
ORIGINAL ARTICLE

Improvement and performance analysis of a novel hash function
based on chaotic neural network

Yantao Li • Di Xiao • Shaojiang Deng •

Gang Zhou

Received: 12 March 2011 / Accepted: 5 July 2011 / Published online: 22 July 2011

� Springer-Verlag London Limited 2011

Abstract In this paper, we reconsider and analyze our

previous paper a novel hash algorithm construction based

on chaotic neural network, then present equal-length and

unequal-length forgery attacks against its security in detail,

and then propose a significantly improved approach by

utilizing a method of complicated nonlinear computation to

enhance the security of the original hash algorithm. The-

oretical analysis and computer simulation indicate that the

improved algorithm can completely resist the two kinds of

forgery attacks and also shows other better performance

than the original one, such as better message and key

sensitivity, statistical properties, which can satisfy the

performance requirements of a more secure hash function.

Keywords Chaotic neural network � Forgery attack �
Hash function � Nonlinear computation

1 Introduction

Hash function is a kind of one-way and compressive

function, which can map any message with arbitrary length

into a fixed length value and has been widely applied to

integrity protection, message authentication and digital

signature. Chaos has some inherent merits, such as one

way, sensitivity to tiny changes in initial conditions and

parameters, mixing property and ergodicity, which is

suitable for constructing hash functions and has been used

to design chaotic hash functions [1–11]. In 2003, Wong

firstly proposed a chaotic hashing algorithm, which was

built on the number of iterations of one-dimensional

logistic map needed to reach the region corresponding to

the character, along with a look-up table updated dynam-

ically [1]. Then Zhang et al. [4] presented an n-dimensional

chaotic dynamic system named feedforward-feedback

nonlinear filter and then proposed a novel chaotic keyed

hash algorithm in 2007. Fortunately, neural network also

shows significant properties of confusion and diffusion, one

way and compression, which is also adapted to build hash

functions. Lian et al. [12] constructed a secure hash algo-

rithm based on a three-layer network, where the three

neuron-layers were used to realize data confusion, diffu-

sion, and compression, and the multi-block hash mode was

presented to support the plaintext with variable length in

2006. Consequently, it is significant and practical to com-

bine chaos with neural network to create effective and

more secure hash functions [13–15]. Based on chaos and

neural network, namely, chaotic neural network, we pro-

posed a novel hash algorithm, which greatly improved the

spatiotemporal complexity of nonlinear dynamics [15].

However, according to recent works [16, 17], we find that

our novel hash algorithm is vulnerable against forgery

attack, in which the attacker tries to produce a message

with a valid hash value based on three related messages and

their corresponding hash values without the knowledge of

the secret key.

Therefore, we reconsider and analyze our previous novel

hash algorithm based on chaotic neural network [15], then

present equal-length and unequal-length forgery attacks

against its security in detail, and then propose a signifi-

cantly improved approach by utilizing a method of

Y. Li (&) � D. Xiao � S. Deng

College of Computer Science, Chongqing University,

Chongqing 400044, China

e-mail: yantaoli@foxmail.com; yantaoli@cs.wm.edu;

liyantao@live.com

Y. Li � G. Zhou

Department of Computer Science, College of William and Mary,

Williamsburg, VA 23185, USA

123

Neural Comput & Applic (2013) 22:391–402

DOI 10.1007/s00521-011-0703-6

complicated nonlinear computation to enhance the security

of the original hash algorithm in this paper. Theoretical

analysis and computer simulation indicate that the

improved algorithm can completely resist the two kinds of

forgery attacks and also shows other better performance

than the original one, such as better message and key

sensitivity, statistical properties, which can satisfy the

performance requirements of a more secure hash function.

The rest part of this paper is organized as follows.

Section 2 introduces the original hash algorithm and ana-

lyzes its security. In Sect. 3, the improved hash algorithm

by utilizing a method of complicated nonlinear computa-

tion is described in detail. Performance analysis is illus-

trated in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Original hash algorithm description and its security

analysis

2.1 Description of the original hash algorithm

2.1.1 The chaotic maps

In the original hash algorithm, one-dimensional and

piecewise liner chaotic map (PWLCM), one-dimensional

and chaotic tent map (CTM), and 4-dimensional and one-

way coupled map lattices (4D OWCML) are utilized,

respectively.

The PWLCM proposed is defined as Eq. (1):

Xðkþ1Þ¼ f ðXðkÞ;PÞ

¼

XðkÞ=P; 0�XðkÞ\P;

ðXðkÞ�PÞ=ð0:5�PÞ; P�XðkÞ\0:5;

ð1�P�XðkÞÞ=ð0:5�PÞ; 0:5�XðkÞ\1�P;

ð1�XðkÞÞ=P; 1�P�XðkÞ�1;

8
>>><

>>>:

ð1Þ

where X 2 ½0; 1� and P 2 ð0; 0:5Þ are the iteration trajectory

value and control parameter of PWLCM, respectively.

The CTM utilized is expressed as Eq. (2):

Xðk þ 1Þ ¼ gðXðkÞ;QÞ

¼ QXðkÞ; 0�XðkÞ\0:5;
Qð1� XðkÞÞ; 0:5�XðkÞ� 1:

�

ð2Þ

where X 2 ½0; 1� and Q 2 ½
ffiffiffi
2
p

; 2� are the iteration trajectory

value and the parameter of the CTM, respectively.

The 4D OWCML employed is described as Eq. (3):

x1ðk þ 1Þ ¼ ð1� eÞgðx4ðkÞÞ þ egðx3ðkÞÞ
x2ðk þ 1Þ ¼ ð1� eÞgðx1ðkÞÞ þ egðx4ðkÞÞ
x3ðk þ 1Þ ¼ ð1� eÞgðx2ðkÞÞ þ egðx1ðkÞÞ
x4ðk þ 1Þ ¼ ð1� eÞgðx3ðkÞÞ þ egðx2ðkÞÞ

8
>><

>>:

ð3Þ

where x1ð0Þ; x2ð0Þ; x3ð0Þ; x4ð0Þ 2 ½0; 1� are the four initial

values and the function g() is the chaotic tent map (CTM),

and e 2 ð0; 1Þ is a coupling constant. The key generation

function gen() adopted in the algorithm based on 4D

OWCML can be generalized as Eq. (4):

Xðk þ 1Þ ¼ genðk þ 1Þ ¼ ðx1ðk þ 1Þ þ x2ðk þ 1Þ
þ x3ðk þ 1Þ þ x4ðk þ 1ÞÞ=4:

ð4Þ

2.1.2 The chaotic neural network

The chaotic neural network structure of the blocked hash

function proposed in the algorithm is shown in Fig. 1,

which consists of both the input layer and the output layer.

The input layer has eight neurons, and the output layer has

four neurons.

The input layer has eight neurons W ¼ ðw1;w2; . . .;w8Þ
and each neuron wiði ¼ 1; 2; . . .; 8Þ has eight input data

miði ¼ 1; . . .; 8; 9; . . .; 16; . . .; 57; . . .; 64Þ. Each mi has a

length of 8 bits. The structure parameters of each input

neuron are the same, including the weight

x ¼ ½x1;x2; . . .;x8�, the bias b, and the transfer function

f() (PWLCM) with the parameter QI. For the input data

miði ¼ 1; . . .; 8; 9; . . .; 16; . . .; 57; . . .; 64Þ, the correspond-

ing eight neurons can be defined as W ¼ ðw1;w2; . . .;w8Þ.
wi ¼ f sðmodð½x1;x2; . . .;x8�

� ½mði�1Þ�8þ1;mði�1Þ�8þ2; . . .;mði�1Þ�8þ8�T
þ b; 1Þ;QIÞ ð5Þ

where s is the iteration times of the PWLCM.

The output layer has four neurons A ¼ ða1; a2; a3; a4Þ.
The structure parameters of the output neurons are

composed of the weight of each neuron xi ¼
½xi;1;xi;2; . . .;xi;8�ði ¼ 1; 2; 3; 4Þ, the four corresponding

biases b1, b2, b3, b4, and the transfer function f() with the

Fig. 1 The structure of two-layer neural network

392 Neural Comput & Applic (2013) 22:391–402

123

parameter QOi(i = 1, 2, 3, 4). For the eight neurons W ¼
ðw1;w2; . . .;w8Þ of the input layer, the corresponding four

output neurons can be described as A ¼ ða1; a2; a3; a4Þ.

ai ¼ f sðmodð½xi;1;xi;2; . . .;xi;8� � ½w1;w2; . . .;w8�T
þ bi; 1Þ;QOiÞ ð6Þ

where s is the iteration times of the PWLCM.

2.1.3 The original hash algorithm

The whole structure of the original hash algorithm can be

illustrated in Fig. 2. Let l = 128 be the bit-length of the

hash value. In advance, the original message M’ with

arbitrary length is padded with bits (1010…10)2 and the

left 64-bit denoting the length of the original message M0,
such that its length is a multiple of 512. The hash value

with l bits is generated as follows.

1. Translate the appended message M into the corre-

sponding ASCII code values and then partition M into

p blocks: M1, M2,…,Mp, and each Mi (i = 1,2,…,p)

has a length of 64-character (512-bit) denoted as

m
0

i;jði ¼ 1; 2; . . .; p; j ¼ 1; 2; . . .; 64Þ. For each Mi, iter-

ate the PWLCM m
0

i;j times with the initial value of last

chaotic state Xðm0
i;j�1Þ and the parameter Q ¼

i
pþ

j
64

� �.
2 to generate the corresponding decimal

fraction mi;jði ¼ 1; 2; . . .; p; j ¼ 1; 2; . . .; 64Þ 2 ½0; 1�
which is short for mjðj ¼ 1; 2; . . .; 64Þ in Fig. 1. And

as shown in Fig. 1, mjðj ¼ 1; 2; . . .; 64Þ is divided into

eight groups for further process.

2. The secret key of the algorithm includes: the initial

condition Xð0Þ 2 ½0; 1�, initial parameter P 2 ð0; 0:5Þ,
and iteration times s of the PWLCM; the initial

condition Xð0Þ 2 ½0; 1� and initial parameter Q 2
½
ffiffiffi
2
p

; 2� of the CTM; the four initial values x1ð0Þ;
x2ð0Þ; x3ð0Þ; x4ð0Þ 2 ½0; 1� and coupling constant e 2
ð0; 1Þ of 4D OWCML. They are set as: the iteration

times s = 45 of the PWLCM; the parameter Q = 1.52

of CMT; 128-bit secret key is partitioned into four keys

with length of 32 bits each and then transform the four

into corresponding decimal fractions by means of linear

transform to generate x1ð0Þ; x2ð0Þ; x3ð0Þ; x4ð0Þ and the

coupling constant e = 1/4 of 4D OWCML; the initial

hash value H(0) = {0}1. At the input layer, iterate 10

times of key generation function gen() (Eq. 4) to

generate the weight x ¼ ½x1;x2; . . .;x8�, the bias b,

and the parameter QI of the transfer function f() (Eq. 5),

respectively. At the output layer, continue to iterate key

generation function gen() 40 times to generate the

weight xi ¼ ½xi;1;xi;2; . . .;xi;8�ði ¼ 1; 2; 3; 4Þ, the

biases b1; b2; b3; b4, and the parameter QOi(i = 1, 2,

3, 4) of the transfer function f()(Eq. 6),orderly and

respectively.

3. At the input layer, compute Eq. (5) with the obtained

parameters in step 2 to generate W ¼ ðw1;w2; . . .;w8Þ.
At the output layer, compute Eq. (6) with the obtained

parameters in step 2 and the output data of input layer

to generate A ¼ ða1; a2; a3; a4Þ.
4. Transform a1; a2; a3; a4 into the corresponding binary

formats, then extract 32-bit of each and cascade these

binary numbers orderly to generate the corresponding

Ti.

5. After all the blocks are processed; the final hash value

is generated by HðMÞ ¼ Hð0Þ � T1 � T2 � � � � � Tp:

2.2 Theoretical analysis of forgery attack

Forgery attack means that the attacker tries to produce a

message with a valid hash value without the knowledge of

the secret key. In the original hash algorithm, the genera-

tion of Ti (i = 1, 2,…,p) is only related to the content and

the order i of current message block Mi and the secret key.

According to the finial hash value generation formula,

HðMÞ ¼ Hð0Þ � T1 � T2 � � � � � Tp, we can see that it is

obtained through simple bit-wise exclusive OR (bit-wise

XOR) operations among Ti (i = 1, 2,…,p), which leaves

some flaw. In work [16], the authors proposed two different

kinds of forgery attacks: equal-length forgery attack and

unequal-length forgery attack, which are illustrated in the

following, respectively.

On the one hand, in equal-length forgery attack, four

equal-length messages (such as M(1), M(2), M(3), M(4))

are padded and portioned into 512-bit blocks as follows.

Fig. 2 The whole structure of

the original algorithm

Neural Comput & Applic (2013) 22:391–402 393

123

padðMð1ÞÞ ¼ M1M2 � � �MnMnþ1 � � �Mp�1Mp

padðMð2ÞÞ ¼ M
0

1M
0

2 � � �M
0

nM
0

nþ1 � � �M
0

p�1Mp

padðMð3ÞÞ ¼ M
0

1M
0

2 � � �M
0

nMnþ1 � � �Mp�1Mp

padðMð4ÞÞ ¼ M1M2 � � �MnM
0

nþ1 � � �M
0

p�1Mp

ð7Þ

where Mp denotes the padding block. Substituting Eq. (7)

into HðMÞ ¼ Hð0Þ � T1 � T2 � � � � � Tp, respectively, we

can get the corresponding hash values of the four equal-

length messages from original hash algorithm expressed as

follows:

HðMð1ÞÞ ¼ Hð0Þ � T1 � T2 � � � � � Tn � Tnþ1 � � � � �
Tp�1 � Tp

HðMð2ÞÞ ¼ Hð0Þ � T
0

1 � T
0

2 � � � � � T
0

n � T
0

nþ1 � � � � �
T
0

p�1 � Tp

HðMð3ÞÞ ¼ Hð0Þ � T
0

1 � T
0

2 � � � � � T
0

n � Tnþ1 � � � � �
Tp�1 � Tp

HðMð4ÞÞ ¼ Hð0Þ � T1 � T2 � � � � � Tn � T
0

nþ1 � � � � �
T
0

p�1 � Tp:

From above equations, we can derive the bit-wise XOR

difference between H(M(1)) and H(M(2)) and that between

H(M(3)) and H(M(4)) shown in Eq. (8):

HðMð1ÞÞ � HðMð2ÞÞ ¼ HðMð3ÞÞ � HðMð4ÞÞ
¼ T1 � T

0

1 � T2 � T
0

2 � � � � � Tn � T
0

n � Tnþ1�
T
0

nþ1 � � � � � Tp�1 � T
0

p�1: ð8Þ

Based on Eq. (8), we can obtain a simple but

significantly computed result described in Eq. (9):

HðMð1ÞÞ � HðMð2ÞÞ � HðMð3ÞÞ � HðMð4ÞÞ ¼ 0: ð9Þ

That means the valid hash value of any one among the four

messages can be derived from the corresponding hash values

of the other three without the knowledge of the secret key.

On the other hand, in unequal-length forgery attack, four

messages (such as M(5), M(6), M(7), M(8)), where M(5)

has the same length and padding block with M(6), and M(7)

has the same length and padding block with M(8)), are

padded and portioned into 512-bit blocks as follows.

padðMð5ÞÞ ¼ m1m2 � � �mp�1mp

padðMð6ÞÞ ¼ m
0

1m
0

2 � � �m
0

p�1mp

padðMð7ÞÞ ¼ M1 � � �Mn�1MnMnþ1 � � �
Mnp�nMnp�nþ1 � � �Mnp�1Mnp

padðMð8ÞÞ ¼ M1 � � �Mn�1M
0

nMnþ1 � � �
M
0

np�nMnp�nþ1 � � �Mnp�1Mnp

ð10Þ

where Mni ¼ mi and M
0
ni ¼ m

0
iði 2 1; 2; . . .; p� 1Þ, mp and

Mnp represent the padding blocks. Substituting Eq. (10)

into HðMÞ ¼ Hð0Þ � T1 � T2 � � � � � Tp, respectively, we

can also obtain the corresponding hash values of the four

unequal-length messages from original hash algorithm

expressed as follows:

HðMð5ÞÞ ¼ Hð0Þ � t1 � t2 � � � � � tn � tnþ1 � � � � �
tp�1 � tp

HðMð6ÞÞ ¼ Hð0Þ � t
0

1 � t
0

2 � � � � � t
0

n � t
0

nþ1 � � � � �
t
0

p�1 � tp

HðMð7ÞÞ ¼ Hð0Þ � T1 � � � � � Tn�1 � Tn � � � � �
Tnp�n � � � � � Tnp�1 � Tnp

HðMð8ÞÞ ¼ Hð0Þ � T1 � � � � � Tn�1 � T
0

n � � � � �
T
0

np�n � � � � � Tnp�1 � Tnp:

From above equations, we can derive the bit-wise XOR

difference between H(M(5)) and H(M(6)) and that between

H(M(7)) and H(M(8)) shown in Eq. (11):

HðMð7ÞÞ � HðMð8ÞÞ
¼ Tn � T

0

n � T2n � T
0

2n � � � � � Tnp�n � T
0

np�n

¼ t1 � t
0

1 � t2 � t
0

2 � � � � � tp�1 � t
0

p�1

¼ HðMð5ÞÞ � HðMð6ÞÞ: ð11Þ

According to Mni ¼ mi and M
0
ni ¼ m

0
iði 2 1; 2; . . .;

p� 1Þ, we can get HðMniÞ ¼ HðmiÞ and HðM 0
niÞ ¼ Hðm0

iÞ
and then deduce that Tni ¼ ti and T

0

ni ¼ t
0

i. Based on Eq.

(11), we can also obtain a simple but significantly

computed result described in Eq. (12):

HðMð5ÞÞ � HðMð6ÞÞ � HðMð7ÞÞ � HðMð8ÞÞ ¼ 0: ð12Þ

We draw the same conclusions to equal-length forgery

attack.

Therefore, according to the theoretical analysis, we can

confirm that our original hash algorithm does not resist

equal-length and unequal-length forgery attacks.

3 Improvement of the original hash algorithm

Since the forgery attack on the original hash algorithm

depends on the fact that the final hash value HðMÞ ¼
Hð0Þ � T1 � T2 � � � � � Tp is obtained through simple bit-

wise XOR operations with Ti (i = 1, 2,…,p) corresponding

to different message block Mi (i = 1,2,…,p), it is possible

for the attacker to realize forgery attacks by constructing

some special messages.

In order to overcome the above flaw, we propose an

improved algorithm based on the original one and the

whole structure of the improved algorithm is illustrated in

Fig. 3. Compared with the original hash algorithm, there

are two major improvements: One is to reprocess the

394 Neural Comput & Applic (2013) 22:391–402

123

obtained 128-bit Ti (i = 1, 2,…,p) of each message block

Mi in step 4, so that the data information of each Ti can be

closely related by complicated Nonlinear Computation.

The other is to generate the finial hash value directly by

cascading 16 8-bit values obtained from the first

improvement instead of HðMÞ ¼ Hð0Þ � T1 � T2 � � � � �
Tp in step 5. The details of the improvements of the original

hash algorithm are described as follows:

The first improvement is in step 4: based on the condi-

tion that the output values of Block Hash of each message

block Mi (i = 1,2,…,p) in Fig. 2 can be expressed as 128-

bit Ti (i = 1, 2,…, p), the 128-bit Ti ¼ ðt1
i t2

i � � � t
j
i � � � t128

i Þ2
(transformed into binary numbers) is further divided into

16 8-bit integers, which are assigned as: bi;1 ¼ ðt1
i

t2
i . . .t8

i Þ2; bi;2 ¼ ðt9
i t10

i . . .t16
i Þ2; . . .; bi;16 ¼ ðt121

i t122
i . . .t128

i Þ2;
where i = 1,2,…,p. Therefore, after all the message blocks

are processed, the corresponding output values, each of

which is re-divided into 16 integers (transformed into

decimal numbers) can be formatted as a p 9 16 matrix B,

which can be formulated as Eq. (13):

Bp�16 ¼

b1;1 b1;2 � � � b1;16

b2;1 b2;2 � � � b2;16

..

. ..
. . .

. ..
.

bp;1 bp;2 � � � bp;16

2

6
6
6
4

3

7
7
7
5
: ð13Þ

Based on different element values in matrix Bp916, 16

final 8-bit values h1, h2,…,h16 are generated by

complicated Nonlinear Computation through the Eq. (14):

hj ¼ �
p

i¼1
ððbi;j � rowiÞ þ coljÞ

ði ¼ 1; 2; . . .; p; j ¼ 1; 2; . . .; 16Þ
ð14Þ

where ‘‘�’’ denotes bit-wise exclusive OR operation, ‘‘?’’

represents addition modulo 28, and rowi (i = 1,2,…,p) and

colj (j = 1,2,…,16) are assigned by the Eqs. (15) and (16),

respectively.

rowi ¼
bi;1 þ bi;2 þ � � � þ bi;16

16
ði ¼ 1; 2; . . .; pÞ ð15Þ

colj ¼
b1;j þ b2;j þ � � � þ bp;j

p
ðj ¼ 1; 2; . . .; 16Þ ð16Þ

The other improvement is in step 5: transform the

generated h1, h2,…,h16 into the corresponding binary

formats and then cascade these binary numbers

successively to generate the final hash value H(M).

Therefore, in our improved hash algorithm, the final hash

value has complicated nonlinear connections among dif-

ferent output values in the chaotic neural network of mes-

sage blocks, which can effectively resist the forgery attacks.

4 Performance analysis

In this section, the forgery attack resistance will be ana-

lyzed in advance and other performance of the improved

hash algorithm will also be proposed. The paragraph of the

message applied in the following simulation experiments is

chosen as [15]:

‘‘Chongqing University is a nationally famed compre-

hensive key university in China, directly under the State

Ministry of Education, also a university listed among the

first group of ‘‘211 Project’’ universities gaining prefer-

ential support in their construction and development from

the Central Government of China. Currently, Chongqing

University runs a graduate school and offers a wide range

of undergraduate programs covering diverse branches of

learning such as sciences, engineering, liberal arts, eco-

nomics, management, law and education.’’

Fig. 3 The whole structure of

the improved algorithm

Neural Comput & Applic (2013) 22:391–402 395

123

4.1 Analysis of forgery attack resistance

The forgery attacks on the original hash algorithm are

based on the utilization of the characteristic of bit-wise

exclusive OR operation since the final hash value HðMÞ ¼
Hð0Þ � T1 � T2 � � � � � Tp is obtained through simple bit-

wise exclusive OR operations with Ti (i = 1, 2,…,p). In the

improved hash algorithm, the improvements employ the

complicated nonlinear connections among the different

parts of output values of Hash Blocks, which directly

generate the final hash value H(M). Therefore, the Eqs. (8)

and (11) do not work in the improved hash algorithm,

which means that the improved hash algorithm can avoid

the forgery attacks. The resistance experiments against

equal-length and unequal-length forgery attacks have been

done, respectively, to verify the resistance capability of the

improved hash algorithm, and the corresponding results are

listed in Tables 1 and 2, respectively. A careful observation

of the experimental results in Tables 1 and 2 shows that the

improved hash algorithm can effectively resist the two

kinds of forgery attacks.

4.2 Statistical distribution of hash value

The uniform distribution of hash value is one of the most

important properties of hash function, which is directly

related to the security of hash function. Simulation exper-

iment has been done on the paragraph of message.

Two 2-dimensional graphs are used to demonstrate the

differences between the message and the final hash value.

In Fig. 4a, since the ASCII codes of letters and symbols in

ASCII Code Table are valued between 32 and 127, the

message are localized within a small area, while in Fig. 4b,

the hexadecimal hash value spreads around very irregu-

larly. The similar experiment has been done to a special

paragraph of ‘‘blank space’’-message with the same length

as the above message. The contrast between message and

hash value is demonstrated in Fig. 5. Even under this very

extreme condition, the contrast is still distinct, and the

distribution of hash value is irregular as well. The simu-

lation results indicate that no information (including the

statistic information) of the message can be left after the

diffusion and confusion.

Table 1 Resistance against equal-length forgery attack

Secret keys (τ=45 of PWLCM, Q= 1.52 of CMT, 128-secret key, ε=1/4 of 4D OWCML)
)stamrof lamicedaxeH(eulav hsaH egasseM

M(1) M1

M1

Chongqing University is a nation 08075450A6C7EA51E195D6291167A212
M2 ally famed comprehensive key uni

M(2) '

M2
'

M2
'

 versity in China, directly under 7420A9D8ED38C824E93109F9ADBC487C
 the State Ministry of Education

M(3) versity in China, directly under 491E0F5BAADDC9488BEFAE1E9F6A3181

M2 ally famed comprehensive key uni

M(4) M1 Chongqing University is a nation 469466B6D70604368B0760B0B7A39A43
 the State Ministry of Education

((1)) ((2)) ((3)) ((4))H M H M H M H M⊕ ⊕ ⊕ 7C27FD884BFF227508A4DFD0BCDBEA6E

M1
'

Table 2 Resistance against unequal-length forgery attack

Secret keys (τ=45 of PWLCM, Q= 1.52 of CMT, 128-secret key, ε=1/4 of 4D OWCML)

)stamrof lamicedaxeH(eulav hsaH egasseM

M(5) m1

m1

Chongqing University is a nation 7E707C708270807074807C7284867E80

M(6) ' ally famed comprehensive key uni CA94D2D2AC32CAF252D2D40C326A728C

M(7) M1 versity in China, directly under 7420A9D8ED38C824E93109F9ADBC487C
 M2 Chongqing University is a nation
 M3 the State Ministry of Education

M(8) M1

M 2

 versity in China, directly under 61A5461732198896F0D7D6D6C075B414
 ' ally famed comprehensive key uni
 M3 the State Ministry of Education

((5)) ((6)) ((7)) ((8))H M H M H M H M⊕ ⊕ ⊕ A161416DF1630A303FB47751DB25F064

396 Neural Comput & Applic (2013) 22:391–402

123

4.3 Sensitivity of hash value to the message and secret

keys

In order to evaluate the sensitivity of hash value to the

message and secret keys, hash simulation experiments have

been conducted under the following different 7 conditions:

C1: The original message in this paper is the same as the

one in original hash algorithm.

C2: Change the first character ‘‘C’’ in the original

message to ‘‘D’’.

C3: Change the word ‘‘directly’’ in the original message

to ‘‘indirectly’’.

C4: Add a blank space at the end of the original

message.

C5: Change the parameter e of the CMT from 1/4 to 1/3.

C6: Change s of Eqs. (4) and (5) from 45 to 46.

C7: Exchange the first message block M1-‘‘Chongqing

University is a nationally famed comprehensive key uni’’

with the second message block M2-‘‘versity in China,

directly under the State Ministry of Education’’.

The corresponding hash values in hexadecimal formats

are gotten from simulation experiments as follows, fol-

lowed by the corresponding number of different bits

compared with the hash value obtained under Condition 1:

C1: C987C9B5A64CA45E278AED6127FF39FB.

C2: A2BD0AC2D8F1E332CD64157FA8EAB23B (73)

C3: 6438ED4287C5DF117BA92EF7B52F570D (69)

C4: 24C8A81F7DFA810B481423D7ECAEAD3B (70)

C5: 770BAFB978EFCCB1EFF7F64A9F9CF8F3 (64)

C6: 66DEF3EB5EDD1A28DE49D7DE4CCF2DCF (71)

C7: FE2B7C9E4CB5A2F001F7E3C7C814BFB5 (72)

The corresponding graphical display of binary sequen-

ces is shown in Fig. 6.

Fig. 5 Spread of all ‘‘blank space’’-message and hash value:

a distribution of all ‘‘blank space’’-message; b distribution of the

hash value in hexadecimal format

Fig. 4 Spread of messages and hash values: a distribution of the

original message in ASCII code; b distribution of the hash values in

hexadecimal format

Neural Comput & Applic (2013) 22:391–402 397

123

The simulation result indicates that sensitivity property

of the proposed algorithm is so perfect that any tiny dif-

ference of the message or key will cause huge changes in

the final hash value. In addition, a careful analysis of

sensitivity of hash value to secret keys in C5 and C6

reveals that tiny changes of secret keys cause correspond-

ing 64-bit and 71-bit differences out of 128 bits, respec-

tively. So we can confirm that the key factor determines the

quality of the improved algorithm.

4.4 Statistical analysis of diffusion and confusion

Confusion and diffusion are two basic design criteria for

encryption algorithm, including hash algorithms. Diffusion

means spreading out of the influence of a single plaintext

bit over many cipher text bits so as to hide the statistical

structure of the plaintext. Confusion means the use of

transformations that complicate dependence of the statis-

tics of cipher text on the statistics of plaintext. Hash

function requires the message to diffuse its influence into

the whole hash space. This means that the correlation

between the message and the corresponding hash value

should be as small as possible. If the hash value is

expressed in binary format, each bit can be only 0 or 1.

Therefore, the ideal diffusion effect should be that any tiny

change in the initial condition, control parameter or

plaintext leads to a 50% changing probability for each bit

of hash value. Four statistics used here are as follows: mean

changed bit number B, mean changed probability P, stan-

dard deviation of the changed bit number DB and standard

deviation DP. They are defined as: Mean changed bit

number: B ¼ 1
N

PN
i¼1 Bi; Mean changed probability:

P ¼ ðB=lÞ � 100%; Standard deviation of the changed bit

number: DB ¼
ffi

1
N�1

PN
i¼1 ðBi � BÞ2

q

; Standard deviation:

DP ¼
ffi

1
N�1

PN
i¼1 ðBi=l� PÞ2 � 100%

q

, where N is the

total number of tests, l is the length of the final hash value

and Bi denotes changed bit number in the ith test.

The diffusion and confusion test is performed as fol-

lows: a paragraph of message is randomly chosen and the

corresponding hash value is generated. Then a bit in the

message is randomly selected and toggled, and a new hash

value is obtained. Finally, two hash values are compared

and the number of hanged bit is counted as Bi. This test is

performed N times, and the corresponding distribution of

changed bit number is shown as Fig. 7a, b, where

N = 2048.

It can be seen from Fig. 7 a, b that the maximum

changed bit number is 84 and the minimum is 46. It shows

a good diffusion effect of the improved hash algorithm.

The same tests on the algorithm with N = 256, 512,

1,024 and 2,048 have also been performed. Under the

condition that 1 bit is changed at each time, the corre-

sponding values ofB, P, DB and DP are obtained as shown

in Table 3.

Fig. 7 Distribution of changed bit number: a Plot of Bi, b Histogram

of Bi

Fig. 6 Hash values under different conditions

398 Neural Comput & Applic (2013) 22:391–402

123

Based on the analysis of the data in Table 3, we can

draw the conclusion: the mean changed bit number B and

the mean changed probability P are both very close to the

ideal value 64-bit and 50%. DB and DP are very little,

which indicates the capability for diffusion and confusion

is very stable. The statistical effect guarantees that attacker

cannot carry out statistical attack.

4.5 Analysis of collision resistance

We have performed the following test to conduct quanti-

tative analysis on collision resistance: first, the hash value

for a paragraph of message randomly chosen is generated

and stored in ASCII format. Then a bit in the paragraph is

selected randomly and toggled and thus a new hash value is

then generated and stored in the same format.

Two hash values are compared, and the number of

ASCII characters with the same value at the same location

in the hash value, namely the number of hits, is counted. A

plot of the distribution of the number of hits is given in

Fig. 8. As seen from Fig. 8, there are 4 tests to hit twice,

and 124 tests to hit once, while in 1920 tests, no hit occurs.

The maximum number of equal characters at the same

location in two hash values is only 4.

Moreover, the absolute difference of two hash values is

calculated using the formula: d ¼
PN

i¼1 tðeiÞ � tðe0iÞ
�
�

�
�,

where ei and e
0
i are the ith ASCII character of the original

and the new hash values, respectively, and the function tð�Þ
converts the entries to their equivalent decimal values. This

kind of collision test is performed 2,048 times. The max-

imum, minimum, mean and mean/character values of d are

listed in Table 4. The simulation result indicates that the

sensitivity property of hash value is perfect that the abso-

lute difference/character in the final hash value corre-

sponding to any least difference of message or key will

always wave around the theoretical value 85.3333, which is

calculated as follows: if two hash values consist of inde-

pendent and uniformly distributed random sequence,

respectively, namely or e
0
i has equal probability to be one

integer of {0, 1, 2, 3,…, 254, 255}, and then the mean

absolute difference/character is 1/3 9 256 = 85.3333.

4.6 Analysis of meet-in-the-middle resistance

Meet-in-the-middle attack means to find a contradiction

through looking for a suitable substitution of any middle

plaintext block. For instance, M = (M1,…,Mi,…,Mp)

(i = 2, 3,…,p-1), the expected contradicted one is

M
0 ¼ ðM1; . . .;M

0

i; . . .MpÞ. That is, the attack process is just

to replace Mi with M
0
i and keep the final hash value H(M)

unchanged. The corresponding simulation experiment is

implemented as follows: replace the middle 512-bit mes-

sage block Mi: ‘‘y, Chongqing University runs a graduate

school and offers a wide’’ by the random message block

named M
0
i ‘‘College of William and Mary is the second

oldest college in USA’’. The associated hash values of the

original message OM and replaced message RM in

Table 3 Statistics of number of changed bit

N N = 256 N = 512 N = 1024 N = 2048 Mean

B 63.6797 64.0293 64.0254 63.9756 63.9275

P(%) 49.7498 50.0229 50.0198 49.9809 49.9433

DB 5.6429 5.7404 5.7115 5.8411 5.7340

DP(%) 4.4085 4.4847 4.4621 4.5634 4.4797

Fig. 8 Distribution of the number of ASCII characters with the same

value at the same location in the hash value Fig. 9 Hash values under meet-in-the-middle resistance

Table 4 Absolute difference d of two hash values

Absolute

difference

Maximum Minimum Mean Mean/

character

Values 2149 603 1319.5 82.4691

Neural Comput & Applic (2013) 22:391–402 399

123

hexadecimal formats from the experiments are described in

the following, followed by the number of different bits

between OM and RM and the corresponding binary

sequences depicted in Fig. 9.

OM: C987C9B5A64CA45E278AED6127FF39FB

RM: 1162B104F44A1991E13F911E104596A6 (76)

It follows from Fig. 9 that RM is obviously different

from OM. In particular, there are 76-bit difference between

OM and RM. Thus, the algorithm is against the attack.

A careful observation of Fig. 10 describing a random

message block Mi (i = 1, 2,…, p) chosen from the message

reveals that the message block Mi denoted by the sequence

number will be divided into 64 sub-blocks m
0

i;jði ¼
1; 2; . . .; p; j ¼ 1; 2; . . .; 64Þ and the ASCII code values and

the order ‘‘i, j’’ of every sub-block are set as the iteration

times and the parameter Q ¼ i
pþ

j
64

� �.
2 of the PWLCM

to generate the corresponding 64 decimal fractions denoted

as mi,j (j = 1, 2,…,64), and after processed in Block Hash,

Ti is generated, and through Nonlinear Computation, the

elements of hash value about message block Mi are

obtained. Any replacement definitely results in different

ASCII code values and finally different hash value. Thus,

this keeps the algorithm secure against this kind of attack.

Therefore, the improved algorithm is immune from

meet-in-the-middle attack.

4.7 Comparison with other algorithms

Recently, some hash functions based on chaotic neural

network [14, 15] and some hash functions based on chaos

[4–11] have been presented. We choose some excellent

algorithms from [7, 11, 14, 15] and the classical MD5 [5]

as representatives and carry out the corresponding

comparisons.

Table 5 The comparison of statistical performance

Statistics Algorithms N = 256 N = 512 N = 1024 N = 2048 Mean

B MD5 [5] 63.68 63.92 63.98 64.03 63.90

Deng’s [7] 63.97 63.52 63.73 63.84 63.77

Wang’s [11] 63.893 63.900 64.009 64.153 63.989

Xiao’s [14] 63.9453 64.1152 64.2666 64.0098 64.0842

Li’s [15] 63.7773 63.5605 63.5439 63.8076 63.6723

This paper 63.6797 64.0293 64.0254 63.9756 63.9275

Pð%Þ MD5 [5] 49.75 49.93 49.98 50.02 49.92

Deng’s [7] 49.98 49.63 49.79 49.88 49.82

Wang’s [11] 49.917 49.922 50.007 50.119 49.991

Xiao’s [14] 49.96 50.09 50.21 50.01 50.0675

Li’s [15] 49.8260 49.6567 49.6437 49.8497 49.7440

This paper 49.7498 50.0229 50.0198 49.9809 49.9433

DB MD5 [5] 5.38 5.78 5.73 5.66 5.64

Deng’s [7] 6.26 5.98 5.92 5.88 6.01

Wang’s [11] 5.367 5.491 5.671 5.767 5.574

Xiao’s [14] 5.4012 5.5437 5.7882 5.7236 5.6142

Li’s [15] 5.3915 5.6264 5.7143 5.7563 5.6221

This paper 5.6429 5.7404 5.7115 5.8411 5.7340

DPð%Þ MD5 [5] 4.20 4.36 4.48 4.42 4.37

Deng’s [7] 4.89 4.67 4.63 4.59 4.70

Wang’s [11] 4.193 4.289 4.430 4.506 4.355

Xiao’s [14] 4.22 4.33 4.52 4.47 4.385

Li’s [15] 4.2121 4.3956 4.4643 4.4971 4.3923

This paper 4.4085 4.4847 4.4621 4.5634 4.4797

Fig. 10 Meet-in-the-middle

attack

400 Neural Comput & Applic (2013) 22:391–402

123

4.7.1 Comparison of statistics performance

The corresponding statistical data from [7, 11, 14, 15] and

MD5 [5] is tabulated in Table 5. The statistical data of this

paper is also listed in Table 5 for convenient comparison. A

careful observation of Table 5 shows that the statistical

performance of all the hash algorithms is close to the ideal

performance. It is worth to note that the mean changed bit

number B and mean changed probability Pð%Þ are the

closest statistics to theoretical ideal values 64 bits and 50%,

respectively, among all the proposed algorithms except

Wang’s algorithm [11], which means our improved algo-

rithm can strongly resist statistical attacks.

4.7.2 Comparison of collision performance

The absolute difference d of the algorithms is obtained

from [7, 11, 14, 15] and MD5 [5], which is tabulated in

Table 6. As we know, the closer the absolute difference of

each character is to the ideal value 85.3333, the stronger

the collision resistance is. According to that, as shown in

Table 6, we get the conclusion that the improved algorithm

possesses a stronger collision resistance than all the pro-

posed algorithms except Wang’s algorithm [11]. The

comparison of maximum number of equal characters at the

same location in the hash value is shown in Table 7. All the

maximum numbers in Table 7 of the proposed hash algo-

rithm are only two, which means they all possess a strong

collision resistance.

5 Conclusion

Reconsidering our past novel hash algorithm based on

chaotic neural network, we present equal-length and

unequal-length forgery attacks against its security in detail

and then propose a significantly improved approach by

utilizing a method of complicated nonlinear computation to

enhance the security of the original hash algorithm in this

paper. Theoretical analysis and computer simulation indi-

cate that the improved algorithm can completely resist the

two kinds of forgery attacks and also shows other better

performance than the original one, such as better message

and key sensitivity, statistical properties, which can satisfy

the performance requirements of a more secure hash

function.

Acknowledgments Our sincere thanks go to the anonymous

reviewers for their valuable comments. The work described in this

paper was fully funded by Project No. CDJZR10180003 supported by

the Fundamental Research Funds for the Central Universities.

References

1. Wong KW (2003) A combined chaotic cryptographic and hashing

scheme. Phys Lett A 307:292–298

2. Kwok HS, Tang WKS (2005) A chaos-based cryptographic Hash

function for message authentication. Int J Bifur Chaos

15:4043–4050

3. Xiao D, Liao XF, Deng SJ (2005) One-way Hash function con-

struction based on the chaotic map with changeable-parameter.

Chaos Solitons Fractals 24:65–71

4. Zhang JS, Wang XM, Zhang WF (2007) Chaotic keyed Hash

function based on feedforward–feedback nonlinear digital filter.

Phys Lett A 362:439–448

5. Wang Y, Liao XF, Xiao D, Wong KW (2008) One-way hash

function construction based on 2D coupled map lattices. Inform

Sci 178:1391–1406

6. Xiao D, Liao XF, Deng SJ (2008) Parallel keyed hash function

construction based on chaotic maps. Phys Lett A 372:4682–4688

7. Deng SJ, Li YT, Xiao D (2009) Analysis and improvement of a

chaos-based hash function construction. Commun Nonlinear Sci

Numer Simulat 15:1338–1347

8. Yang HQ, Wong KW, Liao XF et al (2009) One-way hash

function construction based on chaotic map network. Chaos

Solitons Fractals 41:2566–2574

9. Akhshani A, Behnia S, Akhavan A et al (2009) Hash function

based on hierarchy of 2D piecewise nonlinear chaotic maps.

Chaos Solitons Fractals 42:2405–2412

Table 6 The comparison of

absolute differences d of two

hash values

Absolute difference Maximum Minimum Mean Mean/character

MD5 [5] 2047 590 1304 81.5

Deng’s [7] 2206 583 1399.8 87.49

Wang’s [11] 2064 655 1367 85.44

Xiao’s [14] 1952 605 1227.8 76.7375

Li’s [15] 2220 687 1432.1 89.51

This paper 2149 603 1319.5 82.4691

Table 7 The comparison of maximum number of equal characters at the same location in the hash value

Algorithms MD5 [5] Deng’s [7] Wang’s [11] Xiao’s [14] Li’s [15] This paper

Values 2 2 2 2 2 2

Neural Comput & Applic (2013) 22:391–402 401

123

10. Xiao D, Shih FY, Liao XF (2010) A chaos-based hash function

with both modification detection and localization capabilities.

Commun Nonlinear Sci Numer Simulat 15:2254–2261

11. Wang Y, Wong KW, Xiao D (2011) Parallel hash function

construction based on coupled map lattices. Commun Nonlinear

Sci Numer Simulat 16:2810–2821

12. Lian SG, Sun JS, Wang ZQ (2006) Secure hash function based on

neural network. Neurocomputing 69:2346–2350

13. Liu GL, Shan L, Dai YW et al (2006) One-way hash function

based on chaotic neural network. Acta Phys Sin 55:5688–5706 (in

Chinese)

14. Xiao D, Liao XF, Wang Y (2009) Parallel keyed hash function

construction based on chaotic neural network. Neurocomputing

72:2288–2296

15. Li YT, Deng SJ, Xiao D (2011) A novel Hash algorithm con-

struction based on chaotic neural network. Neural Comput Applic

20:133–141

16. Guo W, Wang XM, He DK et al (2009) Cryptanalysis on a

parallel keyed hash function based on chaotic maps. Phys Lett A

373:3201–3206

17. Xiao D, Peng WB, Liao XF et al (2010) Collision analysis of one

kind of chaos-based hash function. Phys Lett A 374:1228–1231

402 Neural Comput & Applic (2013) 22:391–402

123

	Improvement and performance analysis of a novel hash function based on chaotic neural network
	Abstract
	Introduction
	Original hash algorithm description and its security analysis
	Description of the original hash algorithm
	The chaotic maps
	The chaotic neural network
	The original hash algorithm

	Theoretical analysis of forgery attack

	Improvement of the original hash algorithm
	Performance analysis
	Analysis of forgery attack resistance
	Statistical distribution of hash value
	Sensitivity of hash value to the message and secret keys
	Statistical analysis of diffusion and confusion
	Analysis of collision resistance
	Analysis of meet-in-the-middle resistance
	Comparison with other algorithms
	Comparison of statistics performance
	Comparison of collision performance

	Conclusion
	Acknowledgments
	References

