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Wireless sensor network applications, such as those for natural disaster warning, vehicular traffic monitor-
ing, and surveillance, have stringent accuracy requirements for detecting or classifying events and demand
long system lifetimes. Through quantitative study, we show that existing event detection approaches are
challenged to explore the sensing capability of a deployed system and choose the right sensors to meet
user-specified accuracy. Event detection systems are also challenged to provide a generic system that effi-
ciently adapts to environmental dynamics and works easily with a range of applications, machine learning
approaches, and sensor modalities. Consequently, we propose Watchdog, a modality-agnostic event detection
framework that clusters the right sensors to meet user-specified detection accuracy during runtime while
significantly reducing energy consumption. Watchdog can use different machine learning techniques to learn
the sensing capability of a heterogeneous sensor deployment and meet accuracy requirements. To address
environmental dynamics and ensure energy savings, Watchdog wakes up and puts to sleep sensors as needed
to meet user-specified accuracy. Through evaluation with real vehicle detection trace data and a building
traffic monitoring testbed of IRIS motes, we demonstrate the superior performance of Watchdog over ex-
isting solutions in terms of meeting user-specified detection accuracy, energy savings, and environmental
adaptability.
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1. INTRODUCTION

Wireless sensor network deployments have been widely used for event detection in
military surveillance [He et al. 2006] and environmental and wildlife monitoring [Mo
et al. 2009; Dyo et al. 2010], as well as vehicle tracking [Duarte and Hu 2004]. These
event detection scenarios usually require high accuracy to achieve application goals.
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For example, urban planners may wish to monitor traffic flow at a troublesome intersec-
tion [Duarte and Hu 2004] with less than 5% false-positive and false-negative vehicle
detection rates. A high false-positive rate may precipitate a costly and unneeded road
expansion. Similarly, a high false-negative rate in detection may cause the planners
to cancel a proposed road expansion, leading to worsening traffic conditions. Such an
event detection application must meet a user’s event detection accuracy requirements
with a long deployment lifetime. When a framework makes event detection decisions
that meet a user’s accuracy requirements in terms of desired false-positive and false-
negative rates, we say that it is confident. Several challenges exist to provide a confident
event detection framework:

—How to find the most energy efficient sensor clusters that meet user accuracy re-
quirements? Previous work [He et al. 2006] has shown that clustering sensors can
significantly improve detection accuracy over individual sensors. How to explore the
detection capability of a specific deployment through clustering sensors and choose
the right sensor clusters to save energy and meet the user requirements?

—How to create a generic solution that can work easily and efficiently with a wide
range of deployments, sensor modalities, and machine learning methods? Since many
real deployments use multiple modalities, using different event detection solutions
for each modality can be difficult. How to perform efficient collaboration among
heterogeneous sensors that works in a generic context?

—How to efficiently adapt to environmental dynamics? A small energy-efficient cluster
of sensors may be sufficient to meet user requirements most of the time. Sometimes,
however, more detection capability may be required, prompting collaboration be-
tween lower- and higher-power clusters to meet user requirements and save energy.
Clusters and machine learning detection models may also need to be updated during
runtime.

Existing approaches for event detection do not provide a holistic solution with respect
to addressing these challenges. Some approaches, such as sensing coverage [Yan et al.
2003; Hwang et al. 2007], ignore the sensing capability differences among different
sensors and sensor clusters, and hence do not cluster the right sensors to meet user
detection requirements. Other approaches do not work in heterogeneous sensor deploy-
ments, such as data fusion-based modality-specific sensing models [Chakrabarty et al.
2002; Yuan et al. 2008]. Other sensing models [Rachlin et al. 2005; Wang et al. 2004]
ignore different sensing modalities and event detection methods altogether by using
abstract fidelity functions. Other approaches, such as those that use machine learn-
ing [Benbasat and Paradiso 2007] or aggregation [Deshpande et al. 2004], attempt to
capture the sensing capability differences among different sensors but do not provide
confidence.

In this article, we first show that existing approaches have difficulty capturing the
sensing capability of different sensors and clusters, then demonstrate that the capabil-
ity of a specific deployment must be fully explored to efficiently meet user requirements.
Consequently, we propose Watchdog, an event detection framework that explores the
detection capability of a specific deployment and chooses the right sensors to meet
accuracy requirements. We investigate several machine learning methods that our
generic approach can use for event detection in heterogeneous sensor deployments. To
adapt to environmental dynamics, Watchdog uses an energy-efficient sentinel sensor
cluster to make easy event detection decisions. When the sentinel cluster cannot make
a confident decision, a more capable reinforcement sensor cluster ensures that the
user requirements are met. When persistent changes in the environment are detected
that significantly impact meeting user accuracy requirements, we update the detection
models during runtime and form new clusters. Our main contributions are as follows:
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—With trace data from a vehicle detection application, we show the drawbacks of
existing solutions and motivate the need for a confident event detection framework.

—We propose Watchdog, a generic event detection framework that clusters the right
sensors to enforce user-defined event detection accuracy during runtime.

—Watchdog efficiently adapts to environmental dynamics by requesting only the sens-
ing capability needed to meet user requirements and updating clusters when user
requirements can no longer be met.

—We evaluate Watchdog in two scenarios: a vehicle detection application using real
trace data and a building traffic monitoring application using IRIS motes. Watchdog
can meet user-specified accuracy with reduced energy usage, whereas in many cases
existing solutions cannot.

The rest of this article is organized as follows. We present related work in Section 2
and motivate our Watchdog design in Section 3. We describe our detailed Watchdog
design in Section 4 and present its performance evaluation in Section 5. Finally, we
present conclusions in Section 6.

2. RELATED WORK

Many sensing and event detection works ignore both user accuracy requirements as
well as the sensing capability differences among different sensors and sensor clusters.
In sensing coverage approaches [Xing et al. 2005; Yan et al. 2003; Abrams et al. 2004;
Hsin and Liu 2004; Kumar et al. 2005], energy savings is emphasized by ensuring that
at least one node is awake to cover a detection location, leaving all other nodes asleep.
Due to sensing irregularity [Hwang et al. 2007], these coverage approaches may un-
derestimate or overestimate the coverage needed to provide confident event detection.
Such coverage approaches may also assume that each sensor exhibits a disc-shaped
sensing radius [Ermis and Saligrama 2005; Wang et al. 2006; Shrivastava et al. 2006;
Chakrabarty et al. 2002; Giusti et al. 2009]. Other works [Dutta et al. 2005; Malinowski
et al. 2008] use thresholds per modality to perform detection. Modality in the context of
this work represents a reference to sensor types. Finally, the recent work by Faulkner
et al. [2013] proposes a sparse coding–based approach to accurately aggregate event
detection decisions from sensors in large networks. In contrast, Watchdog addresses
the problems of how to select sensors for confident event detection and how to locally
aggregate sensor readings to save transmission energy.

Other works attempt to meet user detection accuracy requirements through
modality-specific sensing models and data fusion–based [Varshney 1996] collabora-
tion approaches. However, these models must train each sensor modality individually,
making collaboration difficult in heterogeneous deployments. Signal attenuation mod-
els are used in several works [Yuan et al. 2008; Xing et al. 2009; Simon et al. 2004;
Volgyesi et al. 2007; Bisnik et al. 2006; Yang et al. 2008], which give a false-positive
rate and false-negative rate for a given modality and set of training data, allowing for
data fusion between multiple sensors. Other sensing models are used for cameras [Isler
and Bajcsy 2005] and accelerometers [Hackmann et al. 2008], as well as magnetic and
PIR sensors [Gu et al. 2005]. Other works [Rachlin et al. 2005; Wang et al. 2004; Zhao
et al. 2002] provide an abstract sensing fidelity function that leaves out details on the
sensing modalities used as well as how sensing and detection is performed.

Some approaches attempt to address sensing capability differences among different
sensors but do not provide sensing confidence. Some sensing models do not focus on
event detection or classification, instead facilitating sensor data querying [Deshpande
et al. 2004] or aggregation [Zhuang et al. 2007; Subramaniam et al. 2006] in a sensor
network. Other works use machine learning, such as feature classification [Eriksson
et al. 2008; Kang et al. 2008; Lorincz et al. 2008; Benbasat and Paradiso 2007;
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Fig. 1. Event detection performance with vehicle trace data. The target location is marked by the “X” on
the road.

Greenstein et al. 2006], hidden Markov models (HMMs) [Ganti et al. 2006; Singh
et al. 2008], or both [Zappi et al. 2008].

Finally, in Keally et al. [2010], we demonstrate that unlike other approaches, we can
meet user accuracy requirements by exploring sensing capability differences among
different sensors and sensor clusters. The use of both generative and discriminative
event detection techniques is demonstrated in Hill et al. [2007, 2009] and Lerner
[2002]. However, in this article, we also explore the effect of different machine learning
approaches on meeting user requirements and energy usage, provide further adapt-
ability to environmental dynamics, and present an additional energy-saving approach
by limiting radio transmissions. Unlike other works that provide high-level systems for
sensing and data routing [Deshpande et al. 2004; Zhuang et al. 2007; Zhao et al. 2002],
we focus exclusively on exploring and capturing sensing capability and clustering the
right sensors to meet user accuracy requirements. The recent work by Krause et al.
[2011] studies the problem of optimal sensor placement, and we are aware that it may
assist accurate event classification; however, our main goal in this work is to cluster
the right sensors to perform confident event detection.

3. MOTIVATION

In this section, we demonstrate the need for a new approach to confident event detection
with reduced energy consumption by showing that performance differences among
different sensors and sensor clusters cannot be ignored. Our goal is to provide confident
event detection at a critical point, such as monitoring vehicular traffic flow, detecting
soldiers crossing a bridge, or detecting natural disasters such as an earthquake. As an
example, we use the Wisconsin SensIT experiment [Duarte and Hu 2004] to perform
vehicle detection at a specific location. The SensIT experiment consists of a 23-node
network with acoustic, seismic, and infrared sensors. Vehicles make 20 passes along a
road through the network with ground truth provided by a GPS trace. Trace data of
raw sensor energy is provided for each sensor at a raw sampling rate of 4,960Hz. We
provide this unmodified real sensor data and ground truth as input to a Java-based
trace-driven wireless sensor network simulation run on a PC. Although the sensor
data and ground truth is real, we simulate communication for low-power mote-class
devices with 802.15.4 radios, such as the MEMSIC IRIS [MEMSIC 2014]. Although we
are aware that radio communication can be lossy in wireless sensor networks, in this
article we focus on sensing accuracy, not communication quality, and assume reliable
communication.

Using the trace data, we define a target location at the “X” along the road in Figure 1.
Data is aggregated into time intervals of 100ms length for a total length of 6,763
intervals. At each interval, we classify sensor and sensor cluster data into events when
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the vehicle is present within 2m of the target location and nonevents when the vehicle
is farther away or not present. With this in mind, we determine vehicle detection
accuracy for individual sensors and sensor clusters using the method presented in
Section 4.3, and we plot the results in Figure 1, highlighting the impact on existing
solutions.

In Figure 1(a), we first observe that sensors with the same distance to the target
location may exhibit different detection accuracies. For example, nodes 41 and 50 are
both 80m from the target location, but their detection accuracies are different, at 93%
and 56%, respectively. This is because while accuracy generally decreases with distance
from the target location, terrain changes and environmental conditions still produce
irregularities in sensor performance, which is consistent with the findings in Hwang
et al. [2007]. This observed sensing irregularity can cause modality-specific sensing
models to suffer, such as in Yuan et al. [2008]. For example, a signal attenuation model
for acoustic sensors [Yuan et al. 2008] derives the same acoustic signal receiving power
for sensors with the same distance to the target location. Therefore, the same detection
accuracy is statistically derived for nodes with the same distance (nodes 41 and 50 in
our example). This signal attenuation model cannot articulate the accuracy differences
among sensors, such as determining which sensor is 93% accurate and which is 56%
accurate in our example. For this reason, the system performance suffers and the
required detection accuracy cannot always be met, which we further demonstrate in
Section 5.3.

In Figure 1(a), we also observe that not all sensors within the 25m sensing range
provide the same detection accuracy. For example, even though nodes 60 and 54 are
within the 25m sensing range of the target location, they have different detection
accuracies, at 93% and 86%, respectively. This observed sensing difference can cause
sensing coverage–based schemes to suffer. For example, in He et al. [2006], only one of
multiple sensors with the sensing range is enabled at a time to provide sensor coverage
(or 1-coverage) for energy savings. For our example, this means that either node 60 or
54 can be turned on to provide such 1-coverage. However, it is clear that using node
60 will provide 7% points better accuracy than using node 54. Unfortunately, sensing
coverage schemes have no knowledge of such subtle but important detection accuracy
differences and hence cannot provide confident event detection.

Figure 1(b) illustrates that different sensor clusters are able to provide the same
detection accuracy. For example, clusters C1, C2, and C3 (consisting of different sensor
modalities) can all provide 100% detection accuracy even though individual sensors
cannot. As shown in Xing et al. [2009], clustering sensors can produce a synergistic
effect, allowing sensors with complimentary detection strengths in different scenarios
to collaborate. Exploring the detection capability of a deployment by evaluating the
performance of different sensor clusters allows the most energy efficient clusters to be
chosen to confidently detect events. However, such exploration is not achieved by exist-
ing works, and thus user-defined accuracy requirements cannot be met with reduced
energy usage.

From the trace data analysis, it is very clear that existing approaches have difficulty
meeting user-required detection accuracy. This is due to lack of detailed detection accu-
racy knowledge of individual sensors and sensor clusters. Therefore, it is imperative to
design a scheme that can provide confident event detection with user-defined accuracy,
address in-situ sensing reality, and reduce energy usage.

4. WATCHDOG DESIGN

Before we elaborate on the details of our Watchdog system, we provide a list of sensor
terminology used in the text:

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 10, Publication date: November 2014.



10:6 M. Keally et al.

Fig. 2. Watchdog design.

—Node: Sensing unit with limited computational capability
—Aggregator: Unit with advanced computational capability that provides event detec-

tion based on information from the nodes
—Cluster: Group of sensor nodes
—Sentinel sensors: Cluster of low-power sensors that is used for simple event detection

decisions
—Reinforcement sensors: Cluster of high-power sensors that is used for complex event

detection decisions

In our Watchdog architecture, depicted in Figure 2, computationally limited nodes
with sensors are connected through a wireless link to a more powerful aggregator,
such as a mobile phone. Nodes collect sensor data and return observations to the
aggregator, which makes event detection decisions. Our architecture is structured to
solve the challenges that arise from providing confident event detection through the
use of the modules that we describe later and elaborate on in the following subsections.

The Local Aggregation module, located on sensor nodes, is used to provide efficient
collaboration between heterogeneous sensors. Sensor data is aggregated such that
observations from different sensor modalities can be compared and easily fused at the
aggregator to make cluster-level detection decisions.

In Cluster Generation, we explore the detection capability of a deployment by deter-
mining the detection capabilities of individual sensors and sensor clusters within the
deployment. We use machine learning to perform event detection and determine train-
ing accuracy of heterogenous sensor clusters. In Section 4.2, we apply several machine
learning techniques to our generic design, which we also evaluate in Section 5.

In Sentinel and Reinforcement Selection, clusters are selected that meet user de-
tection requirements and adapt to changes in environmental dynamics. Using the
deployment detection capability determined by Cluster Generation, a subset of that
capability is selected such that the user requirements can be met. A cluster of low-
power sentinel sensors is selected to meet the user detection requirements for many
runtime observations, when event detection decisions are easy. For more difficult event
detection decisions where more detection capability is needed, a cluster of reinforcement
sensors is selected to ensure that the user detection requirements are met.

In Runtime Event Detection, the detection capability is adapted to runtime observa-
tions using the clusters selected in Sentinel and Reinforcement Selection. Specifically,
a low-power set of sentinel sensors make easy event detection decisions to meet user
accuracy requirements. When the sentinel sensors determine that more detection ca-
pability is needed, a second set of reinforcement sensors are used to make a confident
detection decision.

With Online Retraining, described in Section 4.7, Watchdog is able to detect signifi-
cant changes in environmental dynamics that cannot be captured by the existing sen-
tinels and reinforcement clusters. When such changes are detected, new observations
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Fig. 3. Transmission threshold 0 ≤ α ≤ 1 for a cluster member sensor. Sensor readings less than α are never
transmitted and are assumed by the aggregator to be the nonevent centroid, whereas readings greater than
or equal to α are always transmitted.

are labeled with ground truth and new clusters are generated to ensure that user
requirements are met. We now describe each design module in detail.

4.1. Local Aggregation

On a sensor node, the Local Aggregation module allows nodes to aggregate data locally
at regular intervals, allowing for reduced radio communication and heterogeneous
sensor fusion. The module is flexible to allow incorporation of different widely used
aggregation algorithms. In our vehicle detection scenario, for each sensor, our aggrega-
tion method returns the normalized sample variance of the raw sensor data (sampled
at 4,960Hz) every 100ms. In this aggregation algorithm, presented in Duarte and Hu
[2004], each raw sensor sample is represented as a 16-bit integer and divided by 32,767
(216 − 1) for the normalization. The normalized sample variance is the variance of all
normalized raw sensor samples. The normalized sample variance is returned because
it amplifies the changes in the raw data samples that occur when a vehicle is nearby.
The aggregation interval length is selected such that an event can be captured.

For sensor j and aggregation interval t, aggregated sensor data is represented as
observation Oj,t. The aggregator fuses observations from each sensor j in a sensor
cluster Ci to form an observation OCi ,t for that cluster. The fused observations can
then be used by the aggregator to determine sensor cluster accuracy or make run-
time detection decisions. We describe how sensor observations are fused together in
Section 4.2, as different approaches are used for each detection algorithm.

Transmission energy savings. From training observations, a default observation
value is determined for each sensor, which is associated with nonevents. To save energy,
a node only transmits observations when at least one of its sensors makes a nondefault
observation that is higher than the configured transmission threshold values. The ag-
gregator is the receiver of nondefault observations. At each aggregation interval, if the
aggregator does not receive an observation from a sentinel or reinforcement sensor, it
assumes the default observation value.

Since our original approach for transmission energy savings in Keally et al. [2010]
requires discrete sensor data, we expand on this to allow for machine learning methods
that continuous data as input. We implement a bandwidth- and energy-saving approach
via a transmission threshold defined for each sensor. Using training observations and
labeled ground truth for each observation, each sensor computes a nonevent and event
centroid during initial training and when clusters are updated. The nonevent centroid
values are transmitted to the aggregator during the cluster generation process.

A system-defined transmission threshold, α, depicted in Figure 3, resides between
the nonevent and event centroids for each cluster member sensor. If a member sensor
reading falls below the threshold, the reading is not transmitted to the aggregator.
Therefore, if the aggregator does not receive a data sample from a cluster member
sensor, it assumes the nonevent centroid reading for that sensor when forming a cluster
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observation. We show the effectiveness of this threshold in our evaluation in terms of
energy consumption and accuracy.

4.2. Machine Learning Exploration

To discriminate events from nonevents, Watchdog can make use of many machine
learning techniques; however, we focus on HMMs, k-means clustering, and Fisher’s
linear discriminant, which we compare in our evaluation. We first explain HMMs with
uniform discretization. We then illustrate how to use k-means clustering to discretize a
vector of real-valued sensor readings as input into a discrete HMM. Next, we explore the
use of a continuous HMM. Last, we look at Fisher’s linear discriminant as another ap-
proach for event detection and improving detection accuracy to meet user requirements.

HMMs with uniform discretization. HMMs require little initial configuration and are
built on the premise of determining hidden states (events) from a sequence of known ob-
servations (sensor readings) [Rabiner 1989]. HMMs assume that events and nonevents
are correlated with time and make use of transition probabilities to further predict the
likelihood of an event at each aggregation interval. HMMs also allow aggregated data
from different sensor modalities to be easily fused, providing a generic framework that
is adaptable to many application scenarios.

The HMMs that we use have two hidden states: E = 0 for nonevents and E = 1
for events. The HMM also has m possible observations. To form HMM observations
for a sensor cluster Ci, aggregated observations for each sensor in the cluster are
independently discretized into one of m evenly sized bins. For a training or runtime
aggregation interval t, discretized observations for each sensor are then fused into a
single discrete observation OCi ,t, which is the average bin value of all observations
in the cluster. Using a fused training observation sequence OCi , a cluster HMM for
a cluster Ci is trained using the Baum-Welch algorithm [Rabiner 1989] to form both
state transition and observation probabilities. In our vehicle detection scenario, with
1,000 training observations (100s), the Baum-Welch algorithm would converge within
about 20 to 30 iterations for each cluster (the other HMM techniques that we explore
also exhibited similar convergence).

At each runtime aggregation interval t, a cluster HMM uses the Forward algorithm
and a history of fused observations to determine an event probability γt ∈ [0, 1]. If
γt ≥ 0.5, the HMM determines that an event has occurred (Et = 1); otherwise, the
HMM determines that there is no event (Et = 0).

Clustering-based discretization for HMMs. In Khan et al. [2010], clustering real-
valued input data into discrete observations yields significant accuracy improvements
over uniform discretization when using discrete HMMs. In Watchdog with clustering-
based discretization for HMMs, we use k-means clustering [Bishop 2006] to discretize
data from a sensor cluster into one of m observations required by the discrete HMM.
For each sensor cluster formed during Cluster Generation, the aggregator creates m
centroids using k-means clustering of recently collected sensor cluster reading tuples.
Unlike the approach used with uniform discretization, each observation input OCi ,t
is a tuple of aggregated observations for each sensor in cluster Ci. For each tuple of
sensor readings during Cluster Generation or Runtime Event Detection, the aggregator
determines which of the mcentroids is closest to the tuple. For a cluster Ci, the centroid
index is used as the current observation input to the Baum-Welch algorithm for HMM
training or the Forward algorithm for Runtime Event Detection.

Continuous HMMs. In using a continuous HMM, we remove the requirement for
discretization of sensor data. A cluster of sensors has a large number of possible read-
ing combinations that must be discretized into a small number of observations. Using
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continuous HMMs [Rabiner 1989] with Gaussian distributions, we can preserve the
granularity of the original sensor readings when providing training and runtime ob-
servation input. As with the clustering-based HMM, raw sensor readings for each
generated cluster are collected by the aggregator and then fed as tuples into the Baum-
Welch algorithm for HMM training or the Forward algorithm for detecting events in
Runtime Event Detection. Also like the k-means approach, each observation input OCi ,t
for a cluster Ci at aggregation interval t is a tuple rather than a single discrete value.

ALGORITHM 1: Cluster Generation
Input: Set of all sensors in network N, user-defined false-positive rate uf p and false-negative

rate uf n, training observations O = {OCi ,t|Ci ⊂ N, 1 ≤ t ≤ T }, ground truth G = {Gt|1 ≤
t ≤ T }, number of clusters for each cluster size M

Output: Set of clusters C = {Ci|Ci ⊂ N}
Randomly generate M clusters for each size k(1 ≤ k ≤ |N| − 1), add to C
for all clusters Ci ∈ C do

Train event detection model for Ci using OCi
for Aggregation interval t(1 ≤ t ≤ T ) do

Determine event probability γt using Ci and OCi
if γt ≥ .5 then Et = 1 else Et = 0
Compare system event decision Et with Gt
Update f n(Ci), f p(Ci), f n(Ci, γt), f n(Ci, γt)

end for
end for

Fisher’s linear discriminant. Although HMMs can capture the correlation of events
with time as well as the correlation of events with different cluster observations, they
cannot fully capture the data dependencies between different sensors in a cluster. To
address this concern, we also implement Fisher’s linear discriminant [Bishop 2006],
which attempts to find a projection (i.e., linear combination) of sensor cluster read-
ings that maximizes the separation of event readings from nonevent readings. As with
clustering-based HMMs and continuous HMMs, the aggregator forms a tuple of ag-
gregated observations from each sensor in a cluster to provide input for training and
runtime detection. However, like the uniform discretization HMMs, each individual
sensor reading in an observation tuple OCi ,t is uniformly discretized into one of m val-
ues. This discretization allows for the construction of discrete observation distributions
for each sensor, which are then used to partition event and nonevent training data.
We note that the model-driven scheme assumes Gaussian-distributed sensor readings,
which in Sections 3 and 5 we show does not work well due to the properties of each spe-
cific sensor deployment, such as wind, terrain, differences in sensor hardware, sensor
placement, and other background noise.

Once a partition is found during training that best separates the event observations
from the nonevent observations, all training observations are projected onto the line
perpendicular to the partition to determine event and nonevent centroids. New obser-
vations are then projected onto the same line and are classified by determining the
nearest centroid. Like the other HMMs, we can also determine an event probability γ
for an observation by comparing the distances between the projected observation and
the centroids.

4.3. Cluster Generation

In Cluster Generation, we determine the detection capabilities of individual sensors
and different sensor clusters, exploring the detection capability of a specific deploy-
ment. To do this, we generate sensor clusters of each possible size, ranging from size
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1 for individual sensors to a cluster consisting of all available sensors. Using machine
learning, we train a detection model and determine accuracy for each cluster using sen-
sor training data labeled with event ground truth. We explain the cluster generation
process in further detail using Algorithm 1.

With N sensors in a network, to completely explore the network detection capability,
we ideally would generate all possible clusters from size 1 to |N|. However, since
computing resources are limited, we compute M random clusters of each possible size
from which to choose sentinels and reinforcements. By computing a fixed number
of clusters for each size, our exploration approach is comparable in computational
efficiency and effectiveness as more advanced feature selection approaches, such as
simulated annealing [Kirkpatrick et al. 1983; Cerny 1985].

For each generated cluster Ci in the set C of all generated clusters, we train a
machine learning detection model. A model for each cluster is trained using a sequence
of training observations OCi and truth labels for each training observation G. Training
observations for each sensor, as well as ground truth, are collected before runtime or
for a short period during a runtime update.

With a trained detection model for each cluster, we can determine a cluster’s event
decision Et for each aggregation interval t. Et is derived from the cluster’s event proba-
bility γt at each training aggregation interval t. As explained previously, the cluster de-
termines an event occurred at interval t (Et = 1) if γt ≥ .5 and no event occurred (Et = 0)
if γt < .5. We can then use the cluster’s event decision sequence E = {Et|1 ≤ t ≤ T }
to compare with known ground truth G = {Gt|1 ≤ t ≤ T } at each aggregation interval
to determine cluster training accuracy. If at aggregation interval t the event detection
decision is equal to the ground truth (Et = Gt), then the cluster made a correct decision
at t. Otherwise, the decision was a false positive or false negative.

Event probability discussion. We can compute the overall accuracy for each cluster
Ci by comparing all event detection decisions Et to ground truth Gt to determine the
overall false-negative rate f n(Ci) and the overall false-positive rate f p(Ci). However,
a cluster with an overall low false positive or false negative rate may have all its
incorrect decisions result from event probabilities that hover near .5. During runtime
detection, it is likely that an event probability near .5 will result in an incorrect decision.
Consequently, it is beneficial to differentiate the accuracies between event probabilities.
During runtime detection, possible bad decisions made by sentinels due to middle-
range event probabilities can be caught and reinforcements used to meet the user
requirements.

To study the correlation between event probability and detection accuracy, for each
cluster Ci we break down each training event probability γt into p ranges of size 1/p. For
each range, we compute false-positive rates f p(Ci, γ ) and false-negative rates f n(Ci, γ ).
Figure 4 shows an event probability breakdown of a cluster Ci from the Wisconsin
vehicle trace data with 97% overall accuracy with p = 10 probability ranges. From the
figure, it is clear that all negative event decisions have an event probability in the [0, .1)
and [.2, .3), ranges, whereas all event decisions have a probability in the [.9, 1] range.
During runtime detection, the event probability breakdown for the sentinel cluster
is used to determine if an event probability γt does not meet user false-positive and
false-negative requirements and that reinforcement observations should be collected
to make a confident decision. Since the scenarios that we evaluate only return a finite
and discrete number of event prediction probabilities (refer to Section 5.1), using bins
does not significantly impact the error analysis.

4.4. Sentinel and Reinforcement Selection

With the deployment detection capability explored by determining accuracy for all gen-
erated clusters, we choose a subset of the deployment to remain awake during runtime
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Fig. 4. Event probability breakdown for a cluster Ci with a 6% overall false-positive rate and no overall
false-negative rate. For each .1 event probability range, the associated false-positive rate f p(Ci, γ ) and false-
negative rate f n(Ci, γ ) are shown as bars. All ranges that have no observations yield a false-positive or
false-negative rate of 1, because no accuracy can be determined for that range and hence we assume the
worst.

ALGORITHM 2: Sentinel and Reinforcement Selection
Input: Set of all sensors in network N, set of trained clusters C, user-defined false-positive

rate uf p and false-negative rate uf n
Output: Sentinel sensors s, Reinforcement sensors r

/*Sentinel Selection*/
f n(s) = 1; s.numNodes = |N|; s = N;
for all clusters Ci ∈ C do

/*Meet user FN with least energy*/
if f n(Ci) ≤ uf n and Ci .numNodes≤s.numNodes then

s = Ci
s.numNodes = Ci .numNodes

end if
end for
/*Reinforcement Selection*/
f p(r) = 1; f n(r) = 1; r.numNodes = |N|; r = N;
for all clusters Ci ∈ (C − s) do

/*Meet user FP and FN with least energy*/
if (s ∪ Ci).numNodes ≤ r.numNodes and f p(Ci) ≤ uf p and f n(Ci) ≤ uf n then

r = Ci
r.numNodes = Ci .numNodes

end if
end for

detection as sentinels and reinforcements to make confident detection decisions. We
choose sentinels such that all negative event decisions can be made with confidence:
that the user’s false-negative requirement is met by sentinels. Since communication is
the most energy intensive operation in wireless sensor networks [Shnayder et al. 2004],
we minimize energy usage by selecting a sentinel cluster with sensors on the fewest
number of nodes, as only one radio transmission is needed to report observations from
multiple sensors on the same node in one aggregation interval.

Since sentinels are only concerned with determining the lack of an event with confi-
dence, we leave more difficult observations to the more powerful reinforcements when
negative event decisions cannot be confidently made by sentinels. Therefore, we choose
reinforcements so that both the user’s false-positive and false-negative requirements
are met. We also ensure that the combined sentinel and reinforcement clusters are

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 10, Publication date: November 2014.



10:12 M. Keally et al.

located on the fewest number of nodes to save energy. The reinforcement cluster has at
least one sensor that is not in the sentinel cluster to ensure that there is some added
benefit from sampling reinforcement data. The sentinel and reinforcement selection
algorithm is given in Algorithm 2. We note that false-positive and false-negative rates
are calculated over Ci, because reinforcements are trained as a separate cluster and
their runtime decisions are independent of the sentinels.

4.5. Cluster Generation Alternatives

Since randomly generating clusters for sensor selection creates performance concerns,
we present two cluster generation and sensor selection alternatives. We first describe
selecting sensors based on distance to the target location and then illustrate selecting
sensors based on correlation of event detection decisions. However, in our evaluation
in Section 5, we demonstrate that the sparseness of the sensor deployment, as well as
restricting cluster generation to sensors within 100m of each target location, mitigates
both the efficiency and accuracy concerns for random cluster generation. Specifically,
due to the fusion range constraint and sleeping nodes, the number of available nodes
is bounded between three and five for all locations.

Distance-based cluster generation. Sensors are ranked by distance to the target lo-
cation, with the closest sensors ordered first. Sentinels are selected by adding one
sensor at a time in order of distance until the user’s false-negative requirement is met.
Reinforcements are selected by adding one sensor at a time in order of distance until
both the false-positive and false-negative requirement are met.

Correlation-based cluster generation. A classifier is trained for each individual sensor
using training data. Sensors are then ranked by either false-negative rate if we are
choosing sentinels, or by total accuracy if we are choosing reinforcements. The first
sensor chosen, for either the sentinel or reinforcement cluster, is the sensor with the
highest rank. Then, we compute the decision correlation between the current cluster
and all other remaining individual sensor classifiers as in Keally et al. [2011]. The
decision correlation defines the correlation between sensor and sensor cluster classifier
decisions. To compute the decision correlation for a classifier, each correct decision is
recorded as one and each incorrect decision is recorded as zero. The sensor with the
decision correlation closest to zero is the sensor added to the cluster. Sensors are added
one at a time to the cluster until the false-negative requirement is met if we are
choosing sentinels, or until both the false-positive and false-negative requirements are
met if we are choosing reinforcements.

4.6. Runtime Event Detection

In Runtime Event Detection, sentinels and reinforcement sensors sample observations
at each aggregation interval while all other nodes are asleep. The aggregator dynam-
ically determines an event detection decision Et for each interval t using sentinel or
reinforcement observations, assuming a default observation value if no transmission
is received. The Runtime Event Detection algorithm is described in Algorithm 3.

As shown in the algorithm, for each runtime aggregation interval t, sentinels deter-
mine an event probability γt using the same method performed in Cluster Generation,
except runtime observations are used. If γt < .5, the sentinels can confidently deter-
mine that no event has taken place (Et = 0) since the sentinels were selected such
that the user’s false-negative requirement is always met. However, if γt ≥ .5, we must
check if the sentinels meet the user’s false-positive requirement for the given proba-
bility range into which γt falls, f p(s, γ ). If the user’s false-positive requirement is met,
f p(s, γ ) ≤ ufp, the sentinels can confidently determine that an event has occurred
(Et = 1). Otherwise, when f p(s, γ ) > ufp, then the user’s false-positive requirement
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ALGORITHM 3: Runtime Event Detection
Input: Sentinels s, reinforcements r, and runtime observation for s for the current aggregation

interval Os,t may also receive runtime observations for r for the previous and current
aggregation intervals Or,t−1, Or,t

Output: Event detection decision for the current aggregation interval Et and for the previous
interval Et−1 if Et−1 = UNDECIDED
if Et−1 = UNDECIDED then

/*Make a confident decision at t − 1 using r*/
Determine γt−1 using detection model from r and Or,t−1
if γt−1 ≥ .5 then Et−1 = 1 else Et−1 = 0

end if
Determine γt using detection model from s and Os,t
if γt < .5 then

Et = 0 /*s confidently determines no event at t*/
else if γt ≥ .5 and f p(s, γ ) ≤ f p(u) then

Et = 1 /*s confidently determines an event at t*/
else if γt ≥ .5 and requested Or,t has been received then

/*Make a confident decision at t using r*/
Determine γt using detection model from r and Or,t
if γt ≥ .5 then Et = 1 else Et = 0

else
/*A confident decision cannot be made at t using s*/
Et = UNDECIDED; request Or,t and Or,t+1

end if

is not met, Et is undecided, and more detection capability is required by requesting
reinforcement observations. The aggregator sends a request message to retrieve re-
inforcement observations for intervals t and t + 1 when a confident decision cannot
be made by the sentinels. The reinforcement observations for t will be returned at
the end of interval t + 1. Piggybacking reinforcement observations for interval t + 1
along with the observations for t will allow the aggregator to use reinforcement ob-
servations to make a decision for t + 1 if the sentinels are not confident for t + 1.
Another reinforcement observation request message for interval t + 1 would not be
necessary.

When sentinel observations are returned during an interval t for the previous inter-
val t − 1, the aggregator can make a confident decision, as the sentinels meet the user
accuracy requirements. γt is determined using the reinforcement observations, and an
event, Et−1 = 1, is confidently determined if γt ≥ .5. Otherwise, Et−1 = 0.

To illustrate Runtime Event Detection, an example is presented in Figure 5. In the
figure, the sensors on node 1 are sentinels, wheras the other two sensors on nodes
60 and 61 are reinforcements. During the first interval t = 1, no sensors report non-
default observations, so the base station determines an event probability of .02. Since
the sentinels have been determined to meet the overall false-negative requirement,
f n(s) ≤ uf n = .05, the decision is confident. A similar decision also occurs at t = 3. At
t = 2, the sentinels capture an event and report their observations via radio, yielding
an event probability of .98. The false-positive rate for sentinels when γt = .98 was
determined during training as .02, so this is a confident decision (.02 ≤ ufp = .05).
At t = 4, the seismic sentinel sensor does not capture the event, and the sentinel
false-positive rate for the current observation and event probability was determined
from training as .45. Since .45 is greater than ufp = .05, the aggregator could not
make a confident decision and thus more detection capability is needed. Therefore,
reinforcements are signaled to return their data for t = 4 at the end of interval t = 5.
At t = 5, the reinforcement data yields a confident event decision for t = 4 since
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Fig. 5. Runtime detection timeline with sentinel and reinforcement event decisions, where uf n = ufp = 0.5.
Gray areas indicate sensor readings that trigger nondefault observations that are higher than the configured
transmission threshold values. Aggregator-determined event probabilities are indicated by γt, and event
decisions are indicated by Et. Radio transmissions due to nondefault observations are indicated by the
arrows.

sentinels always meet the user requirements and the sentinel data determines that no
event has occurred.

4.7. Online Retraining

During runtime, a sentinel or reinforcement cluster may experience a drop in detection
performance, running the risk of not meeting the user detection requirements. Such a
performance drop may be due to changes in background noise or to the properties of
the event. In these cases, the sentinel and reinforcement clusters are disbanded and
new, more accurate sentinel and reinforcement clusters are regenerated. With Online
Retraining, the aggregator receives periodic feedback as to the accuracy of detection
decisions. This feedback can be provided in a manner similar to Keally et al. [2011],
where K-L divergence is used to compare training data to current runtime data at
each aggregation interval, determining that an update is needed when runtime data
is significantly different from training data for each active sensor.

When an update is triggered, the aggregator broadcasts an update message to no-
tify all sensor nodes. Each awake node maintains a cache of the most recent readings
for each sensor, and on receipt of an update message, these readings are transmit-
ted back to the aggregator. The aggregator then collects new ground truth for the
recent observations and selects new sentinel and reinforcement sensors through the
Cluster Generation and Sentinel and Reinforcement Selection processes described in
Section 4.3 and Section 4.4, respectively. Candidate sensors are kept awake to be con-
sidered as future sentinels or reinforcements. These are chosen randomly after each
update using the set of available sensors. We ensure at least two nodes are awake as
candidates in the evaluation. Runtime Event Detection then proceeds with the new
sentinels and reinforcements as in Section 4.6. Ground truth is obtained via user feed-
back in a fashion similar to V-SAM [Hwang et al. 2007], where a video camera is
utilized. Particularly, a user plays back the most recent activity to see what happened
and records ground truth for retraining.

A new, updated cluster may change with respect to the old cluster in three ways.
First, the new cluster may consist of the same exact sensors as the old cluster but
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with a new detection model at the aggregator. Second, a newly formed cluster may also
reside on the same nodes as the old but contain different sensors. Third, a new cluster
may also reside on different nodes than the previous cluster. In future work, we will
predict how a cluster changes during an update to reduce overhead in generating new
clusters as well as to ensure energy fairness through load balancing among clusters.

After sentinel and reinforcement sensors are selected during initial training or an
update, a subset of nodes is selected as candidate nodes from among all nonsentinel
and nonreinforcement sensor nodes. Such candidate nodes remain awake and sample
data so that during an update candidates may be selected to become sentinel or rein-
forcement sensor nodes if the current sentinel or reinforcement nodes cannot meet the
user requirements.

5. EVALUATION

Watchdog is designed as a generic framework, so we evaluate its performance in two
different application scenarios using a PC-based Java simulation: vehicle detection
using trace data and a building traffic monitoring application using IRIS motes. For
the vehicle detection trace, we use the same simulation methodology described in
Section 3. We use one pass of the vehicle (70s) as training data and the remaining
trace with 10 more passes as runtime data. In the building traffic monitor experiment,
we place five IRIS motes with attached MTS310 sensorboards (two-axis accelerometer,
two-axis magnetometer, acoustic, light sensors) [MEMSIC 2014] on the main entrance
door of an academic building to monitor the traffic pattern of when people are most
often entering and leaving the building. We define an event and measure the ground
truth as the time period during which someone opens the door and walks through
(either entering or exiting), with the door automatically closing behind. We obtained
ground truth via video recording of the building entrance and sampled data at 20ms
intervals using the heterogeneous sensors on the mote sensorboards. We also use a 4s
aggregation interval and 2 minutes of data for training. Additionally, 40 observations
are used for periodic retraining.

We compare against a sensing coverage–based framework and a modality-specific
sensing model using data fusion. The sensing coverage approach, V-SAM [Hwang et al.
2007], is a state-of-the-art scheme, which in contrast to conventional coverage ap-
proaches attempts to keep awake sensors that sample similar data. Similarity repre-
sents a virtual sensing relationship among sensor nodes and is calculated based on the
similarity equation from Hwang et al. [2007]. We also force k-coverage on V-SAM, where
one to three nodes are awake to cover an event; only one node must detect an event
for V-SAM to detect an event. We also compare Watchdog with a classical model-driven
event detection solution [Yuan et al. 2008] that uses a modality-specific sensing model.
In Yuan et al. [2008], a signal attenuation model is used to estimate signal energy for
targets of different distances with a Gaussian noise distribution model. Given a user-
defined false-positive rate, the model-driven approach can derive an event detection
threshold for the average energy readings of all sensors in a cluster.

In Section 5.1, we first demonstrate that Watchdog is able to explore the detection
capability of a specific deployment and cluster the right sensors to meet user detection
requirements. Next, in Section 5.2, we compare against a sensing coverage–based
framework and illustrate that Watchdog achieves a significantly higher performance.
In Section 5.3, we compare against a data fusion–based modality-specific sensing model
and show that Watchdog can adapt the detection capability to runtime observations
and meet user detection requirements whereas the model-driven approach cannot.
We explore the effects of different machine learning approaches in Section 5.4 and
investigate in Section 5.5 how Watchdog can create new clusters when the existing
sentinel and reinforcement clusters are unable to handle a significant environmental
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Fig. 6. Cluster Training and Runtime Detection. An integer besides the “X” denotes the number of clusters
that give the corresponding FP or FN rate.

change. Last, we demonstrate the benefits of our transmission energy saving approach
in Section 5.6 and demonstrate in Section 5.7 that randomly choosing sensors does not
impact performance. In the experiments, for Watchdog we generate M = 15 clusters for
each possible size. By default, we use HMMs with uniform discretization and Online
Retraining disabled. We also set user requirements to 5% for false positives and false
negatives.

5.1. Exploring Detection Capability and Meeting Requirements

Using the building traffic monitor trace, we show that by exploring the detection capa-
bility of a specific deployment, Watchdog can choose the right sensor clusters to meet
user-defined false-positive and false-negative rates. In Figure 6(a) and (b), we plot the
number of clusters for each cluster size that achieve the same training false-positive
or false-negative rate. In Figure 6(c) and (d), we plot cluster training performance
compared with runtime performance. In this subsection, we use half of the data (and
events) for training and the remaining half for testing.

In Figure 6(a) and (b), there are only a limited and discrete number of false-positive
and false-negative rates that the deployed system can support. To that end, a user
can only require a false-positive or false-negative rate that can be supported by the
system. For example, most sensors and sensor clusters have false-positive and false-
negative rates near zero, whereas only a few experience false-positive rates greater
than 70% or false-negative rates greater than 45%. This set of cluster performances
is determined by the sensor hardware and local sensing reality where the system is
deployed. Different scenarios may produce different false-positive and false-negative
rates for each cluster.

In Figure 6(a) and (b), we also observe that even in a small deployment with “5 IRIS ×
6 sensors each = 30 sensors,” there are a large number of sensor clusters available to
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meet user-specified false-positive or false-negative rates. As shown in Figure 6(a), there
are exactly 3 + 3 + 2 = 8 sensor clusters that demonstrate a 5% false-positive rate in
the training data and 189 sensor clusters that demonstrate smaller than a 5% false-
positive rate. So, in total, 8 + 189 = 197 different sensor clusters can be chosen to meet
the user-specified 5% false-positive rate.

In Figure 6(c) and (d), we observe that during runtime detection, Watchdog is able
to meet the false-positive or false-negative rate explored during training. For example,
Figure 6(c) shows that 48 clusters with a training false-positive rate of 0% achieve this
performance during runtime; Figure 6(d) shows that 182 clusters with a false-negative
rate of 0% also demonstrate no false negatives during runtime. In Figure 6(c) and (d),
we also observe that clusters with higher training false-positive or false-negative rates
achieve significantly better runtime performance: 6 clusters with a training false-
positive rate of 72% achieve a runtime false-positive rate of 10%, and 13 clusters with
a training false-negative rate greater than 20% achieve a runtime false-negative rate
of 5% or less.

To summarize, these data illustrate that Watchdog is able to cluster the right sensors
to meet user requirements during runtime. In addition, many clusters of different
sizes exist to meet user-required accuracy. This allows for freedom in sentinel and
reinforcement selection to adapt the detection capability to environmental dynamics
and maximize energy savings.

5.2. Comparison with V-SAM

Using the building traffic monitor trace, we compare Watchdog to a state-of-the-art
sensing coverage framework that addresses sensing irregularity—V-SAM [Hwang et al.
2007]. Although V-SAM cannot provide guaranteed accuracy, we set the Watchdog user
requirements to the lowest false-positive and false-negative rates determined from
training. Evaluation results are presented in Figure 7 with 95% confidence intervals
over 20 runs.

In Figure 7(a) and (b), we observe that Watchdog outperforms V-SAM in every con-
figuration: all modalities, individual modalities, and varying levels of V-SAM coverage.
Although using higher k-coverage and similarity-based coverage helps improve V-SAM
performance, it is always outperformed by Watchdog, which consistently demonstrates
close to 100% detection accuracy in Figure 7(a) and close to zero false negatives in
Figure 7(b). None of the Watchdog or V-SAM configurations experience statistically
noticeable false positives, so false-positive rates are not illustrated. Watchdog can con-
sistently outperform V-SAM because Watchdog samples subsets of potential sensor
clusters to explore the detection capability of individual sensors and sensor clusters in
a deployed system to meet user requirements. However, V-SAM has no detailed knowl-
edge of detection accuracy, so the most accurate sensors may be excluded, whereas poor
performing sensors may become involved in detection decisions.

In Figure 7(c), we observe that Watchdog is much more energy efficient than V-SAM.
We compute energy to transmit or receive each byte of a 802.15.4 packet on CC2420
radios [Chipcon Products 2014] using a TDMA-based scheme. We use the default pay-
load of 28 bytes for each payload, which is more than sufficient to carry aggregated
data for all sensors on the transmitting node. As shown in Figure 7(c), Watchdog
energy consumption is relatively constant for all modalities and for each modality,
hovering around 9 × 10−4 J, since typically only one to two nodes are used in forming
both sentinel and reinforcement clusters. However, V-SAM energy consumption (when
achieving good performance) is much more varied: 10 × 10−4 ∼ 26 × 10−4 J. Although
Watchdog may use more energy than 1- or 2-coverage V-SAM, Watchdog achieves about
35% points better accuracy compared with those V-SAM configurations. Watchdog is
significantly more energy efficient than V-SAM because Watchdog fully explores the
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Fig. 7. Watchdog and V-SAM comparison for different modalities, levels of V-SAM coverage, and training
lengths.

detection capability of individual sensors and sensor clusters. Hence, Watchdog can
use this knowledge to adapt sensing capability to runtime observations while making
confident detection decisions, but V-SAM cannot.

Training length. In Figure 7(d), we observe that for Watchdog to achieve the afore-
mentioned superior detection accuracy and energy efficiency compared with V-SAM,
only a short training length is needed. The figure shows that when the training length
increases, Watchdog performance improves quickly, surpasses V-SAM performance,
and converges to near perfect accuracy after about 2 minutes, which is reasonably
short for real applications. Even though V-SAM requires little training, which is invis-
ible in Figure 7(d), it demonstrates much lower detection accuracy and much higher
energy usage than Watchdog. Since the training length is short, the use of periodic
retraining can handle environmental changes.

5.3. Comparison with a Modality-Specific Sensing Model

In this section, we compare Watchdog with a classical model-driven event detection
solution [Yuan et al. 2008] that uses a data fusion–based modality-specific sensing
model. For fair comparison, we use the same Wisconsin SensIT experiment trace data
[Abrams et al. 2004] used in Yuan et al. [2008] and make use of acoustic sensors to
detect vehicles passing a static target location. Our evaluation is conducted in two
scenarios: when the target location is well within the sensing range of all sensors, and
when the sensors are located at the fringe of the detection range. In the first scenario,
we use five acoustic sensors <25m to the target location; in the second, we use seven
acoustic sensors with distances >40 from the target location. The results are plotted
in Figure 8.

For the <25m scenario, we observe from Figure 8(b) that Watchdog always meets
the user’s false-positive requirement whereas the model-driven scheme cannot. For in-
stance, in Figure 8(b), the model-driven scheme has a 28% false-positive rate when 20%
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Fig. 8. Watchdog and modality-specific sensing model comparison with sensors located within 25m of, or
more than 40m from, the target location.

is required and gives a 42% false-positive rate when 40% is required. We also observe
from Figure 8(a) that Watchdog yields perfect accuracy, whereas model-driven accuracy
drops when the desired false-positive rate increases. Watchdog performs better than
the model-driven scheme because Watchdog always chooses sentinels and reinforce-
ments that meet user requirements for confident event detection. The model-driven
scheme does not exploit such subtle but important information.

For the >40m scenario, we also observe that Watchdog always meets user require-
ments but the model-driven scheme performs poorly or even fails. For example, when a
user requires a 5% false-positive rate, the model-driven approach experiences very low
accuracy, 67% in Figure 8(a), and a very high false-negative rate, 100% in Figure 8(c).
This is because for a low desired false-positive rate, the model-driven detection thresh-
old is set too high to detect any events. We also find in Figure 8(c) that requesting
higher false-positive rates does not help much. The poor performance of the model-
driven scheme and the good performance of Watchdog can be explained with the same
reasons attributed to the <25m scenario.

Using the transmission energy model from Section 5.2, in both scenarios Watchdog
is found to consume significantly less energy than the model-driven scheme as shown
in Figure 8(d). This is because the model-driven scheme in Yuan et al. [2008] has a
very simple energy-saving scheme: nodes within the 25m “fusion range” are awake,
and nodes beyond the range all sleep. On the contrary, Watchdog adapts the detection
capability to runtime observations through the use of sentinels and reinforcements for
more aggressive energy savings. In Figure 8(d), we also observe that the model-driven
scheme consumes more energy in the >40m scenario than the <25m scenario. This is
because seven nodes are used instead of five.
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Table I. Adapting Detection Capability with Reinforcements

Sentinel FP/FN (%) Reinforc. FP/FN (%) Reinforc. Requests (%)
9.5/0.0 0.0/0.0 21

Fig. 9. Multiple location performance with Watchdog, modality-specific sensing model, and V-SAM.

Adapting detection capability. Using the <25m scenario, we illustrate in Table I how
Watchdog adapts the detection capability to environmental dynamics. With desired
false-positive and false-negative rates of 0%, a sentinel cluster is selected with a 9.5%
false-positive rate and 0% false-negative rate. A more powerful reinforcement cluster
is selected with a 0% false-positive and false-negative rate. During runtime, 79% ob-
servations are comparatively easy, and hence confident decisions are entirely made by
sentinels. When the sentinels make a decision that does not meet user requirements
(for the 21% more difficult observations), reinforcements are used to make a confi-
dent decision. The reduction in radio transmissions made by using only the sensors
necessary to meet user requirements ensures significant energy savings.

5.4. Machine Learning Comparison

Using the vehicle detection trace, we choose 79 target locations along the road and
cluster sensors within a 100m range. Each event location is treated as an indepen-
dent application instance for Watchdog and then the results are averaged across the
79 instances. We plot standard deviation error bars for accuracy, false-positive rates,
and false-negative rates. Having more target locations increases the environmental
dynamics and allows us to better investigate the effects of different machine learning
algorithms as well as Online Retraining in Section 5.5. Figure 9(a) shows that Watch-
dog without Online Retraining using Fisher’s linear discriminant can meet the user
requirements for 95% of the target locations, whereas the modality-specific sensing
model and V-SAM meet the user requirements for 63% and 85% of the target locations,
respectively. The percentage of target locations meeting user requirements changes
significantly between continuous HMMs with Online Retraining and without Online
Retraining due to overfitting. The events change during runtime, so the model must be
updated more often since it is overfitting the training data. A similar trend can be seen
when comparing average accuracy for all target locations in Figure 9(b). With respect
to the different machine learning methods, Watchdog with Fisher’s linear discriminant
exhibits the best performance, as it can determine the data dependencies between dif-
ferent sensors in a cluster and use the strengths of each sensor to maximize detection
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Fig. 10. False negatives and energy usage comparison for multiple locations.

performance. Watchdog with a clustering-based discretization HMM is also able to im-
prove on the default uniform discretization HMM since k-means clustering aids the
HMM in separating events from nonevents. The continuous HMM meets many fewer
target locations compared with other Watchdog implementations because it requires a
much longer training dataset to train accurately.

Figure 9(b) shows that a slight accuracy increase allows Watchdog to meet user
accuracy requirements for many more locations, making Fisher’s linear discriminant
especially valuable. For example, the continuous HMM without Online Retraining has
greater than 90% average accuracy for all locations yet only meets user requirements
for 34% of these locations. However, with 98% average accuracy, Watchdog with Fisher’s
linear discriminant and no Online Retraining meets user requirements for 95% of lo-
cations. Similarly, increasing coverage for V-SAM increases its detection accuracy and
the number of locations that meet the user requirements, but even 4-coverage V-SAM
meets the user requirements for only 85% of locations. Nearly all of the detection
errors for Watchdog, the modality-specific sensing model, and V-SAM are false nega-
tives, as shown in Figure 10(a); the average false-positive rates for all approaches are
less than 1%, except the continuous HMM, which has an average false-positive rate
of 14%.

In Figure 10(b), we show the average energy consumption for each approach across
all target locations. We extend energy usage to include not only radio energy but also
energy consumed by motes while awake and sensing, with details given in Shnayder
et al. [2004]. Watchdog consistently experiences the lowest energy consumption, rang-
ing from just more than 0.2J with the uniform discretization HMM without Online
Retraining to 0.4J for the continuous HMM with Online Retraining. Watchdog is able
to reduce energy usage compared with other approaches because it chooses only the
sensors and nodes needed to meet user requirements. V-SAM has much higher en-
ergy consumption, ranging from 0.5J for similarity coverage to 0.6J for 4-coverage. As
coverage levels increase, more nodes are awake, increasing V-SAM energy usage. Fur-
thermore, the standard deviation is higher than Watchdog, because when events are
detected, V-SAM awakens all nodes to monitor the event until it is no longer detected.
The modality-specific sensing model keeps all nodes awake at all times and has very
high energy usage—1.4J. Its standard deviation is also much higher because some lo-
cations have many nodes within the 100m fusion range, whereas other locations have
few nodes.
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Fig. 11. Reinforcement requests.

5.5. Online Retraining

During runtime, Watchdog with Online Retraining is able to handle significant envi-
ronmental changes by retraining sentinel and reinforcement clusters. The 79 different
detection locations that we choose in the vehicle detection trace provide significant en-
vironmental dynamics, as the vehicle path varies widely with each pass. Watchdog con-
figurations with Online Retraining have two candidate nodes awake at each time inter-
val, and the machine learning approaches that use a transmission threshold have the
threshold set to α = 0.5. In Figure 9(a), Online Retraining is able to increase the number
of locations that meet user requirements for each machine learning method, ranging
from 3% points for Fisher’s linear discriminant to more than 30% points for the continu-
ous HMM. Similar increases in accuracy are also observed in Figure 9(b). Figure 10(a)
shows that Online Retraining requires slightly more energy due to communication
overhead in forming new clusters and awake candidate nodes, but performance is still
significantly better than the modality-specific sensing model and V-SAM.

In Figure 11, we show that more powerful reinforcements are requested sparingly,
regardless of the machine learning approach or the use of Online Retraining. Using
Fisher’s linear discriminant, some locations request reinforcement data more than 10%
of the time. Fisher’s linear discriminant requests reinforcements slightly more than
the other configurations, because it can closely capture the data dependencies among
sensors in a cluster and better determine when the sentinel cluster cannot make a
confident detection decision. This adaptation in detection between clusters of differing
sensing capability demonstrates the ability of Watchdog to reduce energy consumption
in comparison to other approaches.

Using Online Retraining, Figure 12(a) illustrates the total number of updates for each
target location and each Watchdog machine learning configuration. The figure shows
that a small number of updates allows Watchdog to maintain its high detection accuracy
and meet the user requirements. Most target locations require no updates with all but
the continuous HMM, for which most locations require two, three, or four updates.
For Fisher’s linear discriminant and the discrete HMMs, the initial training is good
enough to meet the user requirements for most locations; however, since the continuous
HMM does not receive enough training data, it requires more updates. Figure 12(a)
also depicts average accuracy for target locations with each number of updates. As
the number of updates per location increases, average accuracy generally decreases,
reaching as low as 70% for the continuous HMM. Although locations with the largest
amount of environmental change experience lower accuracy and more updates, without
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Fig. 12. Online Retraining.

such updates the accuracy would be even worse for these locations, as illustrated in
Figure 9(a).

Figure 12(b) shows how sentinel and reinforcement clusters are reformed during an
update. In the figure, the Watchdog configurations with the fewest total updates also
experience the highest average accuracy among locations that have updates. Fisher’s
linear discriminant has 51 updates in total and experiences an average accuracy of
98% for locations with updates, whereas the continuous HMM has nearly 250 updates
with an average accuracy of 94%. With Fisher’s linear discriminant, accuracy for most
locations is high enough to meet the user requirements and few, if any, updates are
needed. The figure also shows that more than half of all updates for each configuration
require formation of clusters with new nodes that were not members of the previous
clusters. Environmental changes cause the current nodes and sensors to fail to meet
the user requirements, which prompts the creation of new clusters with new nodes
that can address these changes. Thus, candidate nodes are also heavily used during
updates.

5.6. Transmission Energy Savings

We now justify the choice of the transmission threshold α = 0.5 in terms of a trade-
off between accuracy and energy usage for the machine learning approaches that use
continuous valued input. We also disable the transmission threshold and show the
impact of accuracy and energy when all readings are transmitted. Using the vehicle
detection trace data, Figure 13 shows that total energy is affected little by increasing
α and transmitting fewer readings. Accuracy remains relatively stable as α increases
until α > 0.5, when accuracy drops by as much as 12% points for Fisher’s linear
discriminant and the continuous HMM. Figure 14 also shows that for configurations
with Online Retraining, candidate nodes consume a significant amount of the total
energy budget, as two additional nodes are awake during Runtime Event Detection.

Although the transmission threshold may not have a significant impact on total en-
ergy, Figure 14 shows that the transmission threshold noticeably affects transmission
energy. When all sensor readings are transmitted, all Watchdog configurations consume
about 0.065J of transmission energy, whereas the highest transmission threshold set-
ting of all configurations consume about 0.2J. Energy decreases noticeably for only
small and large α, indicating that most sensor readings are closest to the event and
nonevent centroids and that most detection decisions can be easily made by the sentinel
cluster, as illustrated in Figure 12(a).
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Fig. 13. Total energy and accuracy for different transmission threshold values.

Fig. 14. Transmission energy and accuracy for different transmission threshold values.

5.7. Cluster Generation Alternatives Performance

To evaluate Cluster Generation algorithms, we compare the random cluster selec-
tion with the aforementioned alternative approaches (distance based and correlation
based). The results show that the alternative schemes have negligible impact on accu-
racy and the percentage of user requirements are met. In these experiments, Online
Retraining is enabled. Figure 15(a) shows that the alternative methods have little im-
pact on accuracy, and Figure 15(b) shows that the alternative methods also have little
impact on meeting user requirements. Therefore, we conclude that choosing sensors
and generating clusters randomly has little impact on overall performance.

6. CONCLUSION

Existing works do not provide a holistic solution with respect to clustering the right
sensors for confident event detection, heterogeneous deployments, and adaptation to
environmental dynamics. Consequently, we present Watchdog, a generic event detec-
tion framework that can function in a wide array of applications and deployments.
Unlike existing approaches, Watchdog can obtain the detection capability of a specific
deployment and use this knowledge to cluster the right sensors to perform confident
event detection. With a short training length, Watchdog chooses sentinel and reinforce-
ment sensors that adapt the detection capability to confidently detect events while
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Fig. 15. Cluster Generation alternatives performance.

saving energy. We propose several different machine learning techniques that Watch-
dog can use to perform confident event detection and allow these methods to adapt to
environmental changes over time. Our evaluation demonstrates that Watchdog largely
exceeds the detection accuracy of existing approaches with reduced energy consump-
tion. Our evaluation also demonstrates that Watchdog always meets user detection
requirements when in many cases existing approaches cannot.
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