
404 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 47, NO. 3, JUNE 2017

Continuous Authentication With Touch Behavioral
Biometrics and Voice on Wearable Glasses

Ge Peng, Gang Zhou, Senior Member, IEEE, David T. Nguyen, Xin Qi, Qing Yang,
and Shuangquan Wang

Abstract—Wearable glasses are on the rising edge of develop-
ment with great user popularity. However, user data stored on
these devices bring privacy risks to the owner. To better protect the
owner’s privacy, a continuous authentication system is needed. In
this paper, we propose a continuous and noninvasive authentication
system for wearable glasses, named GlassGuard. GlassGuard dis-
criminates the owner and an impostor with behavioral biometrics
from six types of touch gestures (single-tap, swipe forward, swipe
backward, swipe down, two-finger swipe forward, and two-finger
swipe backward) and voice commands, which are all available dur-
ing normal user interactions. With data collected from 32 users on
Google Glass, we show that GlassGuard achieves 99% detection
rate and 0.5% false alarm rate after 3.5 user events on average
when all types of user events are available with equal probability.
Under five typical usage scenarios, the system has a detection rate
above 93% and a false alarm rate below 3% after less than five
user events.

Index Terms—Behavioral biometric, continuous authentication,
noninvasive, voice authentication, wearable glasses.

I. INTRODUCTION

W EARABLE glasses have attracted considerable atten-
tion over the years. More and more large companies

are investing money on wearable glasses. Now, more than
20 wearable glasses are under production or development [1],
including Google Glass, Microsoft HoloLens, Facebook Ocu-
lus Rift, Epson Moverio, Sony SmartEyeglass, Intel Radar Pace,
and Osterhout Design Group (ODG) R-7. The hands-free nature
and augmented reality capability of wearable glasses open up
new opportunities for human–machine interactions. Wearable
glasses are going to become an important part of our daily lives.
A recent study by Juniper Research shows that more than 12 mil-
lion consumer smart glasses will be shipped in 2020, increasing
from less than one million in 2016 [2].

Manuscript received February 24, 2016; revised June 23, 2016, September 4,
2016, and September 18, 2016; accepted October 10, 2016. Date of publication
November 24, 2016; date of current version May 15, 2017. This work was
supported in part by the U.S. National Science Foundation under Grant CNS-
1250180 and Grant CNS-1253506 (CAREER). This paper was recommended
by Guest Editor W. Leister.

G. Peng, G. Zhou, D. T. Nguyen, Q. Yang, and S. Wang are with
the College of William and Mary, Williamsburg, VA 23185 USA (e-mail:
gpeng@cs.wm.edu; gzhou@cs.wm.edu; dnguyen@cs.wm.edu; qyang@cs.
wm.edu; swang10@cs.wm.edu).

X. Qi was with the College of William and Mary, Williamsburg, VA 23188
USA. He is now with the NSX group of WMware Inc., Palo Alto, CA 94304
USA (e-mail: xqi@email.wm.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/THMS.2016.2623562

When using these wearable glasses, some personal informa-
tion is stored on the devices for easy revisit, such as contacts
information, location data, messages, e-mails, personal photos
and videos, account information, and much more. When the
owner takes off his/her smart glasses and puts them aside, for
example, when the device is charging or when the owner needs
to go to the restroom, an impostor will certainly have the chance
to grab the device and access the owner’s private information. In
addition to privacy leakage of the owner, an imposter can also
send e-mails/messages to any contact stored on the glasses in
the guise of the owner, bringing privacy threats to the owner’s
friends, family, and colleagues.

To protect user privacy on wearable glasses, a continuous
authentication system is more suitable than a one-time authen-
tication system. A one-time user authentication system only
authenticates a user when he/she tries to unlock the device, typ-
ically by asking the user to input a password or PIN, a graphical
pattern, or a sequence of touch gestures (a user is authorized
as long as the right gesture types are performed in the correct
order). However, the owner may forget to lock the device right
after using the device. There are mechanisms that automati-
cally lock the device upon an event, such as screen timeout.
Google Glass has on-head detection, which automatically locks
the device when a user takes off the glass. However, on-head
detection on Google Glass is not reliable. It does not work when
the glass is not worn in the perfect position. It also does not
work with Google Glass frames, which are customized for users
in need of vision correction. More importantly, even if the de-
vice is locked, a one-time authentication system can easily be
broken into by peeking [3]–[5] or smudge attacks [6], [7]. Alter-
natively, wearable glasses can automatically pair with another
trusted device, such as the owner’s smartphone, to perform au-
thentication. However, successful pairing only indicates that the
owner is nearby. It does not necessarily mean that the current
user is the owner. A one-time authentication solution does not
work well. Therefore, a continuous authentication system that
continuously authenticates the user during the whole time of
user operation is needed to better protect user privacy.

Touch behavioral biometrics have been demonstrated to be
effective in continuous user authentication on smartphones
[8]–[10]. The hypothesis is that different users have different
characteristics when interacting with smartphones, and these
behavioral biometrics are difficult to fake. We believe that the
same is also true on wearable glasses. However, due to user inter-
action differences between wearable glasses and smartphones,

2168-2291 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

PENG et al.: CONTINUOUS AUTHENTICATION WITH TOUCH BEHAVIORAL BIOMETRICS AND VOICE ON WEARABLE GLASSES 405

systems proposed on smartphones cannot be applied directly
on wearable glasses. First, users hold their smartphones with
hand(s) but wear smart glasses on their head. Motion sensors,
such as accelerometers and gyroscopes, respond to user touch
events in a different pattern on wearable glasses. As a result,
features working on smartphones may not work well on wear-
able glasses. Second, wearable glasses only have a touchpad
with no virtual keyboard support. Keystroke biometric infor-
mation [11] is not available on wearable glasses. Third, wear-
able glasses touchpad is much smaller than smartphone touch
screen. Thus, the resolution of biometric information on wear-
able glasses, such as coordinates, is much lower than that on
smartphones. Feature discriminability needs to be examined on
wearable glasses. Finally, different touch gestures are used on
wearable glasses. For example, there are no pinch gestures on
Google Glass. To zoom in or out, a two-finger swipe forward or
backward gesture is used. Thus, new features that are specific
to wearable glasses need to be explored.

In this paper, we study the performance of using touch ges-
tures and voice commands for continuous user authentication
on wearable glasses with the example of Google Glass. We
consider both touch gestures and voice commands, as they are
two major channels for user interaction on wearable glasses.
An authentication system based only on touch biometrics can
be easily circumvented by using voice commands. Similarly, a
system purely based on voice authentication does not always
work, as voice commands are not available all the time. A user
may be in a situation when speaking is not appropriate, e.g., at
a meeting with quiet surroundings. Although touch-behavioral-
based authentication [8]–[10] and voice-based authentication
[12]–[14] are two well-studied fields, our contributions lie in
that we study them in a new platform, and we integrate these
two dimensions to accommodate various scenarios.

In our system, we use both touch behavioral features extracted
from touchpad data and corresponding sensor data during touch
gestures and voice features extracted from user-issued voice
commands. These features can be easily extracted in the back-
ground when users normally interact with wearable glasses.
It does not require extra efforts from users. Thus, our system
works in a noninvasive way. Note that in this paper, we fo-
cus on one specific model of wearable glasses: Google Glass.
However, the method introduced and the authentication system
framework proposed in this paper also apply to other wearable
glasses with a touch panel and built-in microphone and speak-
ers, such as SiME Smart Glasses [15], Recon Jet [16], and Vuzix
M300 [17].

We summarize our contributions as follows.
1) We conduct a user study on Google Glass and collect user

interaction data from 32 human subjects. The data we
collect include touch event data with corresponding sensor
readings, and voice commands. Six types of gestures are
covered in the study: single-tap, swipe forward, swipe
backward, swipe down, two-finger swipe forward, and
two-finger swipe backward.

2) With the data collected, we define and extract 99 behav-
ioral features for one-finger touch gestures, 156 features
for two-finger touch gestures, and 19 voice features for
user voice commands. We evaluate the discriminability

of these features with one-class support vector machine
(SVM) model for user authentication purpose on Google
Glass.

3) We design a simple but effective online user authentication
system for wearable glasses, namely GlassGuard, which
works in a continuous and noninvasive manner. Glass-
Guard employs a mechanism adapted from threshold ran-
dom walking (TRW) to make a decision from multiple
user events only when it is confident. Our preliminary
results indicate that it achieves high accuracy with accept-
able delay.

The remainder of this paper is organized as follows. First, we
introduce the proposed features and evaluate the features with
real user data in Section II. Then, in Section III, we present our
continuous authentication system, GlassGuard. We evaluate the
system performance in Section IV and discuss related work in
Section V. Finally, we draw our conclusions and discuss future
work in Section VI.

II. FEATURES FOR CONTINUOUS USER AUTHENTICATION

In this section, we first introduce all the features that we are
going to study. Then, we describe a user study that we have
carried out to collect real user interaction data. With the data
collected, we evaluate the performance of these features and
conduct feature selection.

A. Key User Events

Common touch gestures on Google Glass are as follows:
single-tap to select an item, swipe backward (forward) to move
left (right) through items, swipe down to go back, and two-finger
swipe forward (backward) to zoom in (out).

With a built-in microphone and speaker, Google Glass ac-
cepts voice commands as user inputs, such as “OK, Glass! Take
a picture!” This offers a hands-free interaction that can be ex-
tremely useful for people with disabilities and for wearers with
both hands busy.

When designing features, we focus on the above six types of
touch gestures and all voice commands.

B. Proposed Features

We propose different feature sets for one-finger touch ges-
tures, two-finger touch gestures, and voice commands. Our fea-
tures for one-finger touch gestures are proposed based on several
existing works on smartphones [8], [18], [19], as here we only
want to obtain a list of potential features. Later, we conduct
feature selection to find the best features that work on Google
Glass.

1) Features for One-Finger Touch Gestures: We divided our
features for touch gestures into two categories: 1) touch-based
features, which are features extracted from touchpad data; and 2)
sensor-based features, which are features extracted from sensor
readings during touch gestures. Fig. 1 gives an example of a
one-finger touch gesture along the timeline. Table I lists all 18
touch-based features for a one-finger touch gesture. Note that
each touch gesture generates multiple records in the raw touch
data, as the touchpad is continuously sampling. The statistics

406 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 47, NO. 3, JUNE 2017

Fig. 1. Example of a one-finger touch gesture.

below, such as minimum, maximum, and median, are calculated
from multiple samples of one touch gesture starting at time tstart
and ending at time tend .

Let x, y, and z be sensor readings (accelerometer,
or gyroscope, or magnetometer) in each axis and net =√

x2 + y2 + z2 . Table II lists all sensor-based features during
a one-finger touch gesture.

Let φmax be the maximum accelerometer readings during a
touch event and tmax be the corresponding timestamp. Consid-
ering a 100-ms time window before a touch gesture, let tbefore
be the center of the time window and φbefore be the average
net value of accelerometer readings. Considering a 100-ms time
window after a touch gesture, let tafter be the center of the time
window and φafter be the average net value of accelerometer
readings. Then, in Table II, we list the sensor-based features.
The following features in Table II are calculated as

acc after before net = φafter − φbefore (1)

acc mean before net = acc mean net − φbefore (2)

acc max before net = acc max net − φbefore (3)

acc ndt before after =
tafter − tbefore

φafter − φbefore
(4)

acc ndt max after =
tafter − tmax

φafter − φmax
(5)

acc time to restore = tmin − tend (6)

where tmin is the time instance within a T2 = 200 ms time
window after a touch event when the sensor reading restores to
the average value before this touch event

tmin = arg min
tj ∈(te n d ,te n d +T2]

∣∣nettj
− φbefore

∣∣ . (7)

In order to save space, we only list the 27 features based on
accelerometer data. Features based on gyroscope and magne-
tometer are defined accordingly. In total, we have 81 sensor-
based features. We do not include frequency-domain features
here, as extracting frequency-domain features is energy hungry
and requires high computation capability. Later, in Section IV,
we show that our system achieves high accuracy with only these
time-domain features.

2) Features for Two-Finger Touch Gestures: Two-finger
touch gestures have two contact points on the touchpad. For each
contact point, we define a set of touch-based features presented
above for one-finger touch gestures, for example, duration
for each contact point (denoted as duration1 , duration2) and

TABLE I
TOUCH-BASED FEATURES

TABLE II
SENSOR-BASED FEATURES

distance for each contact point (denoted as distance1 , distance2).
Moreover, the relative information between the two contact
points may also be useful for user authentication. For two-finger
touch gestures, we design the following 29 touch-based features
additionally.

1) duration: the duration of a touch gesture. It may be differ-
ent from both duration1 and duration2 when the first and
last records of a touch gesture belong to different fingers.

2) Mean, max, min, median, and standard deviation of dis-
tances (or distances along the x-axis, or distances along
the y-axis) between two contact points.

PENG et al.: CONTINUOUS AUTHENTICATION WITH TOUCH BEHAVIORAL BIOMETRICS AND VOICE ON WEARABLE GLASSES 407

3) q1_diff_dist, q2_diff_dist, q3_diff_dist: The 25%, 50%,
and 75% quartiles of distances between two contact
points.

4) first_diff_dist, last_diff_dist: The distance between the
first (last) contact points of two fingers.

5) The difference between the mean (or maximum, or min-
imum) pressure values for two fingers during a touch
gesture.

6) The maximum difference between pressure values of two
fingers during a touch gesture.

7) The minimum difference between pressure values of two
fingers during a touch gesture.

8) The difference between speeds (or speeds along the x-
axis, or speeds along the y-axis) of two fingers.

Sensor-based features for two-finger touch gestures are the
same as those for one-finger touch gestures. Therefore, we have
proposed 156 features in total for two-finger touch gestures: 81
from sensor data and 75 from touch data.

3) Features for Voice Commands: For voice features, we use
Mel-frequency cepstral coefficients (MFCC). MFCC is one of
the most effective and widely used features in speech processing
[20]. An audio file is recorded from each voice command. The
audio file is then divided into frames with a sliding window of
25 ms and a step size of 10 ms. For each frame, we extract
20 coefficients. The first coefficient indicates the direct current
of the voice signal. It does not convey any information about
the spectral shape. Therefore, we discard the first coefficient
[14] and use the second to the 20th coefficients to construct
an MFCC vector. Before extracting MFCC vectors, we apply
silence removal [21] to the audio.

C. User Study

In order to evaluate the features listed above, we conduct a
user study to collect real user data1.

To obtain all the touch event data, we use the “getevent” tool
[22]. With this tool, we are able to collect raw touch data (includ-
ing coordinates of contact points and pressure) at background
without user perception.

To obtain sensor readings during a touch event, we write a
Google Glass application that samples sensor data with system
API. The application runs as a background service. It does not
interrupt users’ normal operations. The application logs down
data from all three inertial sensors (accelerometer, magnetome-
ter, and gyroscope) with a sampling rate of 200, 200, and 100,
respectively.

Google Glass automatically records user commands and saves
them locally. To analyze these voice commands, we pull these
files out from Google Glass with adb [23] tool.

Using the tools introduced above, we conducted a user study
and collected interaction data from 32 subjects. All of the
participants are college students, comprising 13 females and
19 males. The data of each user are collected from multiple ses-
sions in a 2-h time frame. In order to collect as many interested
user events as possible, a user is asked to perform a specific task

1This user study was approved by the Protection of Human Subject Committee
at the College of William and Mary.

TABLE III
AMOUNT OF THE DATA COLLECTED

Touch data

Mean Max Min Sum

of single-tap 466.3 576 344 14 281
of swipe forward 629.0 1031 484 20 127
of swipe backward 599.7 862 433 19 190
of swipe down 483.0 615 354 15 457
of two-finger swipe forward 549.3 919 353 17 576
of two-finger swipe backward 534.3 722 341 17 098

Sensor data

Accelerometer (in MB) 45 66 35 1454
Gyroscope (in MB) 50 73 38 1599
Magnetometer (in MB) 23 33 18 733

Audio (voice commands)

Mean Max Min Sum
of audio 39.06 52 17 1250
Length of audios (in seconds) 2.28 15 0.95 2855.6

in each session. There are seven tasks in the user study and each
task is repeated multiple times:

1) swipe to view the application list one by one;
2) swipe to view the options in the settings menu one by one;
3) take pictures with touch gestures;
4) take pictures with voice commands;
5) Google search with voice commands;
6) delete pictures one by one;
7) use a customized application which asks the user to per-

formance a series of randomly selected touch gestures.
We carried out our user study on a Google Glass with sys-

tem version XE 18.11. All data are collected in the background,
while users are standing and interacting with Google Glass nor-
mally. Table III shows the amount of the data collected.

D. Feature Selection

We have proposed a set of features for each touch gesture.
However, not all of them perform well in user authentication.
We conduct feature selection to remove poor features and select
features with high discriminability. By doing this, we also reduce
the number of features needed, cutting down the computation
cost of the online authentication system. The algorithm we use
is sequential forward search [24], and the classification equal
error rate (EER) is used as the criterion function.

Users have different characteristics when interacting with
Google Glass. Some features work for all users as everyone is
different in those aspects. Some features only work for a specific
user because the owner has his (her) own peculiarity discrim-
inating himself (herself) from others. Therefore, we conduct
user-specific feature selection: repeat the feature selection pro-
cess 32 times, each time for a different user. Fig. 2 shows the
performance ranking of these features when only five features
are used in each model. The number on the left side of a bar
indicates the rank of a feature. The number on the right side of
a bar shows the number of models which have used this feature,
followed by the name of the feature. We have the following ob-
servations from the figures. First, max_pressure performs well

408 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 47, NO. 3, JUNE 2017

Fig. 2. Best 15 features overall when five best features are used in the model for each user. The number on the left side of a bar indicates the rank of the feature.
The number on the right side of a bar shows the number of models which have used this feature, followed by the name of the feature.

for all one-finger touch gestures. Second, the minimum dis-
tance between two fingers, min_diff_dist, is the best feature for
two-finger touch gestures. The maximum distance between two
fingers, max_diff_dist, is also among the tops. Third, accelerom-
eter features and magnetometer features generally rank higher
than gyroscope features. This also indicates that the device ro-
tation is not as obvious as acceleration during touch events.

Comparing our features to those used on smartphones
[8]–[10], [19], we have the following findings.

1) The touch size (area covered by fingertips) is an effective
feature on smartphones. However, this information is not
available on Google Glass.

2) The speed features of swipe gestures perform well on
Google Glass, same as on smartphones. An exception on
Google Glass is the swipe down gesture. This is because
the vertical length of the touchpad here is much smaller
than that on smartphones.

3) Two-finger swipe gestures are new gestures on Google
Glass. Although there are also two-finger gestures (e.g.,
pinch) on smartphones, they have totally different defini-
tions. Thus, different features are used. For example, the
distance between two fingers are not useful for pinch ges-
tures on smartphones. However, they perform pretty well
for two-finger swipe gestures on Google Glass.

III. GLASSGUARD SYSTEM

In this section, we present the framework of our online au-
thentication system, which we call GlassGuard. Fig. 3 shows
the architecture of the GlassGuard authentication system. There
are five modules in the system. The Feature Extraction module
calculates a set of features determined by offline training. In the
following part of this section, we introduce each of the other
four modules.

Fig. 3. System architecture of GlassGuard.

A. Event Monitor

The Event Monitor continuously monitors all user events
when the screen is ON, including touch events and voice com-
mands. If it is a touch event, the Event Monitor forwards the
touch data and the corresponding sensor data for feature extrac-
tion. If it is a voice command, the Event Monitor forwards the
audio file for feature extraction.

The Event Monitor also communicates with the Power Con-
trol module. On one hand, it reports occurrences of user events
to the Power Control module. On the other hand, it gets instruc-
tions from the Power Control module about whether it should
forward data for feature extraction or not. The details are ex-
plained in Section III-D.

B. Classifiers

After features are extracted, they are passed to one of the clas-
sifiers. To achieve high accuracy, we train one classifier for each
gesture type and for voice command, respectively. There are
seven classifiers in the system: T-classifier for single-tap ges-
tures, SF-classifier for Swipe Forward gestures, SB-classifier
for Swipe Backward gestures, SD-classifier for Swipe Down

PENG et al.: CONTINUOUS AUTHENTICATION WITH TOUCH BEHAVIORAL BIOMETRICS AND VOICE ON WEARABLE GLASSES 409

gestures, TFSF-classifier for Two-Finger Swipe Forward ges-
tures, TFSB-classifier for Two-Finger Swipe Forward gestures,
and VC-classifier for Voice Commands.

To do user authentication, a classifier only needs to tell
whether or not an observation belongs to the owner. In our
system, an observation can be either a voice command or a
touch event belonging to any of the aforementioned gesture
types. In reality, a Google Glass only has observations from
its owner, rather than impostors, for training. Thus, we use one-
class SVM [25] as the model to do classification. We select SVM
because it provides high accuracy, and it is effective in high-
dimensional spaces and flexible in modeling diverse sources of
data [26], [27]. SVM has been demonstrated to perform well in
detecting user patterns in various applications, such as mouse
movement pattern [28], voice pattern [29], motion pattern [30],
user-generated network traffic pattern [31], and so on.

1) Touch Gesture Classifiers: We train the classifiers via ten-
fold cross validation following the training routine suggested in
the LIBSVM website [32]. To train a classifier for gesture type i,
we divide all feature vectors of gesture type i into positive sam-
ples and negative samples. Positive samples are feature vectors
from the user currently treated as the owner. Negative samples
are feature vectors from all other users. We randomly divide
all positive samples into k (k = 10) equal-size subsets and do
the same for negative samples. Then, we train a one-class SVM
model with k − 1 positive subsets, leaving one subset of posi-
tive samples for testing. Then, we test the same model with one
subset of negative samples. We repeat the training and testing
steps until each subset of positive samples and each subset of
negative samples are used exactly once for testing. With all the
decision values calculated from the SVM models, we plot the
receiver operating characteristic (ROC) curve, which is insen-
sitive to class skew [33]. The misprediction ratio of all positive
samples is false reject rate (FRR) and the misprediction ratio of
all negative samples is false accept rate (FAR).

2) VC-Classifier: Classification of voice features (MFCC
vectors) is done in the same way as classification for touch ges-
tures. However, the FAR and FRR are calculated in a different
way. To get the EER for the voice command classifier, we treat
all MFCC vectors extracted from the same audio file as a whole.
If the percentage of misclassified MFCC vectors in an audio
file is greater than a threshold p, then we think this audio file is
misclassified and treat this as one error. The FAR and FRR are
calculated as percentage of misclassified audio files in owner’s
data and in other users’ data, respectively. We do this because it
is normal to treat one user voice command as one user event. A
threshold p is used because the classification results of MFCC
vectors are noisy as the audio contains background sound and
notification sound of the glass system. The value of p can be
experimentally decided.

C. Aggregator

GlassGuard has seven classifiers. All classifiers make predic-
tions independently. For each user event, we obtain one clas-
sification result. Once a classification result is generated, it is
passed to the Aggregator module. To improve the accuracy of

Fig. 4. Processing flow of the Aggregator module.

the authentication system, the Aggregator combines multiple
classification results, which may come from different classi-
fiers, and makes one final decision: whether or not the current
wearer is the owner. In order to do that, we need to solve two
problems: 1) how to combine multiple classification results; and
2) when to make decisions.

In the GlassGuard system, the Aggregator employs a mecha-
nism adapted from TRW to make decisions when and only when
it is confident. TRW is an online detection algorithm that has
been successfully used to detect port scanning [34], botnets [35],
and spam [36]. With TRW, predictions are made based on the
likelihood ratio, which is the conditional probability of a series
of classification results given the FAR and FRR of the classi-
fier. When the likelihood ratio falls below a lower threshold,
the system identifies the current user as an impostor. When the
likelihood ratio reaches an upper threshold, the system identifies
the current user as the owner. If the likelihood ratio is between
the two thresholds, the system postpones making a prediction.
In this paper, we choose TRW because it is simple but performs
fast and accurately. However, TRW was originally designed to
combine multiple results from a single classifier. In our system,
we have multiple classifiers with different FARs and FRRs. We
need to adapt TRW to accommodate multiple classifiers. Fig. 4
shows the processing flow.

Assume that there are M classifiers (M = 7 in our Glass-
Guard system). For classifier ck (1 ≤ k ≤ M), we have the
estimated FARck

and FRRck
. Suppose that at some point in

time, we have gathered n classification results from the M clas-
sifiers, denoted as Y = {Y ck

i |1 ≤ i ≤ n, 1 ≤ k ≤ M}, Y ck
i is

the ith classification result, and it is from classifier ck . Y ck
i = 1

means classifier ck predicts the event is from the owner. We
call it a positive classification result. Y ck

i = 0 means classifier
ck predicts the event is not from the owner, which we call a
negative classification result.

Let H1 be the hypothesis that the current user is the owner
and H0 be the hypothesis that the current user is an impos-
tor. Then, the Aggregator calculates the following conditional

410 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 47, NO. 3, JUNE 2017

probabilities:

P (Y ck
i = 0|H1) = FRRck

, P (Y ck
i = 1|H1) = 1 − FRRck

P (Y ck
i = 1|H0) = FARck

, P (Y ck
i = 0|H0) = 1 − FARck

.

With n classification results and the above conditional prob-
abilities for each classifier, the Aggregator calculates the likeli-
hood ratio

Θ(Y) =
n∏

i=1

P (Y ck
i |H0)

P (Y ck
i |H1)

. (8)

In practice, both FAR and FRR are smaller than 50%. We
have

P (Y ck
i = 0|H0)

P (Y ck
i = 0|H1)

=
1 − FARck

FRRck

> 1.

Similarly,

P (Y ck
i = 1|H0)

P (Y ck
i = 1|H1)

=
FARck

1 − FRRck

< 1

which means a negative classification result increases the value
of Θ(Y), while a positive classification result decreases the
value of Θ(Y).

When Θ(Y) ≥ η1 , the system takes hypothesis H0 (is an im-
postor) to be true. When Θ(Y) ≤ η2 , the system takes hypoth-
esis H1 (is the owner) to be true. A basic principle of choosing
values for η1 and η2 is [34]

η1 =
β

α
η2 =

1 − β

1 − α
(9)

where α and β are two user-selected values. α is the expected
false alarm rate (H0 selected when H1 is true) and β is the
expected detection rate (H0 selected when H0 is true) of the
whole system. The typical values are α = 1% and β = 99%.

D. Power Control

As with smartphones, energy consumption is an important
user concern on Google Glass. In addition, if the power con-
sumption of the system is too high, the temperature on the
surface of Google Glass can easily get very high [37]. This may
make users uncomfortable as well as slow down the system.
Therefore, while we aim to achieve high accuracy for the pro-
tection of the device owner’s privacy, we also want to reduce
the power consumption. In the GlassGuard system, the Power
Control module is designed to improve the energy efficiency of
the whole system. The basic idea is to pause feature extraction
and classification whenever the privacy risk becomes low and
restart those processes whenever the privacy risk reverts back to
high.

When to pause? In the GlassGuard system, the Power Control
module gets all decisions made by the Aggregator module and
communicates with the Event Monitor module. If a negative
decision (the current user is an impostor) is made by the Ag-
gregator, then the glass system needs to do something to restrict
access to the device, for example, lock the device and send an
alert to the owner. The specific strategy to take when an impos-
tor is detected is beyond the scope of this paper. Whenever a

positive decision (the current user is the owner) is made by the
Aggregator, the Power Control module instructs the Event Mon-
itor module to temporarily pause forwarding data for feature
extraction. As a result, data will not be processed by the Fea-
ture Extraction module or the classifiers. To save more energy,
when feature extraction is paused, the Event Monitor module
also stops sampling sensor data.

When to restart? After sending a pause instruction to the
Event Monitor module, the Power Control module starts a timer
T for checking restarting conditions. T is set to a short inter-
val, for example, 15 s. The Event Monitor module monitors all
user events all the time and keeps updating the Power Control
module with user activities. If there is no report of user events
from the Event Monitor before timer T expires, it is possible
that the user has been changed since the previous authentication
decision. The Power Control module restarts feature extraction
by instructing the Event Monitor module to continue forward-
ing data. As a result, feature extraction is enabled. The system
extracts features and does all the following processing begin-
ning from the next user event. If the Power Control module
receives a report of user events from the Event Monitor module
before timer T expires, it considers that the current user has
not been changed since the previous positive decision from the
Aggregator. The Power Control module does not restart feature
extraction. At the same time, the timer T is reset. The basic as-
sumption for this is that it is unlikely for the user to be changed
in 15 s. And even if this happens, the owner should be able to
instantly notice this as the owner was using the glass 15 s ago. In
real world, there are cases when the owner wants to share some-
thing on the glass screen with his/her friends. The owner takes
off the glass and passes it to his/her friends. In this case, the user
is changed within a short time, perhaps less than 15 s. However,
the owner knows this and the owner actually wants it to happen.
Hence, it does not lie in the scope of our privacy protection.

IV. EVALUATION

In this section, we evaluate the performance of the Glass-
Guard authentication system through offline analysis by an-
swering two questions. 1) How well do the classifiers perform?
We address this by showing the EER for each classifier in the
system. 2) How well does the whole system work? Here, we
show the accuracy of all decisions made by the system and the
average delay to make a decision. To evaluate the accuracy, we
show the detection rate and false alarm rate when only one single
type of user event is available, as well as when different types
of events are mixed together with equal probability. To evaluate
the delay, we show the number of user events needed for the
system to make a decision. We also show the accuracy and de-
cision delay under five typical usage scenarios and compare our
system with state of the art.

A. Performance of Classification

We use EER as the performance metric for classification.
EER is the error rate when FAR is equal to FRR. It can be
obtained by intersecting the ROC curve with a diagonal of a unit
square [38].

PENG et al.: CONTINUOUS AUTHENTICATION WITH TOUCH BEHAVIORAL BIOMETRICS AND VOICE ON WEARABLE GLASSES 411

Fig. 5. EER with different numbers of features. (a) Single-tap gesture. (b) One-finger swipe forward. (c) One-finger swipe backward. (d) One-finger swipe down.
(e) Two-finger swipe forward. (f) Two-finger swipe backward.

1) Classification of Touch Gestures: Fig. 5 depicts the EERs
of the six classifiers for touch gestures. For each classifier, we
vary the number of features used and plot the EERs for all 32
users. From all six classifiers, we see that the average EERs
decrease at the beginning as the number of features increases.
However, as we continue to add more features, the improvement
of EER is subtle. In some cases, using more features even results
in a higher EER. For example, for the swipe backward classifier,
the lowest average EER (15.02%) is achieved with 11 features.
When 21 features are used, the average EER rises to 15.35%.

When choosing the best number of features to use in the
system, we need to consider both the average EER and the
maximum EER. We should also balance between accuracy and
computation cost. Take the classifier for single-tap gestures as
an example. The average EERs with nine and 11 features are
16.56% and 16.43%, respectively. By adding two more features,
the average EER only increases by 0.07%. Taking all these fac-
tors into consideration, the best configuration is: nine features
for the single-tap classifier, 11 features for one-finger swipe clas-
sifiers, and 25 features for two-finger swipe classifiers. We mark
them in Fig. 5 with green shade. Later, we use this configuration
to evaluate the performance of our GlassGuard system.

2) Classification of Voice Commands: The authentication
system makes one decision for each audio file, which is recorded
from each voice command. With a sliding window, multiple
MFCC vectors are extracted from an audio file. And from each
MFCC vector, we get an SVM score. If the scores of 80% of
the frames in an audio file favor the owner, then the audio file
is marked as “true” (from the owner). Otherwise, the audio clip
is marked as “false” (from an impostor). Fig. 6 shows the EERs
of the voice classifier for different users. Although one user has
an EER of as high as ∼12%, for most users, the EER is below
5%. The red line shows the average EER, which is 4.88%. These
EERs are much lower than those of classifiers for touch gestures.

B. Performance of GlassGuard

To evaluate the performance of the GlassGuard system, we
first test the system with only one single type of user event.

Fig. 6. Classification EERs for voice commands.

Then, we mix all types of user events together and test it again.
We do grid search [39] to find the best parameters for SVM
classifiers. For parameters of the Aggregator, we choose 99% as
the expected detection rate and 1% as the expected false alarm
rate. As a result, η1 and η2 are 99 and 0.0101, respectively,
calculated from (9).

To do the first test where we only have one single type of
user event, we extract all user events of the target type from
all users. These events are then used as a user event sequence
to feed into our GlassGuard system and test the system perfor-
mance. Classifications are done in the same way as described in
Section III-B. The Aggregator gathers classification results and
makes a decision only when it is confident. Every decision is
made with events from the same user. If a decision is wrong, we
count it as one error. The detection rate of the system is calcu-
lated as the ratio of correct decisions with the owner’s data. The
false alarm rate is calculated as the error rate with impostors’
data. To carry the second test, we mix different types of user
events together as user input sequences. In addition, we make
sure that each event type has the same probability to be chosen
for the next user event.

1) Accuracy: Fig. 7 shows the detection rates when different
users are taken as the owner. The corresponding false alarm rates
are shown in Fig. 8. The box shows the 25% and 75% percentiles.
The solid line inside the box is the mean value, and the dashed
line is the median. First, let us look at the cases when only one
single type of user event is available. We see that two-finger
touch gestures perform better than one-finger touch gestures.
With two-finger touch gestures, all detection rates are above

412 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 47, NO. 3, JUNE 2017

Fig. 7. Detection rate of the GlassGuard system.

Fig. 8. False alarm rate of the GlassGuard system.

90% and all false alarm rates are below 5%. With one-finger
touch gestures only, both the detection rates and false alarm
rates are not as good as those of two-finger touch gestures. A
possible reason for this is that two-finger touch gestures have
features describing the relative information between two fingers,
which are not available in one-finger touch gestures. We also
see that in the cases when only a single type of one-finger touch
gesture is available, some users have much lower accuracy than
others. For example, when only swipe forward gestures are used,
user 19 has the lowest detection rate of 81%, and user 5 has the
highest false alarm rate of 15%. The deep reason for the lower
accuracy of these users needs to be further explored. However,
generally, the system works very well. For most of the users, the
system achieves a detection rate of more than 90% and a false
alarm rate below 10% in all cases. When only voice commands
are used, the accuracy is much better than those with any single
type of touch gesture. The system has zero false alarm rate with
only one exception. In this case, even the lowest detection rate
is above 98%. With the low EERs already shown in Fig. 6, it is
not surprising to see this.

In Figs. 7 and 8, we also show the system accuracy when all
types of touch gestures are used, and when voice commands
are mixed together with touch gestures. The accuracy with all
touch gestures is better than any of those individual cases. This
is easy to understand as two users may have a similarity in one
type of touch gesture, but they are different in another one. The
mean detection rate in this case is 98.7%, and the mean false
alarm rate is 0.8%. With voice commands added, the accuracy is
further improved. The mean detection rate increases to 99.2%,
and the mean false alarm rate drops to 0.5%. Although they are
not as good as those with only voice commands only, they are
quite close.

2) Delay: Fig. 9 shows the number of events needed by the
system to make a decision when different users are taken as the

Fig. 9. Number of events needed to make a decision.

owner. Similar to the trends of accuracy, when only one type of
two-finger touch gesture is used, the average number of touch
events needed to make a decision is noticeably less than that
when only one type of one-finger touch gesture is used. The
case with voice commands only requires the smallest number
of events to make a decision, which is below 4 for all users with
a mean of 2.24. The number of events needed for the case with
all touch gestures mixed is in between that of the case with only
one type of one-finger touch gesture and that of the case with
only one type of two-finger touch gesture. When touch gestures
are mixed together with voice commands, the system needs 3.5
user events on average to make a decision.

3) Accuracy and Delay in Typical Usage Scenarios: We
have demonstrated the performance of our system when only
one type of user event is available. We also show the perfor-
mance when all types of user events are mixed together with
equal probability. However, in reality, the distribution of these
event types largely depends on what a user wants to do, how the
data are organized on the Google Glass, and also a user’s own
preference (touch gesture or voice command).

Here, we take five typical usage scenarios and show the ac-
curacy and decision delay under each of the scenarios.

1) Skim through the timeline: A user can access pictures,
videos, e-mails, and application notifications in timeline.
Under this scenario, the user swipes forward to see the
items in the timeline one by one. The user event sequence
consists of only swipe forward gestures.

2) Delete a picture in the timeline: A user does the following:
swipe forward to enter the timeline, continue swipe for-
ward (assume once) to find the group of pictures, single-
tap to select the pictures, tap to show the options, swipe
forward twice to reach the “Delete” option, and then tap
to delete.

3) Take a picture and share it using voice commands: A user
event sequence for this is as follows: “OK Glass!,” “Take a
picture,” “OK, glass!,” “Share it with...,” and swipe down
to go back.

4) Take a picture and share it using touch gestures: Tap to
go to applications, swipe forward (assume twice) to find
the picture application, tap to select the application, tap
to get the options, tap to select the “Share” option, tap to
select a contact, and swipe down to go back.

5) Google search: A user event sequence for this is: Tap to go
to applications, swipe forward (assume once) to find the
picture application, tap to select the application, (speak

PENG et al.: CONTINUOUS AUTHENTICATION WITH TOUCH BEHAVIORAL BIOMETRICS AND VOICE ON WEARABLE GLASSES 413

Fig. 10. Performance with different training sizes and validation methods
under five real usage scenarios. (a) Detection rate. (b) False alarm rate.
(c) Decision delay.

the keyword), tap to show the options when the content is
ready, tap to view the website, two-finger swipe forward
to zoom in, and swipe down to return.

Our aforementioned performance analysis is based on the
tenfold cross validation where training samples are randomly
selected. In another word, the training phase happens in parallel
with the testing phase. To better indicate the system performance
during real deployment, we perform sequential validation where
the training phase and testing phase happen in sequence. All N
samples are ordered in time sequence. We select the first p ∗ N
(p=1/5, 1/2, or 4/5) samples for training and the remaining
(1 − p) ∗ N samples for testing (except for voice commands of
which we have less than 40 samples per user).

We present the average performance in Fig. 10. From the
figure, we have three main observations. First, Scenario 1 has the
lowest detection rate, as it only contains swipe forward gestures.
Scenario 3 mainly consists of voice commands; therefore, it
performs the best. Second, in general, larger training size results
in better performance. However, the performance gap is small.
When p = 1/5, we still have detection rate above 90% and false

Fig. 11. Comparison of GlassGuard with reference [40] (Black markers are
for the work presented by Chauhan et al. and red markers with shade are for
GlassGuard.)

alarm rate below 12%. Third, different validation methods have
very similar performance under Scenario 3 because the training
for voice commands remains the same.

C. Performance Comparison

As far as we know, the work presented by Chauhan et al. [40]
is the only study covering touch-behavioral-based user authenti-
cation on wearable glasses. In their work, the authors also study
the performance of touch behavioral biometrics for user authen-
tication on Google Glass. Specifically, they consider four types
of touch events: single-tap (T), swipe forward (F), swipe back-
ward (B), and swipe down (D). In addition, they consider seven
gesture combinations: T, F, B, D, T+F, T+F+B, and T+F+B+D.
Different classification models are trained for different gesture
combinations. All classification models make predictions inde-
pendently. To obtain n samples of a gesture combination, each
gesture type should appear at least n times. For example, under
the Google search scenario (Scenario 5) introduced in the previ-
ous subsection, the user event sequence is TFTVTTFD (where
V denotes voice command and F denotes two-finger swipe for-
ward gesture). Their system can get one prediction from the T
model with four samples, one prediction from the F model with
one sample, and one prediction from the T+F model with one
sample. The T+F+B model and the T+F+B+D model, which
are able to provide higher accuracy, do not work under this sce-
nario, as the swipe backward gesture is not available. In addition,
the three predictions may be different, which makes their sys-
tem ambiguous. In contrast, our system can freely combine all
events within any user sequence and make one final and better
decision.

We compare the performance of GlassGuard with the work
of Chauhan et al. by showing in Fig. 11 the average error rate
(AER), which is defined by Chauhan et al. as 1/2*(1 − detec-
tion rate + false alarm rate), and decision delay under the five
typical usage scenarios introduced in the previous subsection.
In the figure, markers in black are for the method described by
Chauhan et al. and markers in red are for GlassGuard. Different
shapes stand for results under different usage scenarios. For the
performance of Chauhan et al.’s work, the lowest AER of all
available models is presented. From Fig. 11, we see that error
rates of Chauhan et al.’s work are above 15% with decision de-
lay of five user events. With the same decision delay, our system

414 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 47, NO. 3, JUNE 2017

has much lower error rates. Thus, compared with the work of
Chauhan et al., our system achieves better performance.

In addition, we notice that, with a certain number of test
samples, the highest accuracy of their method is achieved with
the model for the T+F+B+D combination. When one of the
gesture types is not available, this model is not usable. We have
used more samples for training than that of Chauhan et al.,
but the difference is not as large as it appears. In their work,
75 samples for the combination of T+F+B+D add up to 300
user events. Besides, even if their accuracy can be improved
by increasing the training size, their decision delay does not
change because they still need to wait for a fixed number of test
samples. And our comparison shows that our system has much
shorter decision delay.

V. RELATED WORK

In this section, we articulate how GlassGuard is different
from existing works on the topics of continuous and transparent
user authentication, user authentication on wearable devices,
and other sources for user authentication.

A. Continuous and Transparent Authentication

User authentication has been done via voice recognition [13]
and face recognition [41]. However, voice commands are not
always available. Asking users to speak from time to time is
invasive. Google Glass only has a camera facing away from the
wearers. As a result, methods based on face recognition do not
work. Moreover, using a camera brings privacy concern.

Early research has studied continuous authentication on per-
sonal computers via mouse movements and keystroke dynamics
[28], [42], [43]. These two biometrics are much different from
touch gestures on wearable glasses.

The idea of using touch behavioral biometrics for user au-
thentication has been validated for multitouch devices [8], [44].
Since then, various touch-behavioral-based continuous authen-
tication systems have been proposed. Some of them are based
on keystrokes on smartphones [9], [45], [46]. These methods
do not work with touch pads on wearable glasses, since they
do not support keystrokes. Others are based on touch gestures
with features extracted from screen touch data [19], [47], [48]
and/or features extracted from sensor data during a touch event
[10], [18], [49]. However, due to differences in user interaction
with wearable glasses and that with smartphones, these authen-
tication systems cannot be directly applied to wearable glasses.
The discriminability of those features needs to be evaluated
on wearable glasses. Furthermore, users can control wearable
glasses with voice commands and easily circumvent the touch-
based authentication systems.

Gait information has also been studied [50], [51] for continu-
ous authentication purpose. These works are complimentary to
ours, as we study the case when users are static.

Conti et al. [52] propose to authenticate a user based on how
the user answers or places a phone call, e.g., the movement
pattern during the process of bringing the phone to the ear after
pressing the “start” button to initiate the call. This method, how-

ever, is specific to smartphones. It is not applicable on wearable
glasses.

B. User Authentication on Wearable Devices

Physical characteristics of users are explored to do user au-
thentication on wearable devices. Yang et al. [53] measure
the difference in user responses to a vibration excitation. This
method is intrusive. Cornelius et al. [54] design a new sensor
that measures how tissue responds to an electrical current to
verify identities of wearers. Similarly, Rasmussen et al. [55]
propose to authenticate users based on the human body’s re-
sponse to an electric square pulse signal. These two methods
require a specific hardware that is not available in today’s smart
glasses. Moreover, to apply them in the real world, user safety
needs to be addressed.

Chan et al. [56] propose to use the glass camera to scan a QR
code displayed on the user’s smartphone for authentication. Li
et al. [57] propose to authenticate users based on head move-
ments in response to a music cue played on the Google Glass.
Both of these options are intrusive.

A similar work to ours is presented by Chauhan et al. [40].
Our comparison in Section IV-C shows that our system is more
flexible and achieves better performance.

C. Other Sources for User Authentication

Das et al. [58] verify users with questions about the owner’s
day-to-day experience. This is invasive as users need to answer
questions. Usage patterns of smartphone, such as SMS and voice
call records, have also been used to do active authentication
[59]. This method has long authentication delay as it needs to
collect usage data during a long time interval to achieve high
accuracy.

Shafagh and Hithnawi [60] use information of nearby devices
to authenticate a user. Other novel features are also proposed,
such as clothes [61] and shoes that a user wears [62]. These
methods have potential to be applied in wearable glasses. How-
ever, they do not work well alone as a solution for continuous
user authentication on wearable glasses because these features
are not stable even for the owner. It requires retraining when a
user visits a new place or gets new shoes or clothes. However,
they can be combined with our system to provide more accurate
predictions. Our work is complementary to theirs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied a set of touch behavioral features
and voice features for user authentication on wearable glasses.
With data collected from a user study consisting of 32 partici-
pants with Google Glass, the discriminability of these features
was then evaluated with SVM models and sequential forward
search. With nine features for single-tap gestures, 11 features
for swipe forward/backward/down gestures, and 25 features for
two-finger swipe forward/backward gestures, we have shown
that the average EERs of classification based on single type of
touch gesture are between 9% and 16.6%. With MFCC vec-
tors extracted from audios, the EER of classification on voice
commands is 4.88% on average.

PENG et al.: CONTINUOUS AUTHENTICATION WITH TOUCH BEHAVIORAL BIOMETRICS AND VOICE ON WEARABLE GLASSES 415

We proposed a continuous and noninvasive user authentica-
tion system for wearable glasses, named GlassGuard. Glass-
Guard continuously monitors user touch gestures and voice
commands. It employs a mechanism adapted from TRW to make
a decision from multiple user events only when it is confident.
Our evaluation results based on data collected with Google Glass
show that, when decisions are made purely on a single type of
user event, the average detection rate is above 93% with a false
alarm rate below 3% after less than five user events. When all
types of user events are mixed with equal probability, our Glass-
Guard system achieves a detection rate of 99% and a false alarm
rate of 0.5% after 3.46 user events. We also demonstrate the
performance of GlassGuard with five typical usage scenarios,
under which the detection rates are above 93.3% and the false
alarm rates are below 2.84% after 4.66 events.

In the future, we plan to deploy the proposed system on
Google Glass and measure the power consumption. Once the
system is deployed on real devices, we would like to measure the
performance under routine daily use by different people other
than the five typical ones evaluated in the paper. In addition, we
plan to validate the applicability of the authentication system
over longer term.

REFERENCES

[1] “Smartglasses,” Aug. 2016. [Online]. Available: https://en.wikipedia.org/
wiki/Smartglasses

[2] “Consumer & Enterprise Smart Glasses: Opportunities & Forecasts
2015-2020,” Feb. 2016. [Online]. Available: http://www.juniperresearch.
com/researchstore/devices-wearables/smart-glasses/consumer-enterprise
-smart-glasses

[3] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware, your hands
reveal your secrets!” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2014, pp. 904–917.

[4] N. H. Zakaria, D. Griffiths, S. Brostoff, and J. Yan, “Shoulder surfing
defence for recall-based graphical passwords,” in Proc. 17th Symp. Usable
Privacy Security, 2011, Art. no. 6.

[5] S. Wiedenbeck, J. Waters, L. Sobrado, and J.-C. Birget, “Design and
evaluation of a shoulder-surfing resistant graphical password scheme,” in
Proc. Work. Conf. Adv. Visual Interfaces, 2006, pp. 177–184.

[6] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith, “Smudge
attacks on smartphone touch screens,” WOOT, vol. 10, pp. 1–7, 2010.

[7] S. Schneegass, F. Steimle, A. Bulling, F. Alt, and A. Schmidt, “Smudge-
safe: Geometric image transformations for smudge-resistant user authen-
tication,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput.,
2014, pp. 775–786.

[8] M. Frank, R. Biedert, E.-D. Ma, I. Martinovic, and D. Song, “Touchalytics:
On the applicability of touchscreen input as a behavioral biometric for
continuous authentication,” IEEE Trans. Inf. Forensics Security, vol. 8,
no. 1, pp. 136–148, Jan. 2013.

[9] N. Zheng, K. Bai, H. Huang, and H. Wang, “You are how you touch: User
verification on smartphones via tapping behaviors,” in Proc. 22nd IEEE
Int. Conf. Netw. Protocols, 2014, pp. 221–232.

[10] C. Bo, L. Zhang, X.-Y. Li, Q. Huang, and Y. Wang, “SilentSense: Silent
user identification via touch and movement behavioral biometrics,” in
Proc. 19th Annu. Int. Conf. Mobile Comput. Network, 2013, pp. 187–190.

[11] B. Draffin, J. Zhu, and J. Zhang, “Keysens: Passive user authentication
through micro-behavior modeling of soft keyboard interaction,” in Mobile
Computing, Applications, and Services. New York, NY, USA: Springer,
2014, pp. 184–201.

[12] D. A. Reynolds, “Speaker identification and verification using gaussian
mixture speaker models,” Speech Commun., vol. 17, no. 1, pp. 91–108,
1995.

[13] H. Lu, A. B. Brush, B. Priyantha, A. K. Karlson, and J. Liu, “SpeakerSense:
Energy efficient unobtrusive speaker identification on mobile phones,” in
Pervasive Computing. New York, NY, USA: Springer, 2011, pp. 188–205.

[14] C. Xu et al., “Crowd++: Unsupervised speaker count with smartphones,”
in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous cComput, 2013,
pp. 43–52.

[15] “SiME Smart Glasses,” Aug. 2016. [Online]. Available: http://www.
chipsip.com/archive/SiME%20Smart%20Glasses 2015Jan(1).pdf

[16] “Recon Jet,” Aug. 2016. [Online]. Available: http://www.
reconinstruments.com/products/jet/tech-specs/

[17] “Vuzix M300 Smart Glasses,” Aug. 2016. [Online]. Available:
https://www.vuzix.com/Products/m300-smart-glasses

[18] Z. Sitova et al.,“HMOG: New behavioral biometric features for continuous
authentication of smartphone users,” IEEE Trans. Inf. Forensics Security,
vol. 11, no. 5, pp. 877–892, May 2016.

[19] H. Xu, Y. Zhou, and M. R. Lyu, “Towards continuous and passive authen-
tication via touch biometrics: An experimental study on smartphones,” in
Proc. Symp. Usable Privacy Security, 2014, vol. 14, pp. 187–198.

[20] D. A. Reynolds, “Experimental evaluation of features for robust speaker
identification,” IEEE Trans. Speech Audio Process., vol. 2, no. 4,
pp. 639–643, Oct. 1994.

[21] “Silence removal in speech signals,” Aug. 2016. [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/28826-silence-re
moval-in-speech-signals

[22] “Getevent,” Aug. 2016. [Online]. Available: https://source.android.
com/devices/input/getevent.html

[23] “Android Debug Bridge,” Aug. 2016. [Online]. Available: http://
developer.android.com/tools/help/adb.html

[24] I. Guyon and A. Elisseeff, “An introduction to variable and feature selec-
tion,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.

[25] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[26] A. Ben-Hur and J. Weston, “A user’s guide to support vector machines,”
Data Mining Techn. Life Sci., vol. 609, pp. 223–239, 2010.

[27] B. Schölkopf, K. Tsuda, and J.-P. Vert, Kernel Methods in Computational
Biology. Cambridge, MA, USA: MIT Press, 2004.

[28] N. Zheng, A. Paloski, and H. Wang, “An efficient user verification system
via mouse movements,” in Proc. 18th ACM Conf. Comput. Commun.
Security, 2011, pp. 139–150.

[29] W. M. Campbell, J. P. Campbell, D. A. Reynolds, E. Singer, and P. A.
Torres-Carrasquillo, “Support vector machines for speaker and language
recognition,” Comput. Speech Lang., vol. 20, no. 2, pp. 210–229, 2006.

[30] R. Begg and J. Kamruzzaman, “A machine learning approach for auto-
mated recognition of movement patterns using basic, kinetic and kinematic
gait data,” J. Biomechanics, vol. 38, no. 3, pp. 401–408, 2005.

[31] A. Este, F. Gringoli, and L. Salgarelli, “Support vector machines for TCP
traffic classification,” Comput. Netw., vol. 53, no. 14, pp. 2476–2490,
2009.

[32] “LIBSVM Tools,” Aug. 2016. [Online]. Available: http://www.
csie.ntu.edu.tw/ cjlin/libsvmtools/

[33] T. Fawcett, “ROC graphs: Notes and practical considerations for re-
searchers,” Mach. Learn., vol. 31, pp. 1–38, 2004.

[34] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast portscan de-
tection using sequential hypothesis testing,” in Proc. IEEE Symp. Security
Privacy, 2004, pp. 211–225.

[35] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command and
control channels in network traffic,” in Proc. 15th Annu. Netw. Distrib.
Syst. Security Symp., 2008.

[36] M. Xie, H. Yin, and H. Wang, “An effective defense against email spam
laundering,” in Proc. 13th ACM Conf. Comput. Commun. Security, 2006,
pp. 179–190.

[37] R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong, “Draining
our glass: An energy and heat characterization of Google Glass,” in Proc.
5th Asia-Pacific Workshop Syst., 2014, Art. no. 10.

[38] VLFeat, “Plotting AP and ROC curves,” Aug. 2016. [Online]. Available:
http://www.vlfeat.org/overview/plots-rank.html

[39] C. W. Hsu, C. C. Chang, and C. J. Lin , “A practical guide to support
vector classification,” Dept. Comput. Sci., National Taiwan University,
Taipei, Taiwan, Tech. Rep., 2003.

[40] J. Chauhan, H. J. Asghar, M. A. Kaafar, and A. Mahanti, “Gesture-based
continuous authentication for wearable devices: The Google Glass case,”
in Proc. Int. Conf. Appl. Cryptography Netw. Security, 2016, pp. 243–262.

[41] S. Chen, A. Pande, and P. Mohapatra, “Sensor-assisted facial recognition:
An enhanced biometric authentication system for smartphones,” in Proc.
12th Annu. Int. Conf. Mobile Syst., Appl. Serv., 2014, pp. 109–122.

[42] R. Joyce and G. Gupta, “Identity authentication based on keystroke laten-
cies,” Commun. ACM, vol. 33, no. 2, pp. 168–176, 1990.

[43] C. Shen, Z. Cai, and X. Guan, “Continuous authentication for mouse
dynamics: A pattern-growth approach,” in Proc. 42nd Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw., 2012, pp. 1–12.

[44] N. Sae-Bae, K. Ahmed, K. Isbister, and N. Memon, “Biometric-rich ges-
tures: A novel approach to authentication on multi-touch devices,” in Proc.
SIGCHI Conf. Human Factors Comput. Syst., 2012, pp. 977–986.

416 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 47, NO. 3, JUNE 2017

[45] C. Giuffrida, K. Majdanik, M. Conti, and H. Bos, “I sensed it was you:
Authenticating mobile users with sensor-enhanced keystroke dynamics,”
in Detection of Intrusions and Malware, and Vulnerability Assessment.
New York, NY, USA: Springer, 2014, pp. 92–111.

[46] B. Draffin, J. Zhu, and J. Zhang, “Keysens: Passive user authentication
through micro-behavior modeling of soft keyboard interaction,” in Mobile
Computing, Applications, and Services. New York, NY, USA: Springer,
2013, pp. 184–201.

[47] T. Feng, J. Yang, Z. Yan, E. M. Tapia, and W. Shi, “Tips: Context-
aware implicit user identification using touch screen in uncontrolled en-
vironments,” in Proc. 15th Workshop Mobile Comput. Syst. Appl., 2014,
Art. no. 9.

[48] L. Li, X. Zhao, and G. Xue, “Unobservable re-authentication for smart-
phones,” in Proc. 20th Annu. Netw. Distrib. Syst. Security Symp., 2013.

[49] J. Zhu, P. Wu, X. Wang, and J. Zhang, “Sensec: Mobile security through
passive sensing,” in Proc. Int. Conf. Comput. Netw. Commun., 2013,
pp. 1128–1133.

[50] J. Mäntyjärvi, M. Lindholm, E. Vildjiounaite, S.-M. Mäkelä, and H.
Ailisto, “Identifying users of portable devices from gait pattern with ac-
celerometers,” in Proc. IEEE Int. Conf. Acoust. Speech, Signal Process.,
2005, vol. 2, pp. ii-973–ii-976.

[51] C. Nickel, T. Wirtl, and C. Busch, “Authentication of smartphone users
based on the way they walk using k-NN algorithm,” in Proc. 8th Int. Conf.
Proc. Intell. Inf. Hiding Multimedia Signal Process., 2012, pp. 16–20.

[52] M. Conti, I. Zachia-Zlatea, and B. Crispo, “Mind how you answer me!:
Transparently authenticating the user of a smartphone when answering or
placing a call,” in Proc. 6th ACM Symp. Inf., Comput. Commun. Security,
2011, pp. 249–259.

[53] L. Yang, W. Wang, and Q. Zhang, “VibID: User identification through
bio-vibrometry,” in Proc. 15th ACM/IEEE Int. Conf. Inf. Process. Sens.
Netw., 2016, pp. 1–12.

[54] C. Cornelius, R. Peterson, J. Skinner, R. Halter, and D. Kotz, “A wearable
system that knows who wears it,” in Proc. 12th Annu. Int. Conf. Mobile
Syst., Appl., Services, 2014, pp. 55–67.

[55] K. B. Rasmussen, M. Roeschlin, I. Martinovic, and G. Tsudik, “Authen-
tication using pulse-response biometrics,” in Proc. Netw. Distrib. Syst.
Security Symp., 2014.

[56] P. Chan, T. Halevi, and N. D. Memon, “Glass OTP: Secure and convenient
user authentication on Google glass,” in Financial Cryptography and Data
Security, vol. 8976. New York, NY, USA: Springer, 2015, pp. 298–308.

[57] S. Li, A. Ashok, Y. Zhang, C. Xu, J. Lindqvist, and M. Gruteser, “Whose
move is it anyway? Authenticating smart wearable devices using unique
head movement patterns,” in Proc. IEEE Int. Conf. Pervasive Comput.
Commun., 2016, pp. 1–9.

[58] S. Das, E. Hayashi, and J. I. Hong, “Exploring capturable everyday mem-
ory for autobiographical authentication,” in Proc. ACM Int. Joint Conf.
Pervasive Ubiquitous Comput, 2013, pp. 211–220.

[59] P. Giura, I. Murynets, R. Piqueras Jover, and Y. Vahlis, “Is it really you?:
User identification via adaptive behavior fingerprinting,” in Proc. 4th ACM
Conf. Data Appl. Security Privacy, 2014, pp. 333–344.

[60] H. Shafagh and A. Hithnawi, “Poster: come closer: Proximity-based au-
thentication for the internet of things,” in Proc. 20th Annu. Int. Conf.
Mobile Comput. Netw, 2014, pp. 421–424.

[61] S. Richter, C. Holz, and P. Baudisch, “Bootstrapper: Recognizing tabletop
users by their shoes,” in Proc. SIGCHI Conf. Human Factors Comput.
Syst, 2012, pp. 1249–1252.

[62] H. Wang, X. Bao, R. R. Choudhury, and S. Nelakuditi, “InSight: Recog-
nizing humans without face recognition,” in Proc. 14th Workshop Mobile
Comput. Syst. Appl, 2013, Art. no. 7.

Ge Peng received the B.S. degree in computer sci-
ence from the National University of Defense Tech-
nology, Changsha, China, in 2008. She is currently
working toward the Ph.D. degree in the Department
of Computer Science, College of William and Mary,
Williamsburg, VA, USA.

Her research interests include wireless network-
ing, smartphone energy efficiency, and ubiquitous
computing.

Gang Zhou (SM’06) received the Ph.D. degree in
computer science from the University of Virginia,
Charlottesville, VA, USA, in 2007.

He is an Associate Professor, and also Gradu-
ate Director, with the Computer Science Department,
College of William and Mary, Williamsburg, VA. He
has published more than 80 academic papers in the
areas of sensors and ubiquitous computing, mobile
computing, body sensor networks, Internet of Things,
and wireless networks. The total citations of his pa-
pers are more than 5000 according to Google Scholar,

among which five of them have been transferred into patents and the MobiSys’04
paper has been cited more than 800 times.

Dr. Zhou serves on the Journal Editorial Boards of the IEEE INTERNET OF

THINGS, Elsevier Computer Networks, and Elsevier Smart Health. He received
an award for his outstanding service to the IEEE Instrumentation and Measure-
ment Society in 2008. He also received the Best Paper Award of the 2010 IEEE
International Conference on Network Protocols, the NSF CAREER Award in
2013, and the 2015 Plumeri Award for Faculty Excellence. He is a Senior Mem-
ber of the Association for Computing Machinery.

David T. Nguyen is currently working toward the
Ph.D. degree in computer science at the College of
William and Mary (W&M), Williamsburg, VA, USA.

He is working with Dr. G. Zhou, and his research
interests include mobile computing, ubiquitous com-
puting, and wireless networking. Before coming to
W&M, he was a Lecturer with Suffolk University
for two years. He was also a Lecturer with Christo-
pher Newport University in 2013. In 2014, he was
a Mobile Hardware Engineer with Facebook’s Con-
nectivity Lab, Menlo Park, CA, USA.

Xin Qi received the B.Sc. degree in computer science
from Nanjing University, Nanjing, China, in June
2007, the M.Eng. degree in pattern recognition and
intelligent systems from the National Key Laboratory
of Pattern Recognition, Institute of Automation, Chi-
nese Academy of Sciences, Beijing, China, in June
2010, and the Ph.D. degree in computer science from
the College of William and Mary, Williamsburg, VA,
USA, in May 2015.

He is a Member of Technical Staff III with the NSX
group of WMware Inc., Palo Alto, CA, USA. During

his Ph.D. studies, he conducted research on ubiquitous and mobile systems. His
current research interests include ubiquitous computing, mobile systems, and
big data in the cloud.

Qing Yang received the B.S. degree from the Civil
Aviation University of China, Tianjin, China, in 2003,
and the M.S. degree from the Chinese Academy of
Sciences, Beijing, China, in 2007. He is currently
working toward the Ph.D. degree in the Department
of Computer Science, College of William and Mary,
Williamsburg, VA, USA.

His research interests include smartphone security
and energy efficiency.

Shuangquan Wang received the Ph.D. degree in pat-
tern recognition and intelligent systems from Shang-
hai Jiao Tong University, Shanghai, China, in 2008.
He is currently working toward the second Ph.D. de-
gree in the Department of Computer Science, College
of William and Mary, Williamsburg, VA, USA.

He was with the Nokia Research Center, Beijing,
China, as a Postdoctoral Researcher. From May 2010
to August 2016, he was with the Institute of Com-
puting Technology, Chinese Academy of Sciences.
His research interests include ubiquitous computing,

mobile service, and human-centric computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

