speedup: the number of
concurrent sequential reads, the number of concurrent sequential
writes, the number of concurrent random reads, and the number of
concurrent random writes.

5. SYSTEM ARCHITECTURE
In order to improve the application delay performance in smart-

phones, we present SmartIO [35, 34], a system that reduces the ap-
plication response time by prioritizing reads over writes, and group-
ing them based on assigned priorities. SmartIO issues I/Os with
optimized concurrency parameters. The architecture of SmartIO is
illustrated in Figure 8. It is fully located in the kernel space, and
consists of two main modules: the I/O Scheduler and the Concur-
rency Profiler. The I/O Scheduler encapsulates 3 submodules: I/O
Priority Assignment, I/O Grouping, and I/O Dispatch. We elabo-
rate each module and its functionalities below.

I/O Priority Assignment. Our system prototype follows the im-
plications from the previous experimental study. First, since a read
suffers a large slowdown in the presence of a concurrent write, the
goal is to allow reads to be completed before writes, and delay
writes as long as there are reads, while avoiding write starvation.
In order to achieve this, a third level of I/O priority is added into
the current block layer, assigning higher priority to reads and lower
to writes. This third priority level has a lower priority than the first
two priority levels (class priority, and priority within each class)
from the block layer explained earlier in the Background section.
Write starvation is avoided by applying a time slice, which is a

292

Figure 9: Dispatch Example.

maximal period of time assigned to a process, and is by default
100ms as used in the Linux scheduler time slice concept.

I/O Grouping. The dispatch queue further groups reads and groups
writes based on the three levels of priority. Reads are ordered in
front of writes, and reads are then dispatched before writes. Due
to the read/write discrepancy nature of the flash storage (reads take
much faster to complete), the read-preference reordering does not
introduce a major delay to write I/Os.

This reordering enforced by SmartIO does not affect correct-
ness and semantics of write barriers. It is common knowledge that
write barriers [38] are essential for consistency of many file sys-
tems. That is, however, maintained at the file system layer, which
is above the I/O scheduler. Therefore, requests issued to an I/O
scheduler can be reordered without affecting correctness. In fact,
reordering is a common practice to minimize the seek costs in me-
chanical disks.

I/O Dispatch. A sample dispatch is illustrated in Figure 9. In
the current CFQ implementation, each block device has 17 queues
(ss_queue) of I/O requests (8 Real-time, 8 Best Effort, and 1 Idle).
The existing system selects a queue based on the priorities, takes
a request in the queue, and inserts it in the dispatch queue. The
queue selection process accounts for two priority levels: the class
priority (Real-time, Best Effort, Idle), and the priority within the
class (0-7).

Our system does not change the above dispatch process but uses
a third priority level to organize the dispatch queue in favor of the
read I/Os. The dispatch queue is then divided into three sections,
from the bottom up real-time, best effort, and idle requests. Each
section is organized such that reads precede writes.

Concurrency Profiler. The system uses the knowledge of the phone’s
four concurrency parameters to issue the I/Os to the block device.
The parameters include the optimal number of sequential or ran-
dom reads (writes) that benefit most from concurrency, as discussed
earlier in the Concurrency subsection. Based on the parameters,
the system issues the appropriate number of reads (writes) concur-
rently from the dispatch queue. To achieve this, SmartIO measures
the concurrency parameters during installation by invoking the fio
tool to benchmark the phone. fio issues reads and writes, and calcu-
lates the speedup of concurrent I/Os over serial ones, as performed
in the measurement study. The concurrency parameters with op-
timal speedup are then used to complete the I/O requests. This
assures robustness of our system to different characteristics of the

flash storage in the phones. With the use of fio, SmartIO can adapt
to different devices without prior knowledge of their concurrency
parameters.

6. IMPLEMENTATION
In this section, we elaborate implementation details of the Smar-

tIO system. In particular, we explain the algorithm of the sched-
uler’s dispatch process. Next, we highlight important implemen-
tation challenges of the SmartIO system. Specifically, we discuss
the I/O testing tool integration in the Concurrency Profiler mod-
ule. The module utilizes the tool to obtain optimized concurrency
parameters that allow SmartIO issue optimal number of I/Os con-
currently to block devices.

SmartIO. First, we discuss implementation details of our solu-
tion. We implement the SmartIO system on the rooted Samsung
S5 smartphone with Android 4.4.2 (KitKat), kernel 3.10, and Ext4
file system. The phone is equipped with a 2.5 GHz quad-core Krait
400 CPU, 2 GB of RAM, and 16 GB of internal flash storage. The
implementation consists of 2 main modules, the I/O Scheduler and
the Concurrency Profiler, both of which are in the kernel space.

The I/O Scheduler is implemented as a kernel patch of the default
CFQ Linux scheduler. Users can switch to our scheduler with a
simple shell command that changes the scheduler file. For instance,
the scheduler is set on all block devices on-the-fly as follows:
echo ss > /sys/block/mmcblk0/queue/scheduler. Similarly,
the users can go back to the default scheduler by:
echo cfq > /sys/block/mmcblk0/queue/scheduler.

Details of the dispatch are explained below. First, the system se-
lects a queue from the 17 priority queues, then chooses a request in
the selected queue, and inserts the request into the dispatch queue.
If the time slice of the current queue is not expired (default 100ms
as in CFQ), and the queue is not empty, the dispatch continues with
the current queue. Otherwise, it chooses a different queue based
on the priorities. The time slice serves as an ultimate mechanism
to avoid starvation. When a queue q is chosen, the algorithm dis-
patches a request from it. If it may dispatch, it picks a request from
the queue in the FIFO fashion, and inserts the request into the dis-
patch queue. The dispatch is elaborated in Algorithm 6.1.

Algorithm 6.1: DISPATCH(queue ∗ q)

//choose a queue
if current queue q empty or its time slice expired
then choose another queue and assign it to q

//if queue q may dispatch
if may_dispatch(q)

then
{

pick a request in FIFO fashion
insert request to dispatch queue

To find out if we can dispatch from a queue q, may_dispatch is
envoked. First, it checks whether the queue has more I/Os in flight
than allowed. If not, it allows the dispatch. If the queue has already
reached the dispatch limit, the system checks how many queues are
waiting for dispatch. In case when there is another queue waiting,
the dispatch is not allowed. If the queue is the only one, SmartIO
sets no limit for it. The number of in-flight I/Os of a queue from
the Linux default settings is 8. may_dispatch is elaborated in Algo-
rithm 6.2.

Obtaining Concurrency Parameters. As discussed earlier, based
on the concurrency parameters, SmartIO issues the appropriate num-

293

Algorithm 6.2: MAY_DISPATCH(queue ∗ q)

//does this q already have too many I/Os in-flight?
if (q.dispatched >= max_dispatch)

then

if (busy_queues > 1)

then

//we have other queues,don’t allow more
//I/Os from this one
return (false)

else if (busy_queues == 1)

then
{

//sole queue user, no limit
max_dispatch←∞

else
{
max_dispatch← quantum
//default init quantum is 8

//if we’re below the current max, allow dispatch
return (q.dispatched < max_dispatch)

ber of reads (writes) concurrently from the dispatch queue. To
achieve this, SmartIO measures the concurrency parameters dur-
ing installation by invoking the fio tool to benchmark the phone. fio
issues reads and writes, and calculates the speedup of concurrent
I/Os over serial ones, as performed in the measurement study. fio
[18] is a Linux I/O testing tool that directs different types of I/Os to
block devices, and returns information on the delay performance.
The first step to get fio issue a desired workload is to write a job
file. The typical contents of the job file is a global section defining
shared parameters, and one or more job sections describing the jobs
involved. For instance, the following code tests the sequential read
and write performance of the /data partition on a phone:

[g l o b a l]
d i r e c t o r y = / d a t a
bs =4k
s i z e =32m

[s e q u e n t i a l−r e a d]
rw= r e a d
numjobs =1
s t o n e w a l l

[s e q u e n t i a l−w r i t e]
rw= w r i t e
numjobs =1
s t o n e w a l l

Stonewall allows a job to start only when a previous one has fin-
ished. Without the two stonewalls above, the tool issues two jobs
running concurrently. The directory defines the destination for the
workload, bs stands for block size, and size defines the size of the
workload to be issued.

To integrate fio in SmartIO, we patch the fio code with Android
compiling adjustment, and cross-compile it to get its binary. We
make the binary and job files available at [3]. The binary then is
imported into the Concurrency Profiler module, and in run-time
transferred to the /data partition directory in the internal flash disk.

7. PERFORMANCE EVALUATION
This section evaluates SmartIO, and answers the following ques-

tions. (1) How does SmartIO reduce iowait? We output iostat

Figure 10: Iowait Before and After.

values of five smartphones with SmartIO. (2) How does SmartIO
improve the benchmark performance? We address this by inves-
tigating the I/O slowdown and asymmetry of the synthetic bench-
marks. The experiments are conducted with SmartIO disabled, and
enabled. Additionally, SmartIO is compared with other existing I/O
schedulers. (3) How does SmartIO improve the application perfor-
mance? This is addressed by recording the launch and run-time
delay of the 40 popular apps from Google Play with and without
SmartIO. In addition, we conduct an experiment on the Facebook
application to determine the user-perceived performance improve-
ment of our solution.

7.1 Iowait
As in the measurement study, we utilize the iostat [4] shell com-

mand to output the I/O statistics of five devices: Samsung S5, Sam-
sung S4, Nexus 5, Nexus 4, and Motorola RAZR Maxx. The de-
vices are normally used daily by the authors, and are running An-
droid 4.4, 4.3, 4.4, 4.2, and 4.0, respectively. The statistics from
the use of SmartIO within 30 days and the use of CFQ within 30
days are illustrated in Figure 10. The results indicate a significant
iowait reduction on Samsung S5 (74.2%) and Nexus 4 (73.2%).
These numbers highly depend on the individual I/O traffic resulted
from usage patterns of each smartphone user. In particular, Sam-
sung S5 and Nexus 4 have both the total amount of blocks read
almost an order of magnitude larger than the amount of blocks writ-
ten (10,122,938 vs. 1,017,864; 250,005,743 vs. 26,042,265; each
block of 4KB). This read intensive traffic benefits from our solution
that favors reads over writes, which contributes to the reduction of
the CPU time the devices spend waiting for I/Os to complete. The
other devices also show a decent reduction in iowait: 65.1% (Sam-
sung S4), RAZR (50.5%), and Nexus 5 (47%).

7.2 Benchmark Performance
To determine SmartIO’s performance gain and cost, we investi-

gate the I/O slowdown and asymmetry of benchmarks. Since the
proposed system is designed to serve in favor of reads over writes,
writes are expected to perform slightly worse. We run two bench-
marks, first with SmartIO disabled, and the second time with Smar-
tIO enabled. When SmartIO is disabled, the default I/O sched-
uler (CFQ) is utilized. The first benchmark consists of an 1-reader
(128MB) and an 1-writer (128MB) process. The second bench-
mark consists of a 4-reader (4 x 128MB) and a 4-writer (4 x 128MB)

294

SR SW RR RW
0

2

4

6

S
lo

w
d

o
w

n
 R

a
ti

o

(a) Samsung S5: 1R 1W

CFQ

SmartIO

SR SW RR RW
0

20

40

60

S
lo

w
d

o
w

n
 R

a
ti

o

(b) Samsung S5: 4R 4W

SR SW RR RW
0

2

4

6

S
lo

w
d

o
w

n
 R

a
ti

o

(c) Razr: 1R 1W

SR SW RR RW
0

20

40

60

S
lo

w
d

o
w

n
 R

a
ti

o

(d) Razr: 4R 4W

SR SW RR RW
0

2

4

6

S
lo

w
d

o
w

n
 R

a
ti

o

(e) Nexus 5: 1R 1W

SR SW RR RW
0

20

40

60

S
lo

w
d

o
w

n
 R

a
ti

o
(f) Nexus 5: 4R 4W

SR SW RR RW
0

2

4

6

S
lo

w
d

o
w

n
 R

a
ti

o

(g) Samsung S4: 1R 1W

SR SW RR RW
0

20

40

60

S
lo

w
d

o
w

n
 R

a
ti

o

(h) Samsung S4: 4R 4W

SR SW RR RW
0

2

4

6

S
lo

w
d

o
w

n
 R

a
ti

o

(i) Nexus 4: 1R 1W

SR SW RR RW
0

20

40

60

S
lo

w
d

o
w

n
 R

a
ti

o

(j) Nexus 4: 4R 4W

1R: 1−reader
1W: 1−writer
4R: 4−reader
4W: 4−writer

Figure 11: I/O Slowdown. SR=sequential read; SW=sequential write; RR=random read; RW=random write.

process. We consider both sequential and random I/Os. First, the
experiment is done on the Samsung S5 phone. The I/Os are issued
by the fio tool.

Gain vs. Cost. The I/O slowdown of the 1-reader and 1-writer
with standard deviations is illustrated in Figure 11(a). For sequen-
tial I/Os, the read slowdown improves from 6.15 (CFQ) to 1.72
(SmartIO). Since our system delays writes in favor of reads, it is
important to make sure that writes do not suffer a large perfor-
mance degradation. As observed, this read performance improve-
ment comes with only little cost due to the read/write discrepancy
nature of the flash storage (reads take much faster to complete).
Specifically, the write slowdown ratio worsens from 1.13 to 1.51.
Similar behavior is observed for the random I/Os. While the read
slowdown ratio improves significantly from 3.18 to 1.97, the write
slowdown worsens slightly from 1.6 to 1.83. However, the random
reads achieve smaller performance gain than the sequential ones.
This is consistent with the results from the Measurement Study
(Section 4), which show the random reads having lower slowdowns
in the presence of the concurrent writes, hence, the benefit from the
SmartIO read-preference scheduling is smaller.

The I/O slowdown of the 4-reader and 4-writer is illustrated in
Figure 11(b). For sequential I/Os, the read slowdown ratio im-
proves dramatically from 28.03 to 5.12. This large performance
gain comes from the read-preference of SmartIO, together with the
speedup from improved concurrency. The write slowdown ratio
worsens from 4.21 to 6.12, which is the cost of SmartIO’s lower
write’s priority. The random read slowdown improves from 19.22
to 8.75, while the write slowdown worsens from 8.01 to 9.32. Again,
the random I/Os benefit from SmartIO slightly less than the sequen-
tial I/Os, which agrees with the theory.

Adaptation to Different Phones. As for validation, we also de-
ploy our solution on other phones. First, we look at the Motorola
Razr smartphone with the Android OS 4.0 (ICS), kernel 3.0, Ext4
file system, and duo-core. The Razr’s default I/O scheduler is also
CFQ, and its four concurrency parameters with maximal speedup
found by SmartIO are: 2 concurrent seq. reads, 2 concurrent seq.

writes (different from Samsung S5), 2 concurrent random reads
(different from Samsung S5), and 2 concurrent random writes. The
I/O slowdown of the 1-reader and 1-writer is illustrated in Fig-
ure 11(c). The I/O slowdown of the 4-reader and 4-writer is il-
lustrated in Figure 11(d). Both figures are plotted with standard de-
viations. The 1-reader and 1-writer shows a similar behavior as on
the Samsung S5 phone. The 4-reader and 4-writer indicates even
larger read performance improvement compared to the Samsung
S5 phone. The sequential read slowdown ratio improves from 59.4
to 4.98, while its write slowdown only worsens from 7.92 to 8.41.
The random I/Os also show great improvement, the read slowdown
improves from 31.12 to 9.5, while the write worsens from 8.01 to
9.08. This large performance boost is due to higher gains from
concurrency, and demonstrates that SmartIO with its concurrency
parameters measurement can adapt to different flash characteris-
tics. The Samsung S5’s smaller performance gain is due to the
fact that the phone is more recent, and its four cores already offer
great baseline performance. While the Razr’s duo-core architecture
shows even larger read performance improvement due to the lower
baseline performance of the smaller number of cores. For com-
parison, we also display further results on the rest of the devices:
Nexus 5 in Figure 11(e)(f), Samsung S4 in Figure 11(g)(h), and
Nexus 4 in Figure 11(i)(j). They all demonstrate significant reduc-
tions in the read slowdown, while the write slowdown only wors-
ens little. From these three devices, Samsung S4 has the largest
read slowdown reduction (7.6 times in (h)), while Nexus 5 has the
largest write slowdown increment (1.77 times in (f)). In summary,
the above benchmarking experiments show different performance
gains for a diverse set of devices. This is reasonable, since each
device is equipped with different hardware components, and hence
different results are expected. However, the experiments also con-
firm that SmartIO is able to adapt to different phones.

7.3 Scheduler Comparison
This section aims to compare SmartIO with other existing I/O

schedulers: Complete Fair Queuing (CFQ), Deadline, and Noop.
These are the only three schedulers available on recent Android de-

295

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

10

20

30

40

Reads Percentage

R
e
s
p

o
n

s
e
 T

im
e
 (

s
)

 CFQ (seq. I/O)

Deadline (seq. I/O)

Noop (seq. I/O)

SmartIO (seq. I/O)

CFQ (rand. I/O)

Deadline (rand. I/O)

Noop (rand. I/O)

SmartIO (rand. I/O)

Figure 12: Scheduler Comparison. Solid lines are sequential
I/Os; dashed lines are random I/Os.

vices. CFQ attempts to distribute available I/O bandwidth equally
among all I/O requests. The requests are placed into per-process
queues where each of the queues gets a time slice allocated. Fur-
ther details on CFQ are explained earlier in the Background section.
Deadline algorithm attempts to guarantee a start time for a process.
The queues are sorted by expiration time of processes. Noop inserts
incoming I/Os into a FIFO fashion queue and implements request
merging.

To compare the schedulers, we utilize fio to issue mixed work-
loads of both reads and writes to the Samsung S5 phone’s inter-
nal flash disk, and measure the time delay that takes to complete
the workloads (response time). This is repeated on all mentioned
schedulers, and the comparison is done for both sequential and ran-
dom I/Os.

Sequential I/O. For each scheduler we issue a 128MB mixed work-
load with 10% of sequential reads (90% of sequential writes), and
record the response time. Next, we issue a 128MB mixed work-
load with 20% of reads (80% of writes), and record the response
time. We continue issuing a workload with 30% reads, 40% reads,
etc. Until the workload with 100% reads. The block size is set to
4KB, the queue depth to 128, and the cache is cleared after each
measurement.

The resulting response times are plotted in Figure 12 (solid lines).
In general, for all four schedulers, with the increased percentage of
reads, the response time decreases. For instance, with a workload
consisting 10% reads, the response time for SmartIO is 9 seconds,
CFQ 16 seconds, Deadline 28 seconds, and Noop 30 seconds. With
50% of reads, the response time is faster, SmartIO needs 3 seconds,
CFQ 8 seconds, Deadline 20 seconds, and Noop 22 seconds. This
is consistent with our measurement study, since reads are faster
to complete, and less writes also means smaller I/O slowdown.
For most workloads, SmartIO provides the fastest response time,
while the current I/O scheduler in Samsung S5 (CFQ) is second
best. Deadline and Noop perform poorly, and one beats another
depending on the workload. Consequently, by changing the sched-
uler from the default CFQ to the proposed SmartIO, we achieve on
average 42% faster response times (max of 64%).

Random I/O. The above experiment is reiterated for random I/Os.
The resulting response times are plotted in Figure 12 (dashed lines).
Again, it is safe to say that with the increased percentage of reads,
the response time decreases for all schedulers. This is consistent
with our experimental study, since reads are faster to complete, and
less writes also means smaller I/O slowdown. For all random I/O
workloads, SmartIO has fastest response times. As a result, by

changing the scheduler from the default CFQ to the proposed Smar-
tIO, we may achieve on average 49% faster response times (max of
66%). Compared to sequential I/Os, random I/Os take longer to
complete. This is also consistent with our findings in the measure-
ment study, which identifies that random activities generally take
longer to complete.

7.4 Application Performance
To address the third question on how SmartIO improves the ap-

plication performance, we measure the launch and run-time delay
of 40 popular apps (10 games, 10 streaming, 10 miscellaneous, and
10 sensing) from Google Play, with and without SmartIO. Among
others, the miscellaneous group also includes two file processing
applications (File Commander and File Manager) and two write-
intensive applications (ZArchiver and RAR for Android). During
the experiment, our Samsung S5 has all radio communication dis-
abled except for WiFi that is necessary to provide stable Internet
connections required on most apps. The screen is set to stay-awake
mode with constant brightness, and the screen auto-rotation is dis-
abled. Only one app runs at a time, and no other app is in the
background. This is to achieve a fair comparison between the two
cases: with SmartIO, and without SmartIO. The cache is cleared
before each measurement in order to evaluate real performance im-
provement caused by SmartIO.

Launch Delay. The Android Monkey tool [6] is utilized to trigger
the launch process of each app. The application launch delay starts
when the launch process is triggered, and ends when the process
completes. The launch delay includes three components. We use
the time command [14] to output the three time components: the
time taken by the app in the user mode (user), the time taken by
the app in the kernel mode (system), and the time the app spends
waiting for the disk and network I/Os to complete (totalIO). The
storage I/O delay is obtained by dividing the total number of I/Os
completed (kBread + kBwrtn) over the total rate of I/Os completed
(kBreadRate + kBwrtnRate) in a flash block device. The network
I/O delay is then calculated as the total I/O delay (totalIO) sub-
tracted by the storage I/O delay (storageIOdelay).

Formally,

storageIOdelay =
kBread+ kBwrtn

kBreadRate+ kBwrtnRate
, (1)

where kBread is the amount of data read from a flash block de-
vice, kBwrtn is the amount of data written to a flash block device,
kBreadRate is the data rate read per second from a flash block de-
vice, and kBwrtnRate is the data rate written per second to a flash
block device. All four variables are obtained from the output of the
iostat Linux command.

networkIOdelay = totalIO − storageIOdelay, (2)

where totalIO is the time an app spends waiting for both disk and
network I/Os to complete. The variable is obtained from the time
command during application launch.

The cold launch delay is a launch delay required to launch an
application not currently running in the background. Such appli-
cation also has its cache cleared before each measurement. The
cold launch delay of the 40 apps with and without SmartIO is illus-
trated in Figure 13(a). The figure includes 10 games (1-5, 21-25),
10 streaming apps (6-10, 26-30), 10 miscellaneous apps (11-15, 31-
35), and 10 sensing apps (16-20, 36-40). Applications running with

296

1 1* 2 2* 3 3* 4 4* 5 5* 6 6* 7 7* 8 8* 9 9* 10 10* 11 11* 12 12* 13 13* 14 14* 15 15* 16 16* 17 17* 18 18* 19 19* 20 20*
0

0.5

T
im

e
 (

s
)

(a) Cold Launch Delayuser system network I/O disk I/O

21 21* 22 22* 23 23* 24 24* 25 25* 26 26* 27 27* 28 28* 29 29* 30 30* 31 31* 32 32* 33 33* 34 34* 35 35* 36 36* 37 37* 38 38* 39 39* 40 40*
0

0.5

T
im

e
 (

s
)

(a) Cold Launch Delay

1 1* 2 2* 3 3* 4 4* 5 5* 6 6* 7 7* 8 8* 9 9* 10 10* 11 11* 12 12* 13 13* 14 14* 15 15* 16 16* 17 17* 18 18* 19 19* 20 20*
0

0.5

T
im

e
 (

s
)

21 21* 22 22* 23 23* 24 24* 25 25* 26 26* 27 27* 28 28* 29 29* 30 30* 31 31* 32 32* 33 33* 34 34* 35 35* 36 36* 37 37* 38 38* 39 39* 40 40*
0

0.5

T
im

e
 (

s
)

(b) Warm Launch Delay

1 1* 2 2* 3 3* 4 4* 5 5* 6 6* 7 7* 8 8* 9 9* 10 10* 11 11* 12 12* 13 13* 14 14* 15 15* 16 16* 17 17* 18 18* 19 19* 20 20*
0

10

T
im

e
 (

s
)

21 21* 22 22* 23 23* 24 24* 25 25* 26 26* 27 27* 28 28* 29 29* 30 30* 31 31* 32 32* 33 33* 34 34* 35 35* 36 36* 37 37* 38 38* 39 39* 40 40*
0

10

T
im

e
 (

s
)

(c) Run−time Delay

CFQ: numbers without star | SmartIO: numbers with star

games streaming misc. sensing

Figure 13: Launch and Run-time Delay. 1:Angry Birds; 2:GTA; 3:Need for Speed; 4:Temple Run; 5:The Simpsons; 6:CNN; 7:Nightly
News; 8:ABC News; 9:YouTube; 10:Pandora; 11:Facebook; 12:Twitter; 13:Gmail; 14:Google Maps; 15:ZArchiver; 16:Accelerometer
M.; 17:Gyroscope Log; 18:Proximity Sensor; 19:Compass; 20:Barometer; 21:2048 Puzzle; 22:Pet Rescue Saga; 23:Pou; 24:Solitaire;
25:Words; 26:CT 24; 27:Live Extra; 28:VEVO; 29:VOYO.cz; 30:WATCH ABC; 31:Instagram; 32:File Commander; 33:RAR for An-
droid; 34:Dropbox; 35:File Manager; 36:Physics Toolbox; 37:Sensor Kinetics; 38:Android Sensor Box; 39:Sensor Music Player; 40:Sensor
Mouse.

SmartIO are denoted with a star (*). The figure is plotted with stan-
dard deviations. The reduction in cold launch delays with SmartIO
ranges from 6.3% (Accelerometer Monitor) to 37.8% (The Simp-
sons) as compared to delays without SmartIO. The cold launch de-
lay with SmartIO enabled for all the 40 apps is on average 20.5%
faster than with SmartIO disabled. These results are expected. The
app launch is I/O intensive, and includes a lot of read activities. The
average number of reads observed for the 40 apps is 5 times higher
than writes. Some apps even go to the extremes, for instance, the
Temple Run game has reads exceeding writes by 58 times. There-
fore, the read-preference nature of SmartIO contributes to reducing
disk I/O delay during the launch. Specifically, the disk I/O delay
portion itself is reduced on average by 69%. Slight difference in the
user and system time of several apps suggests that SmartIO also af-
fects other time components. We reserve further investigation for
future work.

The warm launch delay is a launch delay required to launch
an application currently running in the background. The cache of
such application is not cleared before the measurement. The warm
launch delay of the 40 apps with and without SmartIO is illustrated
in Figure 13(b). The absolute values of warm launch delays are on
average 65% smaller than those of cold launch delays. This is rea-
sonable, since once an app is already in memory, its launch is much
faster. In addition, since there is little I/O traffic going to the flash
disk (81% less than during cold launch), the reduction in delays for
all 40 apps with SmartIO is on average only 6.8%. The disk I/O
delay portion itself is reduced on average by 13%.

Run-time Delay. In order to test delays of apps running on the
phone with SmartIO, we utilize again the Android Monkey tool
to generate streams of 500 user events such as clicks, touches, or
gestures. The run-time delay is defined as the time needed to com-
plete the 500 user events in a running app. We run the experiments
with the same 40 Android apps mentioned previously. Each app
has a predefined set of user activities triggered through the Monkey
tool. The run-time delay for both cases is measured with the time
command, once with SmartIO enabled, and once with SmartIO dis-
abled. Monkey is a command-line tool that can send a stream of
events into the phone’s system in a repeatable manner. We apply a
constant seed value (10) to generate the same sequence of events.
The events are individually adjusted for each app to represent a typ-
ical usage, for instance, in Gmail we read and write an email, add a
contact, change a label, etc.

The run-time delay of the 40 apps with and without SmartIO is
illustrated in Figure 13(c). The figure is plotted with standard devi-
ations. The reduction in run-time delay with SmartIO ranges from
2% (Pandora) to 29.6% (Angry Birds) as compared to run-time de-
lay without SmartIO. The run-time delay with SmartIO enabled for
all the 40 apps is on average 16.9% smaller than with SmartIO dis-
abled. Clearly, the run-time delays do not benefit from using Smar-
tIO as much as the application launch. This is reasonable, since the
application launch is more I/O intensive than the application run-
time. For the 40 apps, the average number of I/Os during launch
is 2 times higher than during run-time. While the run-time delay
of the games with SmartIO is on average 23% smaller, the stream-
ing apps have on average only 4% smaller run-time delay. This is

297

1 1* 2 2* 3 3* 4 4* 5 5* 6 6* 7 7* 8 8* 9 9* 10 10* 11 11* 12 12* 13 13* 14 14* 15 15* 16 16* 17 17* 18 18* 19 19* 20 20*
0

500

1000

1500

2000

2500

P
o

w
e
r

(m
W

)

21 21* 22 22* 23 23* 24 24* 25 25* 26 26* 27 27* 28 28* 29 29* 30 30* 31 31* 32 32* 33 33* 34 34* 35 35* 36 36* 37 37* 38 38* 39 39* 40 40*
0

500

1000

1500

2000

2500

P
o

w
e
r

(m
W

)

CFQ: numbers without star

SmartIO: numbers with star

CFQ: numbers without star

SmartIO: numbers with star

Figure 14: Power Consumption. 1:Angry Birds; 2:GTA; 3:Need for Speed; 4:Temple Run; 5:The Simpsons; 6:CNN; 7:Nightly
News; 8:ABC News; 9:YouTube; 10:Pandora; 11:Facebook; 12:Twitter; 13:Gmail; 14:Google Maps; 15:ZArchiver; 16:Accelerometer
M.; 17:Gyroscope Log; 18:Proximity Sensor; 19:Compass; 20:Barometer; 21:2048 Puzzle; 22:Pet Rescue Saga; 23:Pou; 24:Solitaire;
25:Words; 26:CT 24; 27:Live Extra; 28:VEVO; 29:VOYO.cz; 30:WATCH ABC; 31:Instagram; 32:File Commander; 33:RAR for An-
droid; 34:Dropbox; 35:File Manager; 36:Physics Toolbox; 37:Sensor Kinetics; 38:Android Sensor Box; 39:Sensor Music Player; 40:Sensor
Mouse.

expected, since the games have decent disk I/O activity during the
run-time, whereas the streaming apps are mainly network-bounded.
For example, 56% of Angry Birds’s run-time delay stems from disk
I/Os, and the disk I/O delay portion itself is reduced by 49%. While
64.7% of CNN’s run-time delay originates from network I/Os, and
the disk I/O delay portion itself is only reduced by 8%. Finally, the
average gains of the sensing and miscellaneous category are 18%
and 20%, respectively. The improvement in the disk I/O portion of
the time spent during run-time is on average by 54%.

Power Consumption. While improving the application perfor-
mance is important, having solid power efficiency is equally impor-
tant. To measure power consumption, the Monsoon Power Monitor
[7] is utilized. Each of the 40 apps is run with SmartIO disabled,
and then enabled. The Android Monkey tool triggers the launch
process of each app, and then generates the same stream of 500 user
events as previously. The results with standard deviations are pre-
sented in Figure 14. The average power consumption with SmartIO
enabled is lower than the consumption with SmartIO disabled by
6%. Hence, our solution does not have energy overhead, and even
contributes to lower power levels. We attribute this to the read-
preference approach of the system that essentially allows shorter
jobs to be completed first, which contributes to smaller application
delay and consequently also lower power consumption.

7.5 User-Perceived Performance: Facebook
In this subsection we conduct an experiment on the Facebook

application to determine the user-perceived performance improve-
ment of our solution. Since the delays in Figure 13 are obtained in
the OS layer, the values are precise but significantly smaller than if
obtained in the application layer. In order to acquire measurements
in the application layer, we may use a stop watch, which is however
inaccurate. Instead, we choose to slightly modify the Facebook

source code1 to record timestamps of several performance param-
eters. Specifically, we focus on three metrics that are critical to
Facebook users: cold launch, warm launch, and timeline loading.
A short demo of a modified Facebook version is available at [5].
The app uses test accounts and automates 150 measurements per
metric without necessity of any user interaction. The experiment is
conducted on the five phones listed above.

Cold Launch. Cold launch in Facebook is defined as the time
required to complete loading all components of the start activity
and rendering of the News Feed. All cache data is cleared except
the login information. The ultimate goal of Facebook Inc. for the
following years is to have cold launch of less than 5 seconds on
devices released in 2012 or newer, and less than 10 seconds on
older devices. The results in Figure 15(a) show that cold launch on
our oldest device RAZR (2012) takes 9.9 seconds with CFQ and
6.2 seconds with SmartIO. The newest phone Samsung S5 (2014)
spends 3.7 seconds on cold launch with CFQ, and 2.3 seconds with
SmartIO. Finally, cold launch with CFQ on Nexus 5 (2013), Nexus
4 (2012), and Samsung S4 (2013) requires 4 seconds, 9.5 seconds,
and 7.8 seconds, respectively. While with SmartIO, the three de-
vices need 2.5 seconds, 6 seconds, and 5.1 seconds, respectively.
Since the shortest human perceivable delay is 100ms [22], we can
conclude that SmartIO can contribute significantly to reducing the
user-perceivable cold launch delay.

Warm Launch. Warm launch is defined similarly as cold launch,
except the cache is not cleared before each measurement. Fig-
ure 15(b) indicates that RAZR has the most noticeable reduction
in the delay. Specifically, warm launch with CFQ takes 5.6 sec-
onds, while with SmartIO it takes 3.5 seconds. Nexus 4’s warm
launch delay is reduced from 4.1 seconds to 2.6 seconds. Samsung
S4 shows a reduction from 3.8 seconds to 2.4 seconds. Finally, the

1The first author interned with Facebook Inc.

298

(a) Cold Launch (b) Warm Launch (c) Timeline Loading

Figure 15: User-Perceived Performance of Facebook

newest devices Samsung S5 and Nexus 5 get their delays reduced
from 1.6 second to 1.1 second, and from 2 seconds to 1.3 second,
respectively.

Timeline Loading. Timeline is a user profile page. Its loading is
defined as the time required to complete loading and rendering of
all components in the profile activity, where the origin activity is
the News Feed. This can be seen as switching from the News Feed
to the Timeline page. The results in Figure 15(c) show less notice-
able reductions in the delay. This is reasonable, since this timeline
loading corresponds to run-time delays in Figure 13, where the I/O
traffic is usually less intensive. RAZR and Samsung S4 show most
significant delay reductions: from 2.6 seconds to 1.8 second, and
from 2.3 seconds to 1.7 second, respectively.

8. DISCUSSION AND FUTURE WORK
Launch and run-time delays are critical to user experience, since

one launches and runs apps repeatedly throughout the day. There-
fore, we focus on launch and run-time delays. However, in future
work we plan to evaluate the impact of other stages of the life cy-
cle on application performance such as install, update, switch, and
uninstall, and quantify their effects on everyday phone usage. We
intend to extend this study by researching how other common us-
age patterns are impacted. For instance, taking photos, recording
movies, messaging, calling, email sync (recently studied in [41]),
etc.

As discussed earlier, one of the main reasons causing longer
launch delay is the disk I/O performance, specifically read I/O per-
formance. This is due to the read-intensive nature of application
launch. The average number of reads observed during launch on
the 40 popular apps in our experiment is five times higher than
writes. Other factors may also play a role in the high variation of
launch delays. In particular, the launch delay also depends on the
app’s physical location, i.e., whether on the internal flash or ex-
ternal SD card. According to our analysis, the application size is
not a big contributor to the launch delay. While the three largest
apps Angry Birds (42.4MB), The Simpsons (41.7MB), and Temple
Run 2 (36.7MB) have the launch delay around 0.65s, the smallest
app Proximity Sensor (0.02MB) has the fifth largest launch delay
(0.8s). Finally, we plan to analyze the impact of network I/O based
on existing results [42, 19, 23, 24, 27, 39, 44].

Our work only focuses on reducing the application delay with
respect to the internal flash storage. It may be also interesting to
study how different applications use SD cards. Kim et al. [29]
already performed a series of benchmarking experiments on SD
cards from multiple speed classes. However, it will be useful to go

beyond benchmarking and investigate I/O access patterns on these
devices. This especially can benefit multimedia applications that
store data on the external storage.

The major overhead of SmartIO is the additional delay in writes
because it is designed to serve in favor of reads. As demonstrated
in the evaluation, the write slowdown ratio worsens from 1.13 to
1.51 for sequential I/Os, while for random I/Os it worsens from 1.6
to 1.83. In another experiment, we install the 40 apps researched,
and the results reveal that writes are on average 4.7% slower with
SmartIO. However, at the same time, many other processes in the
background may benefit from SmartIO. Based on our large-scale
study, there are on average 255 processes running on each device
at any point of time, from which 98 have some I/O activity and
generate a workload. These processes are expected to have faster
response time with SmartIO.

Our system keeps most of the dispatch process from the current
Linux I/O scheduler unchanged. In particular, it only adds a third
priority level to organize the dispatch queue in favor of reads. This
third priority level preserves the original Linux scheduler design
because it has a lower priority than the first two priority levels from
the block layer. Therefore, the fairness between processes is still
maintained, and a read from a process with lower priority may not
incur unfair performance penalty on a service process with higher
priority.

Finally, the observations made in our measurement study are
based on data obtained in the Samsung S5 phone and 2611 An-
droid devices through StoreBench. I/O slowdown and concurrency
measurements were excluded from StoreBench, since these tests
take too long (around 1 hour) to complete, and would discourage
users from using this benchmark tool.

9. CONCLUSION
This paper presents a measurement study on the behavior of

reads and writes in smartphones. Among others, we observe that
reads experience up to a 626% slowdown in the presence of concur-
rent writes. The obtained insights are used to design and implement
a system that reduces the application delay by prioritizing reads
over writes, and grouping them based on assigned priorities. The
evaluation on 40 apps demonstrates that SmartIO reduces launch
delays by up to 37.8%, and run-time delays by up to 29.6%.

10. ACKNOWLEDGMENTS
We extend our thanks to Prof. Mahadev Satyanarayanan (CMU)

for shepherding this work. We would also like to thank Aaron Car-
roll (NICTA), Dr. Duy Le (EMC), and Tommy Nguyen (RPI) for
helpful discussions. Many thanks also go to Mai Anh Do (CNU)

299

for helping with measurements, and Daniel Graham for recruit-
ing StoreBench users. Finally, we thank anonymous reviewers for
their comments. This work was supported in part by U.S. National
Science Foundation under grants CNS-1250180 and CNS-1253506
(CAREER).
11. REFERENCES
[1] Busybox. http://goo.gl/CF6vJ, 2014.
[2] Deadline io scheduler tunables.

http://goo.gl/mB9alK, 2014.
[3] fio: Flexible io tester ported for android.

http://storebench.com/fio.html, 2014.
[4] Iostat. http://goo.gl/OtZ33, 2014.
[5] Modified facebook application demo.

http://goo.gl/b1AxQ2, 2014.
[6] Monkey. http://goo.gl/F14hW, 2014.
[7] Monsoon monitor. http://www.msoon.com, 2014.
[8] Notes on the generic block layer rewrite in linux 2.5.

http://goo.gl/SwdLZ5, 2014.
[9] One quarter of work devices are smartphones and tablets,

forrester finds. http://goo.gl/K23yGu, 2014.
[10] Rooting your android.

http://www.androidcentral.com/root, 2014.
[11] Storebench download. http://goo.gl/ava9eV, 2014.
[12] Storebench web. http://StoreBench.com, 2014.
[13] Storebench’s list of devices.

http://StoreBench.com/list.html, 2014.
[14] Time man page. http://goo.gl/dEKuxs, 2014.
[15] Worldwide smartphone 2013-2017 forecast and analysis.

http://goo.gl/v5vg2b, 2014.
[16] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,

M. Manasse, and R. Panigrahy. Design tradeoffs for ssd
performance. In USENIX ATC 2008.

[17] J. Axboe. Linux block io-present and future. In Ottawa Linux
Symp 2004.

[18] J. Axboe. fio: Flexible io tester.
http://linux.die.net/man/1/fio, 2014.

[19] A. Balasubramanian, R. Mahajan, and A. Venkataramani.
Augmenting mobile 3g using wifi. In ACM MobiSys 2010.

[20] S. Boboila and P. Desnoyers. Performance models of
flash-based solid-state drives for real workloads. In IEEE
MSST 2011.

[21] D. Bovet and M. Cesati. Understanding the Linux Kernel.
O’Reilly & Associates, Inc., 2005.

[22] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The
information visualizer, an information workspace. In ACM
SIGCHI 1991.

[23] R. Chakravorty, S. Banerjee, P. Rodriguez, J. Chesterfield,
and I. Pratt. Performance optimizations for wireless
wide-area networks: Comparative study and experimental
evaluation. In ACM MobiCom 2004.

[24] M. C. Chan and R. Ramjee. Tcp/ip performance over 3g
wireless links with rate and delay variation. In ACM
MobiCom 2002.

[25] F. Chen, D. A. Koufaty, and X. Zhang. Understanding
intrinsic characteristics and system implications of flash
memory based solid state drives. In ACM SIGMETRICS
2009.

[26] M. P. Dunn. A new I/O scheduler for solid state devices. PhD
thesis, Texas A&M University, 2009.

[27] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and
P. Bahl. Anatomizing application performance differences on
smartphones. In ACM MobiSys 2010.

[28] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won. I/o stack
optimization for smartphones. In USENIX ATC 2013.

[29] H. Kim, N. Agrawal, and C. Ungureanu. Revisiting storage
for smartphones. In USENIX FAST 2012.

[30] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh. Disk
schedulers for solid state drivers. In ACM EMSOFT 2009.

[31] J. Kim, S. Seo, D. Jung, J.-S. Kim, and J. Huh.
Parameter-aware i/o management for solid state disks (ssds).
In IEEE Transactions on Computing 2012.

[32] K. Lee and Y. Won. Smart layers and dumb result: Io
characterization of an android-based smartphone. In ACM
EMSOFT 2012.

[33] D. T. Nguyen, G. Zhou, X. Qi, G. Peng, J. Zhao, T. Nguyen,
and D. Le. Storage-aware smartphone energy savings. In
ACM UbiComp 2013.

[34] D. T. Nguyen, G. Zhou, and G. Xing. Poster: Towards
reducing smartphone application delay through read/write
isolation. In Proc. of ACM MobiSys, 2014.

[35] D. T. Nguyen, G. Zhou, and G. Xing. Video: Study of
storage impact on smartphone application delay. In Proc. of
ACM MobiSys, 2014.

[36] A. Parate, M. Böhmer, D. Chu, D. Ganesan, and B. M.
Marlin. Practical prediction and prefetch for faster access to
applications on mobile phones. In ACM UbiComp 2013.

[37] S. Park and K. Shen. Fios: A fair, efficient flash i/o
scheduler. In USENIX FAST 2012.

[38] P. Reisner and L. Ellenberg. Replicated storage with shared
disk semantics. In Linux System Technology 2005.

[39] S. Sen, N. K. Madabhushi, and S. Banerjee. Scalable wifi
media delivery through adaptive broadcasts. In USENIX
NSDI 2010.

[40] K. Shen and S. Park. Flashfq: A fair queueing i/o scheduler
for flash-based ssds. In USENIX ATC 2013.

[41] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang,
and Q. Li. Optimizing background email sync on
smartphones. In ACM MobiSys 2013.

[42] Q. Xu, S. Mehrotra, Z. Mao, and J. Li. Proteus: Network
performance forecast for real-time, interactive mobile
applications. In ACM MobiSys 2013.

[43] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu. Fast app
launching for mobile devices using predictive user context.
In ACM MobiSys 2012.

[44] Z. Zhuang, T.-Y. Chang, R. Sivakumar, and A. Velayutham.
A 3: Application-aware acceleration for wireless data
networks. In ACM MobiCom 2006.

300

http://goo.gl/CF6vJ
http://goo.gl/mB9alK
http://storebench.com/fio.html
http://goo.gl/OtZ33
http://goo.gl/b1AxQ2
http://goo.gl/F14hW
http://www.msoon.com
http://goo.gl/SwdLZ5
http://goo.gl/K23yGu
http://www.androidcentral.com/root
http://goo.gl/ava9eV
http://StoreBench.com
http://StoreBench.com/list.html
http://goo.gl/dEKuxs
http://goo.gl/v5vg2b
http://linux.die.net/man/1/fio

	Introduction
	Related Work
	Background
	Block Layer
	Flash Disk

	Measurement Study
	Measurement Setup
	Storage Contribution
	I/O Slowdown
	Slowdown Asymmetry
	Concurrency
	Summary

	System Architecture
	Implementation
	Performance Evaluation
	Iowait
	Benchmark Performance
	Scheduler Comparison
	Application Performance
	User-Perceived Performance: Facebook

	Discussion and Future Work
	Conclusion
	Acknowledgments
	References

