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Abstract—We present a two-stream convolutional neural net-
work based authentication system, CNNAuth, for continuously
monitoring users’ behavioral patterns, by leveraging the ac-
celerometer and gyroscope on smartphones. We are among
the first to exploit two streams of the time-domain data and
frequency-domain data from raw sensor data for learning and
extracting universal effective and efficient feature representations
as the inputs of the convolutional neural network (CNN), and
the extracted features are further selected by the principal
component analysis (PCA). With these features, we use the one-
class support vector machine (SVM) to train the classifier in
the enrollment phase, and with the trained classifier and testing
features, CNNAuth classifies the current user as a legitimate
user or an impostor in the continuous authentication phase. We
evaluate the performance of the two-stream CNN and CNNAuth,
respectively, and the experimental results show that the two-
stream CNN achieves an accuracy of 87.14%, and CNNAuth
reaches the lowest authentication EER of 2.3% and consumes
approximately 3 seconds for authentication.

Index Terms—Continuous authentication, universal feature
representations, convolutional neural network (CNN), one-class
support vector machine (SVM), equal error rate (EER)

I. INTRODUCTION

Current continuous authentication mechanisms on smart-
phones are primarily facing two challenges: feature robustness
and system effectiveness. On the one hand, it is hard to
capture the most robust features that accommodate diverse
noise patterns since sensor data collected by smartphones
contain much noise [1], [2]. On the other hand, it is not easy
to design an effective continuous system without limitations,
such as latency, representational power of extracted features,
and computational cost [3]–[6].

To address the first challenge, we generate two-stream data
from the raw sensor data: time-domain data and frequency-
domain data. The time-domain data are directly collected by
smartphone sensors, which contain temporal movements that
are crucial to explicitly capture the dynamic temporal features
[7]. Frequency-domain data are converted from raw sensor
data by Fourier transformation, which contain better local

frequency patterns that not only alleviate the impact of noise
but also are independent on how time-series data are organized
in the time domain [8]. For the second challenge, we design a
convolutional neural network (CNN) based on the two-stream
data (two-stream CNN) to learn and extract the effective and
efficient data representations. The two-stream CNN is adaptive
to resource-constrained mobile devices through significantly
decreasing network parameters and the number of operations
while retains the authentication accuracy.

In this paper, we propose a novel two-stream convolutional
neural network based authentication system, CNNAuth, for
continuously authenticating users’ behavioral patterns, lever-
aging the accelerometer and gyroscope on smartphones. More
specifically, CNNAuth consists of six modules of the data
collection, data preprocessing, feature extraction, feature selec-
tion, classifier, and authentication. The operation of CNNAuth
includes the enrollment phase for data collection, learning uni-
versal features by training the two-stream CNN, and classifier
training, and the continuous authentication phase for classifier
testing and authentication. Data collection captures users’
behavioral patterns during smartphone usage, by utilizing the
two sensors of the accelerometer and gyroscope omnipresently
built-in smartphones. Data preprocessing converts the raw
sensor data into two stream of inputs for the CNN. In the
feature extraction module, we specially design a two-stream
CNN to learn and extract the effective and efficient data repre-
sentations for resource-constrained mobile devices. Note that
the two-stream CNN is trained only once on a representative
user dataset in the preprocessing module, and then is used at
runtime as a universal feature extractor. In feature selection
module, the most discriminable ones among these features
are extracted by the two-stream CNN and further selected by
the principal component analysis (PCA) in feature selection
module. Then, we use the one-class support vector machine
(SVM) to train the classifier in the enrollment phase. With
the trained classifier and testing features, CNNAuth classifies
the current user as a legitimate user or an impostor in the



continuous authentication phase. We evaluate the effectiveness
of the two-stream CNN in terms of the accuracy, macro F1,
micro F1, model parameters, and computational cost, and
evaluate the performance of CNNAuth with respect to the
equal error rate (EER) and time efficiency, respectively. The
experimental results show that the two-stream CNN achieves
best performance with accuracy of 87.14%, macro F1 of
82.99%, micro F1 of 87.14%, model parameters of 1.8M, and
computational cost of 120M, and CNNAuth reaches the lowest
authentication EER of 2.3% and consumes approximately 3
seconds for authentication, respectively.

In summary, the main contributions of this work are three-
fold:
• We design a two-stream convolutional neural network

based authentication system, CNNAuth, for continuously
monitoring users’ behavioral patterns, by leveraging the
accelerometer and gyroscope on smartphones. CNNAuth
is composed of the data collection, data preprocessing,
feature extraction, feature selection, classifier, and authen-
tication.

• We are among the first to exploit the two streams of
the time-domain data and frequency-domain data from
raw sensor data as the inputs of CNN for learning and
extracting universal effective and efficient features.

• We evaluate the effectiveness of the two-stream CNN
and the performance of CNNAuth, and the experimen-
tal results show that the two-stream CNN achieves the
accuracy of 87.14%, and CNNAuth reaches the lowest
authentication EER of 2.3% and consumes approximately
3 seconds for authentication.

The remainder of this paper is organized as follows: Sec.
II reviews the-state-of-art in efficient network architectures
and continuous authentication system, and Sec. III describes
the two-stream architecture for learning effective and efficient
representations. In Sec. IV, we detail the architecture of
CNNAuth in the data collection, feature selection, classifier,
and authentication. We describe the experiments on CNNAuth
in Sec. V and evaluate the performance of two-stream CNN
and CNNAuth in Sec. VI. We conclude this work in Sec. VII.

II. RELATED WORK

This section reviews the state-of-art of efficient network
architectures and continuous authentication systems in detail.

A. Efficient Network Architecture

Recently, neural networks have become one of the most
popular methodologies in many areas of machine intelligence.
A lot of efficient network architectures have been proposed to
achieve superhuman accuracy, such as AlexNet [9], VGGNet
[10], and ResNet [11]. For example, ResNet proposes shortcut
connections for CNNs, which greatly reduces the difficulty
of training super-deep models. However, since ResNet mainly
focuses on visual inputs and super-deep models, it is not
suitable for sensor data input and can not be performed on
the computationally limited platform, such as smartphones.
There are some works dedicated to tuning neural network

architectures to reach an optimal trade-off between accuracy
and performance on some mobile and embedded applications,
such as MobileNet [12], ShuffleNet [13], and MobileNetV2
[14]. For instance, MobileNetV2 is based on an inverted resid-
ual structure and achieves the state-of-the-art performance in
COCO object detection, ImageNet classification, VOC image
segmentation. However, it also ignores to consider sensor data
inputs. This work differs in that our designed neural network
architecture mainly deals with sensor or multi-sensor inputs,
and at the same time, our system can be performed on the
computationally limited platform, such as smartphones.

B. Continuous Authentication System

Most authentication mechanisms on smartphones, such as
passwords, PINs, fingerprint, and facial identification, provide
security just only by a one-pass session, which enables im-
postors to access the system until the user logs out. To ad-
dress this problem, continuous authentication mechanisms are
explored and developed, which generally can be categorized
into two groups: physiological biometrics based approaches
and behavioral biometrics based approaches. The physiolog-
ical biometrics based approaches authenticate users by static
physical attributes, such as the fingerprint, voice, and facial
identification. In [15] the authors propose an application of
the scale invariant feature transform approach in the context
of the face authentication. The authors in [16] propose a
continuous authentication system VAuth through executing
only the commands that originate from the voice of the owner.
However, these approaches require users direct participation.
Behavioral biometrics based approaches authenticate users by
the invariant features of human behaviors during different
activities, such as touch gestures, and gait. In [17], the authors
propose a touch-based authentication system by exploiting
a novel one-class classification algorithm import vector do-
main description during smartphone usage. The author in
[18] propose a novel sensor-based continuous authentication
system, SensorCA, for continuously monitoring users behavior
patterns, by leveraging the accelerometer, gyroscope, and mag-
netometer ubiquitously built-in smartphones. However, these
approaches can not achieve better performance due to lacking
of robust features or efficient algorithms for authentication.
Our work differs in that we design a lightweight CNN to
learn universal, efficient and roust features to achieve better
performance for continuous user authentication.

III. ARCHITECTURE OF TWO-STREAM CNN FOR
LEARNING EFFECTIVE AND EFFICIENT REPRESENTATIONS

Learning effective and efficient data representations is criti-
cal to continuous authentication systems since the performance
of real-word systems conforms to a set of criteria, such as
the latency, representational power of extracted features, and
inference speed of the feature extractor. In this section, we first
describe how to convert the raw sensor data into two streams of
inputs for CNN, which is the basis of the effective and efficient
representations. Then, we introduce the depthwise separable
convolutions and linear bottlenecks, which are crucial building



blocks for the two-stream CNN [19]. Finally, we elaborate the
architecture of the two-stream CNN, which is designed for
learning universal features with less network parameters and
less operations while retains the authentication accuracy.

For the rest of this paper, all vectors are represented by bold
lower-case letters (e.g., x and y), and matrices and tensors
are denoted by bold upper-case letters (e.g., X and Y). Any
element in vectors or tensors is represented by lower-case
letters (e.g., x and y).

A. Data preprocessing

The synchronized raw sensor readings of the accelerom-
eter and gyroscope are represented by a vector w=
(xacc, yacc, zacc, xgyro, ygyro, zgyro)

T ∈ R6, where x, y and
z represent the three-axis sensor readings of a sensor, and acc
and gyro indicate the accelerometer and gyroscope, respec-
tively. For a series of sensor readings over certain time, they
can be represented by a d×N matrix P= (w1,w2, ...,wN),
where d is the dimension of sensor readings (d = 6) and N
is the number of raw sensor readings over the time.

We first segment the sensor readings P into a series of non-
overlapping time intervals with width τ . In each time interval,
a matrix Q = (w1,w2, ...,wτ ) has a shape d× τ . We apply
Fourier transformation to each element in Q in each time
interval, and stack these frequency domain sensor data into
a d × 2f matrix Xf , where f is the dimension of frequency
domain containing f magnitude and f phase pairs (f = τ ). For
raw sensor readings (time-domain data) Xt, we do not make
any change. Finally, Xf and Xt have shapes of n×T×d×2f
and n× T × d× τ , respectively, where n = N/(T × τ) is the
number of samples, and T is the number of time windows. The
length of a time window usually determines the time that the
system requires to perform the continuous authentication. In
this work, we use time-domain data Xt and frequency-domain
data Xf as our two streams of inputs for CNN.

B. Depthwise Separable Convolution and Linear Bottleneck

Depthwise Separable Convolutions were initially introduced
in [20] and subsequently applied to Inception models [21]
to reduce the computation cost. They generally factorize a
standard convolution into a depthwise convolution for filtering
and a pointwise convolution for combining. More specifi-
cally, a depthwise convolution performs lightweight filtering
by applying a single filter on each input channel while a
pointwise convolution builds new features by computing linear
combinations of the input channels.

In data preprocessing (Sec. III-A), we show that sensor
readings in a time window can be represented to a tensor with
shape T × d × τ or T × d × 2f . Furthermore, we unify the
representations with shape c× h× w for convenience, where
c is the number of time windows, h is the number of time
intervals, and w is the dimension of each sensor readings for
all the sensors. The reason is that we refer to the representation
of an image c × h × w, where c is the number of channels,
and h and w are the height and the width, respectively.

A standard convolution takes a c × h × w input tensor L,
and then applies convolutional kernel K ∈ Rc

′×c×k1×k2 to
produce a c′× h×w input tensor L′. The computational cost
of a standard convolutional layer is h×w× c× c′ × k1 × k2.
However, depthwise separable convolutions empirically work
as well as standard convolutions but only cost k1×k2×c

′

k1×k2+c′ , which
is the sum of the depthwise and pointwise convolutions. Com-
pared with a standard convolutional layer, depthwise separable
convolution reduces computation by almost a factor of k1×k2,
where k1 and k2 are the sizes of convolutional kernel. In
this work, we use 1×32 depthwise separable convolution for
convolutional layers, so the computational cost is 32 times
smaller than that of standard convolutions at the cost of a
small reduction in accuracy [22]–[24].

Linear Bottlenecks were initially proposed by Mark Sandler
[14] based on depthwise separable convolutions. For a block
with size h×w, kernel size k1×k2, expansion factor t, c input
channels and c′ output channels, it takes a low-dimensional
input c×h×w. the block is first expanded to high dimension
by expansion factor t and filtered with a lightweight depthwise
convolution with kernel size k1 × k2. Then its features are
projected back to a low-dimensional output c′× h×w with a
linear convolution.

There are two reasons why our two-stream CNN is based on
Linear Bottleneck blocks: 1) they provide a better understand-
ing of our designed network since there is a natural separation
between the input/output domains of the bottleneck layers and
the layer transformation [14]; 2) they can reduce the number of
parameters and computational cost in convolutional operations.
In this work, we do not use skip connection because we set
stride = 1. The total number of multiplications and additions
required is h× w × c× t× (c+ k1 × k2 + c′).

C. Two-stream CNN Architecture

We illustrate the two-stream CNN architecture in Fig. 1.
As discussed in previous sections, its basic building block is
a linear bottleneck. It consists of an individual convolutional
subnet for each input tensor (input tensors refer to Xf and
Xt), and a single merged convolutional subnet for the outputs
of the two individual convolutional subnets. In this work,
the network concentrates on learning effective and efficient
representations by detecting spatial patterns that are related
to the frequency domain sensor readings and local temporal
dynamic patterns which are related to the raw sensor readings.
Recall that frequency-domain data Xf and time-domain data
Xt can be represented with a tensor n×T×n×2f and a tensor
n× T × d× τ , respectively, where n is the number of sensor
data, T is the number of time windows, d is the dimension of
all sensor data, f is the dimension of sensor data in frequency
domain, and τ represents the number of sensor data in one
time interval. They will be fed into the network as two-
stream inputs. We extract three kinds of features/relationships
embedded in Xf and Xt: the features in the frequency domain,
the features in the temporal domain, and relationships across
sensor data dimensions. The frequency domain generally in-
cludes many spatial patterns in some neighboring frequencies.
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Fig. 1. Architecture of the two-stream CNN.

The temporal domain commonly contains a number of local
temporal dynamic patterns. The interaction among sensor
data usually contains all dimensions. Therefore, for Xf , we
first apply 2d filters with shape (d,Conv1) to Xf to learn
interaction among sensor data dimensions and spatial patterns
in the frequency domain. Then we apply Linear Bottlenecks
with shapes (1, Conv2) and (1, Conv3) hierarchically to learn
high-level features. Similarly, for Xt, the process is the same
since the structure of the individual convolutional subnet is
the same.

Then we flatten their outputs and concatenate them along
channels. The structure of the merged convolutional subnet
is similar to the individual convolutional subnet. We first
apply 2d filters with shape (2, Conv4) to learn the interactions
between the temporal and frequency domains, and then apply
Linear Bottlenecks with shapes (1, Conv5) and (1, Conv6)
hierarchically to learn high-level features. Finally, we use two
full connection layers, which are used to classify the input
patterns into a finite number of classes. The output of the
last full connection layer will be fed into a softmax layer to
generate the predicted category probability.

For the individual convolutional subnet, two-stream CNN
learns 32 filters, and for merged convolutional subnet, it learns
64 filters. For all the experiments, expansion factor t = 6. That
is, for a bottleneck layer, when the input and output tensors
have 32 channels and 64 channels, respectively, then the
intermediate expansion layer has 32× 6 = 192 channels. We
use Rectified Linear Unit (ReLU6) as our activation function
due to its robustness even in low-precision computation [12].
In addition, batch normalization is applied at each layer to
reduce internal covariate shift, and dropout is also employed
during training. Note that the structures of the individual
convolutional subnets for two streams of inputs are the same,
but their parameters are not shared and they are learned
separately.

Note that a sequence of sensor data can be represented as
various formats. In our experiment, it is represented as a tensor
with shape T × w × h. If the number of the sensor is fixed,
w and h are constants. However, the number of time window
T can be regarded as a tunable hyper parameter, which can

be adjusted depending on desired accuracy/performance trade-
offs. Our primary network (8× 75× 6), has a computational
cost of 120 million multiplications and additions and uses 1.8
million parameters. We also explore the performance trade-
offs, for the number of time window from 8 (2 seconds)
to 20 (5 seconds). The network computational cost ranges
from 120M MAdds (the number of multiplication-addition
operations) to 310M MAdds, while the model size varies
between 1.8M and 4.16M parameters. For convenience, one
minor implementation difference is the input tensor with shape
1×T × (2f · d) and 1×T × (τ · d) to avoid 3d convolutional
kernel.

IV. SYSTEM DESIGN

In this section, we present the two-stream convolutional
neural network based user authentication system, CNNAuth,
for continuously monitoring users’ behavioral patterns by
exploiting sensor data from the accelerometer and gyroscope
on smartphones. The architecture of CNNAuth is illustrated in
Fig. 2. As shown in Fig. 2, CNNAuth consists of six modules:
data collection, data preprocessing, feature extraction, feature
selection, classifier, and authentication. The operation of CN-
NAuth includes two phases for learning and classifying users’
behavioral patterns: the enrollment phase and continuous au-
thentication phase. In particular, the preprocessing module
mainly focuses on learning effective and efficient represen-
tations, and the feature extraction module can automatically
extract universal features by applying the two-stream CNN on
training datasets, which we have discussed in Sec. III-C. In the
remainder of this section, we elaborate the rest of modules:
data collection, feature selection, classifier, and authentication.

A. Data collection

Data collection module collects all users’ sensor data from
the accelerometer and gyroscope. The accelerometer records
a user’s motion patterns, such as how to move the arms or
how to walk, and the gyroscope records a user’s fine-grained
motions, such as how to hold smartphones during usage. The
two sensors do not require root permission when requested by
mobile applications, which makes them useful in background
monitoring. In CNNAuth, the data collection module captures
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Fig. 2. Architecture of CNNAuth.

the user’s every subtle movement during the operations on
smartphones, and records the instantaneous readings of the
two sensors when the screen is on. The collected data are
stored in a protected buffer for data preprocessing.

B. Feature selection

After data preprocessing and feature extraction as detailed in
Sec. III-C, the extracted features are passed to feature selection
module and features with high discriminability are selected. In
CNNAuth, we exploit the principal component analysis (PCA)
to select 25 features.

C. Classifier

The selected features are then fed to the classifier for
training and testing, respectively. We implement the one-class
support vector machine (SVM) classifier, which exploits a
kernel function to map data into a high dimensional space,
and considers the origin as the only sample from other classes
[25]. In the enrollment phase, the classifier is established by
using training feature vectors with a radial basis function
(RBF) kernel. In the continuous authentication phase, the
trained classifier projects the testing feature vectors onto the
same high-dimensional space, and classifies the testing feature
vectors.

D. Authentication

Based on the testing feature vectors and the trained one-
class SVM classifier, the authentication module classifies the
current user as a legitimate user or an impostor. In the
enrollment phase, the legitimate user’s profile is generated
from the training data and stored in a protected buffer, while
the current user’s features are compared with the profile in
the authentication phase. If the current user is classified as an
impostor, CNNAuth will require initial login inputs; otherwise,
it will continuously authenticate the user.

V. EXPERIMENT

In this section, we first describe the dataset, then explain
how to train the one-class SVM classifier, and finally present
the metrics for performance evaluation.

A. Dataset

To investigate the accuracy of CNNAuth, we collected sensor
data from 100 smartphone users (53 male, and 47 female). To
collect sensor data, each user devoted to approximately 2 to
6 hours of behavior traits including document reading, text
production, and navigation on a map locating a destination
[26]. We recorded sensor readings of the accelerometer and
gyroscope with the sampling rate of 100Hz, by an android-
based software system. In this work, we select the first 100
minutes of data for each user with a 2-second window size.

B. Training

The training phase of CNNAuth is divided into two stages.
In the first stage, the two-stream CNN is trained to learn
the universal features and relationships among the sensors
for classification. We use a step decay strategy to anneal the
learning rate over time. The learning rate is initially set to
0.0001, and then is gradually reduced by a 0.95 learning rate
decay factor when the accuracy starts to decline. A ReLU6
is taken as the activation function. The batch size is set to
256, and the network is trained for up to 100 epochs. We
stop the epoch when loss function does not decrease for ten
consecutive training epochs.

The second stage is devoted to training CNNAuth. The
trained two-stream CNN is fixed as an universal feature
extractor, and we just train the one-class SVM using ten-
fold cross validation. We specify one of the 100 users as a
legitimate user and the rest as impostors. That is, we have
positive feature samples from one legitimate user and negative
feature samples from 99 impostors. Based on these samples,
we train the classifier as follows:

Step 1: we randomly divide all positive samples into k (k =
10) equal-size subsets, where k − 1 positive subsets are used
to train the one-class SVM model, and one subnet to test the
model.

Step 2: we randomly select negative samples with the same
size to positive ones from all the negative samples, which are
also divided into k (k = 10) equal-size subsets. One of the
10 negative subsets is exploited to test the model.

Step 3: the above 2 steps are repeated 10 times until
each subset of negative samples and each subsets of positive
samples are tested exactly once.



Step 4: we repeat steps 1, 2, and 3 twenty times to account
for the effect of the randomness.

C. Metrics

We explore four metrics that are used to analyze the au-
thentication accuracy of CNNAuth: accuracy, Micro F1 score,
Macro F1 score, and equal error rate (EER).

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of the two-
stream CNN and the performance of CNNAuth, respectively.

We have implemented our system CNNAuth by utilizing
Python. The two-stream CNN and exiting algorithms, such
as KRR, one-class SVM, and kNN, mainly call the Pytorch
framework and sklearn package, respectively. The two-stream
CNN in the enrollment phase is implemented on GPU using
Inter Xeon E5-2683v3 server clocked at 2GHz with 512GB
RAM and a NVIDIA Tesla M40 GPU with 12GB GDDR5
memory and 3072 CUDA cores. However, all tests (testing
two-stream CNN in the preprocessing module, training and
testing authentication algorithms in the enrollment phase and
in the continuous authentication phase) are conducted on a
single CPU clocked at 2GHz platforms, which is relatively
low standard comparison with the CPU configuration of cur-
rent smartphones. Before conducting the evaluation, we first
elaborate the algorithms or models for comparison.

A. Algorithms for comparison

In this section, we first describe the models for comparison
with two-stream CNN, and then introduce the algorithms for
comparison with CNNAuth.

1) Comparison models for two-stream CNN: We compare
our two-stream CNN model with other competitive models.
To show the direct difference, we refer to our model as
RawFrequency-CNN. There are two variants of the two-stream
CNN model by utilizing single-stream input: Raw-CNN and
Frequency-CNN. The competitive models for comparison are:

Raw-CNN: raw sensor data are used as single-stream input.
That is, this model has only one individual convolutional sub-
net, and there is no concatenation for the merged convolutional
subnet [27].

Frequency-CNN: frequency data are used as single-stream
input. That is, this model has only one individual convolu-
tional subnet, and there is no concatenation for the merged
convolutional subnet [28].

Deepsense: it integrates convolutional neural network and
recurrent neural networks to authenticate user. The frequency
representations of sensor data are fed into the model [29].

2) Comparison algorithms for CNNAuth: We compare CN-
NAuth with other competitive authentication algorithms. These
authentication algorithms are: kernel ridge regression (KRR),
one-class SVM, k-nearest neighbors (kNN), respectively:

KRR: the classifier is the combination ridge regression
(linear least squares with l2-norm regularization) with the
kernel trick. It learns a linear function in the space induced
by the kernel function and data. In the enrollment phase, the

classifier is trained by using the training vectors with the RBF
kernel function, which is similar to a SVM. KRR parameters
and kernel parameters are set by grid search [30]. In the
continuous authentication phase, the classifier maps the testing
vector by the RBF kernel function into the high-dimension
space, and calculates the distance between the testing vector
and the linear separator as the classification score.

One-class SVM: the classifier is regarded as an unsuper-
vised learning algorithm, which projects data onto a high
dimensional space through a kernel function, and regards
the origin as only sample from other classes [31]. In the
enrollment phase, the classifier is trained by using the training
vectors with the RBF kernel function, and one-class SVM
parameters and kernel parameters are set by grid search. In the
continuous authentication phase, the classifier maps the testing
vector into the same high-dimension space, and calculates the
distance between the testing vector and the linear separator
as the classification score. The difference between one-class
SVM algorithm and CNNAuth is that CNNAuth uses two-
stream CNN to preprocess the collected data, since CNNAuth
exploits one-class SVM as the classifier.
kNN: the classifier authenticates a user through the assump-

tion that the testing vector from user will resemble one or
more of those in the training vectors [32]. In the enrollment
phase, the classifier estimates the covariance matrix of training
vectors, and the nearest-neighbor parameter k is set by grid
search. In the continuous authentication phase, the classifier
computes Mahalanobis distance, and the average distance
from the testing vector to the nearest samples is used as the
classification score.

B. Performance of two-stream CNN

In this section, to validate the effectiveness of the
RawFrequency-CNN, we evaluate the performance by compar-
ing with other competitive models with respect to the accuracy,
computational cost, and model size, respectively.

1) Accuracy, macro F1 and micro F1: The two-stream
CNN is considered as a multi-class classification problem (100
classes) and trained through Adam algorithm that minimizes
a categorical cross-entropy loss function L, which is defined
as L = H(y, F (χ)), where H(x, y) is the cross entropy for
two distributions. All the results (accuracy, macro F1 and
micro F1 scores) are average values of 5 epochs after the
network has reached convergence and stability. Note that the
competitive models are considered as a multi-class model and
use categorical cross-entropy as the loss function. Although
these models have different optimization functions, we select
Adam as optimization functions for these models in our work.
The performance of Adam algorithm is generally the most
stable one and it is applied frequently in neural networks [33].

Fig. 3 shows the three metrics of the accuracy, macro F1
score and micro F1 score with 95% confidence interval for
different models. More specifically, Fig. 3(a) shows the results
of models of Raw, Frequency, RawFrequency, and Deepsense
with 2-second evaluation data. For the three matrics, RawFre-
quency shows the highest values. Fig. 3(b) shows the results of
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Fig. 3. Accuracy comparison results

models of Raw, Frequency, and RqwFrequency with 5-second
evaluation data. For all the three matrics, RawFrequency shows
the highest values as well. Therefore, our RawFrequency-CNN
has the best accuracy.

Table I shows the comparison results of accuracy, macro
F1, and micro F1 with standard deviation within parentheses
between different networks over different time windows. As
shown in Table I, the RawFrequency, Raw, and Frequency
outperform the Deepsense model with a margin 3.86% at
least. In comparison with RawFrequency-CNN and the two
variants, our RawFrequency-CNN model is more efficient than
the two single-stream CNN models. Comparing with Raw and
Frequency models, frequency input based the CNN model
achieves better performance. It validates that the frequency-
domain data have good patterns and better resistance to noise
while raw data as a single-stream input have a poor accuracy.
However, comparing with frequency-domain data as two-
stream inputs, Raw model achieves improvements. The accu-
racy of Deepsense is the worst in all models, and the accuracy
in 5-second time window overall is higher than that in 2-
second window. This is because more authentication data con-
tain more user information. In summary, our RawFrequency-
CNN (CNNAuth) achieves the best performance with accuracy
of 87.14%, macro F1 of 82.99%, and micro F1 of 87.14%.

2) Model size and computational cost: Table II shows
the model comparison in the model size and computational
cost, where the model size refers to the parameters of the
networks, and the computational cost refers to the number of
multiplication-addition operations (MAdd). We try to trade off
the model parameters and the computational cost.

As illustrated in Table II, our RawFrequency and its two
variants Raw and Frequency are superior to the compared
model Deepsense in terms of the model size and computa-
tional cost. More specifically, in a 2-second time window,
Raw achieves the optimal performance, but combined with
the accuracy in Table I, RawFrequency is comprehensively

optimal. We finally choose RawFrequency as our two-stream
CNN to extract features under the careful consideration, whose
parameters are about 1.8M and MAdds are about 120M.
Although the accuracy of Deepsense model is comparable to
the Raw model, it is much larger than our model in terms
of the model size and computational cost. Its parameters are
about 68 times bigger and the 11 times more calculations than
ours. In the 5-second time window, both the model parameters
and computational cost for all the models increase, because
the input data increase in size. However, the growth rate
of our model is relatively small but still observable. Note
that for Deepsense model, its parameters are about 427.1M
and its MAdds are about 840M. The reason is that our
experiment about Deepsense in the 5-second time window can
not be trained on the GPU under our existing experimental
conditions, so corresponding experimental results (accuracy,
macro F1 score and micro F1) are not measured as shown
“N/A” in Table I.

C. Performance of CNNAuth

To evaluate the performance of CNNAuth, we first explore
the impact of number of features on the EER and time
efficiency. Then, we compare CNNAuth with manually de-
signed feature based common authentication algorithms, such
as KRR, SVM, one-class SVM, and kNN.

As a continuous authentication system, CNNAuth uses
a single-class algorithm one-class SVM as the classifier.
It only requires user’s own data for training and classi-
fying. We compare the CNNAuth with traditional authen-
tication algorithms based on manually designed features,
such as traditionalFeature-oneClassSVM, traditionalFeature-
SVM, traditionalFeature-KNN, and traditionalFeature-kRR.
Note that the following experiments are conducted in a 2-
second time window taking the accuracy and time into ac-
count.



TABLE I
COMPARISON RESULTS OF ACCURACY, MACRO F1, AND MICRO F1 WITH STANDARD DEVIATION WITHIN PARENTHESES BETWEEN DIFFERENT

NETWORKS OVER DIFFERENT TIME WINDOWS.

Time Network Accuracy (%) Macro F1 (%) Micro F1 (%)
Raw 83.18 (0.17) 77.52 (0.24) 83.18 (0.17)

2 Frequency 86.05 (0.23) 81.25 (0.40) 86.05 (0.23)
seconds RawFrequency 87.14 (0.25) 82.99 (0.24) 87.14 (0.25)

Deepsense 79.32 (1.33) 73.05 (1.54) 79.32 (1.33)
Raw 82.29 (0.13) 76.27 (0.21) 82.29 (0.13)

5 Frequency 88.75 (0.49) 81.62 (0.81) 88.75 (0.49)
seconds RawFrequency 90.01 (0.39) 84.43 (0.68) 90.01 (0.39)

Deepsense N/A N/A N/A

TABLE II
COMPARISON IN MODEL SIZE AND COMPUTATIONAL COST.

Time Network Parameter MAdds
Raw 0.99M 30M

2 Frequency 0.99M 50M
seconds RawFrequency 1.8M 120M

Deepsense 68.6M 330M
Raw 2.17M 70M

5 Frequency 2.17M 190M
seconds RawFrequency 4.16M 310M

Deepsense 427.1M 840M

 25 ~ 75 percentile    Median Line   Mean  Outliers

The Number of Features

Fig. 4. EER with different number of features.

1) EER: Fig. 4 shows the box plot of EERs with different
number of features. These features are selected by PCA. As
shown in Fig. 4, the EER decreases with the increase of
the feature number, then increases, and finally reaches an
optimal feature number at 25. Table III lists the mean, standard
deviation (SD), minimum, median and maximum of the EER
with different number of features. Therefore, we choose 25
features in CNNAuth, which achieves a mean EER of 2.3%.

2) Time efficiency: The time cost of CNNAuth consists of
the length of a time window for authenticating (t1), the time
of feature extraction in the enrollment phase (t2), authentica-
tion time in continuous authentication stage (t3) and others
(t4), such as data preprocessing and system delay. In our

TABLE III
EER (%) WITH DIFFERENT NUMBER OF FEATURES.

Feature Mean SD Minimum Median Maximum
15 3.3 1.8 0.6 3.1 9.4
20 2.6 1.2 0.2 2.5 5.9
25 2.3 1.2 0 2.3 6.1
30 2.5 1.3 0 3.1 7.8
50 3.3 1.6 0 3.1 7.8
100 8.5 3.7 1.2 8.8 17.2

 25 ~ 75 percentile   Median Line  Mean  Outliers

CNNAuth

Fig. 5. Comparison with other algorithms.

experiments, taking the accuracy and model complexity into
account, we choose a 2-second time window for authentication
(t1 = 2s). The feature extraction time and authentication time
are 169ms and 1ms, respectively, for one sample (t2 = 169ms,
t3 = 1ms). For other factors, different system environment
presents some difference, so we ignore the time (t4 = 0).
The overall time cost is approximately 3 seconds, which is
acceptable for interaction between a user and CNNAuth.

3) Comparison with other authentication algorithms: In
order to further verify the effectiveness of CNNAuth, we
compare CNNAuth with other common algorithms based on
manually designed features.

Fig. 5 shows our approach CNNAuth surpasses other clas-
sifiers with a large margin of 7.27% at least. In addition, the
performance of KRR is the best among algorithms of one-class



SVM and kNN, approximately reaching an EER of 9.26%.

VII. CONCLUSION

In this paper, we propose a novel two-stream convolutional
neural network based authentication system, CNNAuth, for
continuously authenticating users leveraging their behavioral
patterns. CNNAuth consists of data collection, data prepro-
cessing, feature extraction, feature selection, classifier, and
authentication. First, we design a two-stream CNN to learn and
extract the effective and efficient data feature representations,
and the most discriminable ones are further selected by the
PCA. Then, we use the one-class SVM to train the classifier
in the enrollment phase. With the trained classifier and testing
features, CNNAuth classifies the current user as a legitimate
user or an impostor in the continuous authentication phase.
We evaluate the effectiveness of the two-stream CNN in terms
of the accuracy, macro F1, micro F1, model parameters, and
computational cost, and evaluate the performance of CNNAuth
with respect to the EER and time efficiency, respectively. The
experimental results show that the two-stream CNN achieves
the best performance with accuracy of 87.14%, macro F1 of
82.99%, micro F1 of 87.14%, model parameters of 1.8M, and
computational cost of 120M, and CNNAuth reaches the lowest
authentication EER of 2.3% and consumes approximately 3
seconds for authentication, respectively.
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