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Abstract—Frequent route is an important individual outdoor
behavior pattern that many trajectory-based applications rely on.
In this paper, we propose a novel framework for extracting fre-
quent routes from personal GPS trajectories. The key idea of our
design is to accurately detect road corners and utilize these new
metaphors to tackle the problem of frequent route extraction.
Concretely, our framework contains three phases: 1) character-
istic point (CP) extraction; 2) corner detection; and 3) trajectory
mapping. In the first phase, we present a linear fitting-based
algorithm to extract CPs. In the second phase, we develop a
multiple density level DBSCAN (density-based spatial clustering
of applications with noise) algorithm to locate road corners by
clustering CPs. In the third phase, we convert each trajectory into
an ordered sequence of road corners and obtain all routes that
have been traversed by an individual for at least F (frequency
threshold) times. We evaluate the framework using real-world
trajectory datasets of individuals for one year and the experi-
mental results demonstrate that our framework outperforms the
baseline approach by 7.8% on average in terms of precision and
21.9% in terms of recall.

Index Terms—Characteristic point extraction (CPE), corner
detection, frequent routes.

I. INTRODUCTION

W ITH the wide adoption of GPS receivers in vehicles
and smartphones, huge amounts of personal GPS tra-

jectories have been accumulated. By analyzing those GPS
trajectories, we can understand each individual’s mobility
patterns and obtain valuable insights about her/his daily
behavior. These patterns and behaviors can be further uti-
lized to improve the quality of various trajectory-based
services, such as route prediction [1]–[3], disorientation
detection [4], [5], trip planning [6]–[10], and location-based
recommendation [11]–[13].
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Fig. 1. Illustration of frequent routes.

Frequent route is an important individual outdoor behav-
ior pattern that the aforementioned ubiquitous applications
rely on. Fig. 1 illustrates an example of frequent routes. In the
figure, gray lines denote the physical roads and black lines
denote one individual’s GPS trajectories. The white dotted
lines highlight the frequent routes of the individual’s outdoor
movements. In the example, we define a route to be a frequent
route only if an individual has traversed the route for a certain
amount of time.

There are some existing works that attempt to extract
frequent routes from personal GPS trajectories. However,
extracting frequent routes from personal GPS trajectories is
still a challenging problem for the following reasons.

1) GPS readings are not accurate due to hardware con-
straints. Inaccurate GPS readings and frequent speed
changes in a trip result in irregular fluctuations in GPS
trajectories. Mathematically, it is difficult to define an
accurate distance function to measure trajectory simi-
larity for irregular fluctuated trajectories. Without tim-
ing information in trajectories, this problem is even
more difficult. Thus, the frequent route extraction meth-
ods based on trajectory similarity [14]–[19] cannot be
applied to irregular fluctuated trajectories.

2) Physical roads are different from each other. Some direc-
tion changes are sharp, while others are smooth. Thus,
it is difficult to accurately define where a road direc-
tion changes. This ambiguous feature of roads naturally
propagates to GPS trajectories and disables those fre-
quent route extraction methods based on segmenting and
clustering trajectories [15], [20], since they need to par-
tition trajectories at special GPS points where trajectory
direction changes.
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3) Different physical roads have different trajectory den-
sities due to variation in visit instances collected.
This fact indicates that existing frequent route extraction
methods [15], [16], [18], [19] based on clustering tra-
jectories using uniform trajectory density cannot reliably
detect all the trajectory clusters with different densities.

4) The ideal route representation should be concise and
close to the corresponding physical roads. However,
existing frequent route extraction methods based on clus-
tering trajectories [9], [15], [16], [18], [19] either use
multiple points to represent a physical road segment
between two road corners, or use simple direct connec-
tions between two hot regions to represent physical road
segments.

To tackle the above challenges, we conduct preliminary
analysis on a large number of personal GPS trajectories and
obtain the following three observations.

1) Individuals’ daily outdoor movements are constrained
by physical roads.

2) Physical roads’ topology information, such as road
corners, is embedded in personal GPS trajectories.

3) If road corners can be detected accurately, the physical
roads can be most concisely represented by connecting
all the road corners sequentially.

Based on these observations, we propose a novel frequent
route extraction framework that leverages corner detection
techniques for making full use of physical road topology infor-
mation embedded in personal GPS trajectories. Particularly,
instead of defining complicated similarity metrics for cluster-
ing GPS trajectories, our method maps GPS trajectories onto
physical roads with the aid of corner detection and outputs
concise frequent routes in the form of physical road segments.
We validate our framework on a large number of personal GPS
trajectories.

Our main contributions are summarized as follows.
1) To the best of our knowledge, we are the first to leverage

physical road topology information, particularly road
corners and connectivity between them, for frequent
route extraction.

2) We propose a characteristic point extraction (CPE)
method based on linear fitting techniques. The CPE
method filters out irregular fluctuations in GPS trajec-
tories and identifies actual characteristic points (CPs) at
road corners with different sharpness.

3) We design a multiple density level density-based spa-
tial clustering of applications with noise (DBSCAN)
(MDL-DBSCAN) algorithm based on an existing
algorithm [21] to detect road corners by clustering CPs
with different densities.

4) We define each trajectory as an ordered sequence of
detected road corners rather than grid cells [28]. This
trajectory representation streamlines our cluster fusing
process, which maps trajectory clusters onto physi-
cal roads.

5) We evaluate the proposed framework with real-world
GPS trajectories collected from more than 6800 individ-
uals for a year. Experimental results demonstrate that our
framework outperforms the trajectory clustering-based

method as a baseline method in terms of both precision
and recall.

The rest of this paper is organized as follows. We first
review the related work in Section II. Then, we define the
problem in Section III and introduce our solution in detail
in Section IV. Next, we present the evaluation results in
Section V. Finally, we conclude this paper in Section VI.

II. RELATED WORK

We divide the existing work on frequent route mining into
two categories: 1) trajectory clustering and 2) trajectory pattern
mining.

A. Trajectory Clustering

We further divide the research in this category into two
subcategories: 1) clustering whole trajectories and 2) clus-
tering trajectory segments. Both have been widely applied to
extract personal frequent routes.

1) Clustering Whole Trajectories: Based on the fact that
silent durations exist in trajectories, Hung et al. [18], [19]
proposed a time-related metric to measure the similar-
ity between whole trajectories. With this similarity metric,
they develop a graph-based trajectory-clustering algorithm.
The algorithm first constructs a clue graph and then par-
titions it into subgraphs, where the similarity between any
two vertexes (i.e., trajectories) must be high. Analogously,
Nanni and Pedreschi [17] defined a similarity metric by cal-
culating the Euclidean distance between location points of
different trajectories at each time slot and utilize the density-
based clustering algorithm OPTICS [22] to cluster whole
trajectories. These two methods aim to extract the clusters,
in which, the whole trajectories are similar not only in spatial
domain but also in temporal domain. Thus, they work well
to extract spatiotemporal frequent routes. However, this paper
focuses on extracting frequent routes from whole trajectories
only similar in spatial domain, which means the trajectories
mapped into a frequent route may have quite different tem-
poral values. Thus, the similarity metrics related to temporal
information cannot be adopted in this paper.

2) Clustering Trajectory Segments: Lee et al. [15] proposed
a partition-and-group method, which first splits trajectories
into line segments and clusters line segments with a density-
based clustering algorithm, DBSCAN. Li et al. [16] proposed
an incremental clustering framework to adapt to the increase
of trajectory dataset. They also partition first the trajectory
into segments. Then, the segments are clustered in two phases,
micro- and macroclustering. The clustering algorithm used in
macroclustering is the same as [15]. Microclustering oper-
ates offline or at the background when new trajectories are
added. Macroclustering is performed on the fusion result of
microclustering when a query comes. These approaches use
the original density-based clustering algorithms to cluster the
trajectory segments and work well when the distribution of
trajectories is relatively uniform. The main shortage of these
algorithms is that they cannot adapt to the trajectories with
different densities. Unfortunately, trajectories and trajectory
segments usually have different densities in large-scale GPS
trajectory datasets.
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The shortages of the above methods inspire us to propose
a novel approach for frequent route extraction, which should
be similarity-independent and is able to adapt to trajectories
with different densities.

B. Trajectory Pattern Mining

Existing trajectory pattern mining work can also be clas-
sified into two subcategories: 1) aggregating the trajectory
clusters and 2) connecting the hot regions.

1) Aggregating Trajectory Clusters: As mentioned in tra-
jectory clustering, the methods in [15] and [16] first split
the trajectory into segments, and then cluster the segments.
Finally, the frequent routes are represented as the representa-
tive lines of each cluster. The representative line of a cluster
is generated by computing the average value of the crossing
points when moving a scan line, which is perpendicular to
the cluster trend vector, in the cluster. Hung et al. [18], [19]
clustered trajectory as a whole by first employing a graph-
based clustering algorithm. Then, the representative line of
each trajectory cluster is computed by connecting the centers
of special point clusters. Finally, all the representative lines
are connected to form trajectory patterns. The frequent routes
extracted by the above method are closer to the corresponding
physical routes than that extracted by the methods of connect-
ing the hot regions. Since these methods inherit the shortages
of the trajectory clustering methods mentioned in Section II-A,
they cannot detect all frequent routes.

2) Connecting Hot Regions: Cao et al. [23] presented
a framework that splits the trajectories into segments and then
detects the frequently visited spatial rectangle regions. Thus,
the original trajectories can all be transformed as a sequence
of frequent regions. Finally, an improved Apriori algorithm is
used to find frequent patterns. Verhein and Chawla [24] studied
the technique to mine spatiotemporal patterns with semantics.
The sematic hot regions like stationary regions and high-traffic
regions are first extracted from trajectories. Then an associa-
tion rule-based method is employed to mine the spatiotemporal
patterns. Mamoulis et al. [25] defined the hot regions as the
dense clusters of location points that are split from original
location sequence with respect to a static time interval. Then,
each original location sequence can be transformed into an
ordered sequence of hot regions. Finally, an association rule-
based method is utilized to mine the frequent spatiotemporal
patterns. Jeung et al. [26], [27] proposed a framework that uti-
lizes the similar method to extract the hot regions as [25], and
employs hidden Markov models to find the frequent movement
patterns. The above methods work well to reveal the relation-
ship between the hot regions, but the connections between hot
regions do not correspond to physical roads.

In contrast to the above works, our method tackles the
frequent route extraction problem by extensively utilizing
physical roads’ topology information, such as road corners
instead of aggregating trajectory clusters or connecting hot
regions.

III. PROBLEM STATEMENT

A GPS trajectory consists of a sequence of GPS points, con-
taining latitude, longitude, and time stamp, generated by GPS

devices. In this paper, we focus on extracting time-independent
frequent routes from GPS trajectories. Thus, we ignore the
temporal information in GPS trajectories and view them as
time-independent trajectories. We define a GPS trajectory as
follows.

Definition 1: A GPS trajectory is defined as a sequence of
GPS points, i.e.,

T : p1p2 . . . pn

where pi’s are GPS points and pi = (xi, yi), where xi denotes
longitude and yi denotes latitude.

Given a set of GPS trajectories of an individual, our goal
is to extract frequent routes, which have been traversed fre-
quently by the individual. Formally, the problem is defined as
follows.

Problem: Given a set of trajectories TS = {T1, T2, . . . , TN}
traversed by an individual and a frequency threshold F,
our objective is to extract the frequent routes FRs =
{S1, S2, . . . , Sm}, where Si denotes a road segment which is
contained in Tj( j = 1, 2, . . . , N) and traversed at least F times
by the individual.

IV. OUR PROPOSED FRAMEWORK

In this section, we present the design of our frequent route
extraction framework.

A. Frequent Route Extraction Framework

Based on the observations 1) and 3) in Section I, we con-
vert the frequent route extraction problem into a traversed
road segment counting issue. By mapping personal GPS tra-
jectories onto physical roads, we need to determine the road
segments contained in each trajectory and count the number
of times each road segment has been traversed. If the number
of traversed time for a route is greater than a certain thresh-
old F, then the route is identified as the frequent route for an
individual.

To solve the aforementioned problem, we have to solve two
subproblems: 1) how to extract roads topology information to
segment a GPS trajectory and 2) how to map GPS trajecto-
ries onto road segments in physical roads. According to the
observations 1) and 2) in Section I, human outdoor movements
are constrained by physical roads. Thus, the GPS trajectories
of personal movements inevitably contain the connected road
segment of physical roads.

Road corners are identified as the metaphors to separate road
segments in GPS trajectory. Physically, it is reasonable to infer
that the locations, at which a number of trajectories direction
change, are road corners. To utilize road corners for frequent
route extraction, we can first identify the special points in each
trajectory, where trajectory direction changes significantly and
steadily. Then, we can locate road corners by clustering these
special points. If a trajectory traverses two corners succes-
sively, the two corners form a road segment that has been
traversed. By locating road corners in trajectories, we gener-
ate a minimal number of points to separate a GPS trajectory
into a sequence of road segments, we then extract frequent
routes as the road segments that have been traversed more
than F times by an individual.
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Fig. 2. Overview of our framework.

With the road corners, the second subproblem of mapping
trajectories into road segments in physical roads is equivalent
to transforming each trajectory into an ordered sequence of
road segments defined by road corners.

Based on the above analysis, we propose a novel frame-
work to extract frequent routes. Fig. 2 illustrates the overview
of our framework. Generally, the framework consists of four
steps. In the first step, a CPE method is applied to extract
the CPs in each trajectory. In the second step, an improved
DBSCAN clustering algorithm named MDL-DBSCAN is used
to locate the road corners. In the third step, all the trajecto-
ries are mapped onto physical roads and the frequent routes are
extracted. Finally, the effectiveness of frequent route extraction
framework is evaluated using a real-world trajectory dataset.

B. Characteristic Point Extraction

As shown in Fig. 2, given a large collection of GPS tra-
jectories, the first task is to extract CPs of each trajectory. As
mentioned previously, a CP is the GPS point where the tra-
jectory’s direction changes significantly and steadily (we will
present its formal definition later). Fig. 3 illustrates an exam-
ple of individual movement trajectory denoted as a gray line
on the right panel. This trajectory is constrained by physical
roads apparently. The CPs, marked as points, are the locations
where trajectory direction changes significantly and steadily.

Given a GPS trajectory Ti = p1p2 . . . pni, an intuitive
method to extract the CPs is measuring the angle between
segment pj−1pj and pjpj+1. Unfortunately, in practice, GPS tra-
jectory often suffers the low-sampling-rate problem, i.e., GPS
devices collect data at a low and unstable frequency. What’s
worse is that GPS drift error cannot be ignored. Due to low-
sampling-rate and drift errors, irregular fluctuations exist in
GPS trajectories. An example is illustrated in the left panel
in Fig. 3. If we adopt the intuitive idea directly, the irregular
fluctuation in GPS trajectory will result in poor results.

To circumvent the problem, we introduce a method based
on linear fitting. Fig. 4 depicts an example. To detect the direc-
tion change at GPS point pj, we first linear fit the point sets

Fig. 3. Illustrative example of CP.

Fig. 4. Illustrative example of direction change angle detecting based on
linear fitting.

{ pj−l+1, pj−l+2, . . . , pj} and { pj, pj+1, . . . , pj+l−1} and obtain
two straight lines L1 and L2. The referenced parameter l
denotes the fitting length, i.e., the number of points the lin-
ear fitting method considers on each side of pj. In the above
example, we set l = 4. In fact, for real GPS trajectories, to
eliminate the negative effect of irregular fluctuations effec-
tively and keep the steady CPs, the value of l is usually set
as 8–12. In the linear fitting method, suppose input point set
is A = { p1, p2, . . . , pN}, where pi = (xi, yi), i = 1, 2, . . . , N,
and the output result L : y = ax + b, where a and b can be
calculated using

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩
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)(∑N
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)

N
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(∑N
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)2

b =
(∑N

i=1 x2
i
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)
−
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i=1 xi

)(∑N
i=1 xiyi

)

N
∑N
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i −

(∑N
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)2
.

(1)

Second, we project the point pj−l+1 and pj onto L1.
Accordingly, the projective points of pj−l+1 and pj on L1 are
p′j−l+1 and p′j, respectively. Likewise, the projective points of
pj and pj+l−1 on L2 are p′′j and p′j+l−1, respectively. Given
a point p = (x, y) and a line L : y = ax + b, the projective
point p′ = (x′, y′) on L can be calculated using

{
x′ = (ay− ab+ x)/

(
a2 + 1

)

y′ = (
a2y+ ax+ b

)
/
(
a2 + 1

)
.

(2)
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Fig. 5. Illustrative example of sharp and “smooth” direction changes coexist
in a GPS trajectory simultaneously.

Finally, instead of measuring the angle between segments
pj−1pj and pjpj+1, we measure the angle between the left
projective vector Vjl = p′j−l+1p′j of pj on line L1 and right
projective vectors Vjr = p′′j p′j+l−1 of pj on line L2. This
angle is called change angle at pj. If the angle is larger than
a given threshold, then we regard pj as a candidate charac-
teristic point (CCP). This process will run on each point pj

repeatedly until j + l − 1 is out of the upper bound of
trajectory T , i.e., ni.

In Fig. 3, we can also observe that the “sharp” direction
changes, denoted as hollow dotted points, the “normal” direc-
tion changes, denoted as black points, and the “slow” direction
changes, denoted as gray points, coexist in a real trajectory.
The CCPs in sharp and normal direction change regions will
easily be detected by the linear fitting-based method, but the
CCPs in slow direction change regions cannot be directly
detected in most cases. The reason is explained in Fig. 5,
where the angle threshold value and fitting length value are
set as π /4 and 4, respectively.

As shown in Fig. 5, if we directly apply the linear fitting-
based method, we can see that the change angle at pi, θi1 (to
show the angle clearly, we translate Vir to V ′ir), is larger than
π /4, so pi and the points close to pi, such as pi−1, pi+1, pi−2,
and pi+2 can all be detected as CCPs. Without loss of gen-
erality, we assume only pi−1, pi, pi+1 are detected as CCPs.
In contrast, the change angle θj1 at pj (likewise, we translate
Vjr to V ′jr) is smaller than π /4. Thus, pj and the points close
to pj, such as pj−1, pj+1, pj−2, and pj+2 cannot be detected as
CCPs. However, we observe that the direction change at pj

is finally close to π /2. In fact, there should be at least one
CCP in a slow direction change region. The main reason for
the linear fitting-based method not working when the direction
changes slowly is that static angle threshold and fitting length
are adopted for direction changes with different sharpness.

In order to detect the CCPs at slow direction change, we
first recognize slow direction change regions (subsequences
of GPS trajectory that contain slow direction change), then
design special methods to extract CCPs from them.

To detect slow direction change regions, we check not only
the change angle θ1 at the current point, but also the change
angle θ2 between the right projective vector of last CCP and
that of the current point. If θ1 is larger than the angle threshold,
the current point will be regarded as a CCP. Otherwise, if θ2
is larger than the angle threshold, it indicates that there must
be a slow direction change in the region from the last CCP
to the current point. For instance, in Fig. 5, suppose pj is the

current point, we check the angle θj1 and θj2 simultaneously.
Obviously, θj1 is smaller than π /4 (the angle threshold) while
θj2 is larger than π /4, so there must be a slow direction change
in the region from pi+1 to pj.

After detecting a slow direction change region, we move
the “current pointer” from current point to the point next to
last CCP and employ the linear fitting-based method to detect
CP in this region with a gradually decreased angle threshold
until at least one CCP is detected.

To represent the detected trajectory direction changes in
a more concise way and simplify the input of successive steps,
we further sort out the CPs from CCPs, which best represent
the detected trajectory direction changes. Before defining CP,
we first define longest continuous CCP sequence (LCCS),
which is the basis to extract CPs from CCPs.

Definition 2: Given a GPS trajectory T = p1p2 . . . pN , and
a continuous subtrajectory S = psps+1 . . . pe, where 1 ≤ s <

e ≤ N. If S satisfies:
1) the points in S are all CPPs;

2)

⎧
⎨

⎩

pe+1 is not a CCP s = 1 and e < N
ps−1 is not a CCP s > 1 and e = N
pe+1 and ps+1 are not CCP s > 1 and e < N

then, S is defined as an LCCS.
With the definition of LCCS, we define CP as follows.
Definition 3: Given an LCCS S = psps+1 . . . pe, if the

change angle at pj(s ≤ j ≤ e) is larger than that of the rest of
points in S, then pj is identified as a CP.

An example of CP is depicted in Fig. 5. The points,
pi−1, pi, pi+1, pj−3, pj−2, pj−1, and pj (denoted as the gray GPS
points), are detected as CCPs. According to the definition of
LCCS, S1 = pi−1pipi+1 and S2 = pj−3pj−2pj−1pj are detected
as LCCS. Finally, according to the definition of CP, the points,
pi and pj−1, are detected as CP (here, we assume that pi and
pj−1 have the largest change angle among S1 and S2, respec-
tively). Note that, the start and end points of each trajectory
should be added to the CP set as well.

The pseudocode of the linear fitting-based CPE method is
summarized in Algorithm 1. The CPE algorithm first ini-
tializes the variable lastCPP (line 1). Then, for each point
from pl−1 to pn−l, it employs linear fitting-based method
[implemented as the function isCPP( pj, l, θthrd)], to detect
whether the current point is a CCP. If it is true, then the
candidate point is added into CCPs (lines 2–5). Otherwise, it
will check whether there is a slow direction change in the
sequence from plastCPP to pj [implemented as the function
isSlowChange(lastCPP, j, l, θthrd)]. If the sequence of points
corresponds to a slow direction change, it then extracts CCPs
from this sequence (lines 6–17). After that, it extracts LCCSs
from CCPs (line 18). Finally, it extracts a CP from each LCCS
(lines 19–22) and adds the start and end points into the CP
set (line 23).

For comparison purposes, Fig. 6 depicts experimental
results of CP extraction with three different methods, mini-
mum description length (MDL) principle-based method, linear
fitting-based method and our CPE method on a single GPS
trajectory, which is shown in Fig. 3. Compared to the man-
ually labeled CPs in Fig. 3, we list the precision and recall
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Algorithm 1 CPE Method
Input: trajectory T = p1p2 . . . pj . . . pn; change angle
threshold θthrd;
; change angle decrease rate r; linear fitting length l
Output: CP set CPs ;

1: lastCPP← l-1;
2: for j from l-1 to n-l do
3: if isCPP(pj, l, θthrd) then // check if pj is a CPP
4: Add pj into CCPs; // CCPs denotes the set of CCP
5: lastCPP← j;
6: else
7: if isSlowChange(lastCPP, j, l, θthrd) then
8: while flag do
9: θthrd = θthrd*(1-r);

10: for index from lastCPP+ 1 to j do
11: if isCPP(pj, l, θthrd) then
12: Add pj into CCPs;
13: lastCPP← j;
14: flag← false;
15: end for
16: end while
17: end for
18: Extract LCCSs from CCPs;
19: for each S in LCCSs do
20: get the point p whose change angle is largest among S;
21: add p into CPs;
22: end for
23: add p1 and pn to CPs. //add the start and end point to CPs

Fig. 6. Results of CP extraction by three different methods. In each subfig-
ure, the trajectories are denoted as solid line and CPs are highlighted in gray
hollow points. The light-gray rectangle shadows are used for identifying spe-
cific areas. (a) MDL principle-based method. (b) Linear fitting-based method
with θthrd = π/6, l = 8. (c) CPE method with θthrd = π/6, l = 8.

of the three methods in Table I. We can see that although the
precision of CPE method is slightly lower than the other two
methods, its recall is much higher than the other two methods.
The CPE method achieves almost 97% detection rate with the
false alarm rate 6.1%. Compared to the manually labeled CPs
in Fig. 3, we found that the MDL principle-based method is
able to extract the CPs in the slow direction change regions,
but it ignores the CPs in the regions where there are relatively
small but continuous “S”- or “Z”-shaped direction changes
[shown as the light-gray rectangle shadow in Fig. 6(a)]. The
method based on linear fitting cannot find the CPs in slow

TABLE I
EVALUATION OF THREE CP EXTRACTION RESULTS

Fig. 7. CPs extraction result by CPE on a trajectory set that contains nine
trajectories.

direction change regions [shown as the light-gray rectangle
shadow in Fig. 6(b)]. In contrast, the CPE method is superior
to the above two methods, since it can not only find the CPs
in slow and sharp direction change regions simultaneously, but
also catch the CPs in regions that are relatively small but have
continuous S- or Z-shaped direction changes.

C. Road Corner Detection

In our framework, after extracting CPs, our next task is to
detect road corners. Based on the observation 1) in Section I,
personal outdoor movement trajectories are restricted by phys-
ical roads. Conversely, personal movement trajectories contain
physical clues that reflect physical roads.

Fig. 7 shows a CP extraction result by applying the CPE
algorithm on a trajectory set that contains nine trajectories. We
observe that the CPs form several clusters and these clusters
match the road corners perfectly. Based on this observation,
we assume that the locations, which contain a number of tra-
jectories direction changes, are road corners. Thus, in our
framework we detect road corners by clustering CPs, since
CPs capture direction changes.

To cluster CPs, we have the following four requirements for
the clustering algorithm.

1) The algorithm should be able to identify the number of
clusters automatically. It is impractical to know the num-
ber of road corners of a given trajectory set in advance.
Thus, the algorithm should figure it out.

2) The algorithm should be able to find CP clusters with
different shapes, since CP clusters around corners usu-
ally have different spatial shapes.

3) The algorithm should be able to eliminate the “noise”
automatically. In this paper, we ignore isolated CPs and
clusters containing a few CPs since they will not lead
to frequent route.
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Fig. 8. Clustering process of MDL-DBSCAN. Suppose the HighestDensity: (Epsh, MinPtsh) = (5, 20), LowestDensity: (Epsl, MinPtsl) = (15, 8),
DensityLevel = 3. (a) CPs. Clustering using (b) first density level Density1 = (Eps1, MinPts1) = (5, 20), (c) second density level Density2 =
(Eps2, MinPts2) = (10, 14), and (d) third density level Density3 = (Eps3, MinPts3) = (15, 8).

4) The algorithm should be able to find CP clusters with
different densities. Due to different quantities and dis-
tribution shapes, the CP clusters always have different
densities.

Existing density-based clustering algorithms, such as
DBSCAN and OPTICS, can adapt to the first three require-
ments. However, to the best of our knowledge, none of the
clustering algorithms can adapt to the fourth requirement. In
this paper, we propose MDL-DBSCAN algorithm that can
meet not only the first three requirements but also the fourth
requirement.

DBSCAN and OPTICS employ a unique global density
threshold in the clustering process. It is the primary reason
why they cannot detect the clusters with different densities.
Unlike DBSCAN or OPTICS, MDL-DBSCAN clusters the
CPs with multiple density thresholds. In MDL-DBSCAN,
DBSCAN works as a subprocedure to cluster CPs with a given
density threshold. The core techniques of MDL-DBSCAN can
be summarized as “one process” and “two constraints.”

1) One Process: To extract the CP clusters with dif-
ferent densities, MDL-DBSCAN clusters CPs on MDL
iteratively. Specifically, MDL-DBSCAN first introduces
three parameters, HighestDensity = (Epsh, MinPtsh),
LowestDensity = (Epsl, MinPtsl), and DensityLevel to gen-
erate multiple density thresholds Densityi = (Epsi, MinPtsi)

(i = 1, 2, . . . , DensityLevel) by using (3). Then, it employs
DBSAN to cluster CPs from the highest density level to lowest
density level iteratively. As shown in Fig. 8, the CPs are clus-
tered at three different density levels sequentially. At the first
and highest density level, cluster C′′1 is extracted. At the second
density level, which is lower than the first one, clusters C′2 and
C′3 are extracted. Also, the cluster C′′1 generated in the first step
is extended to C′1 because of lower density level. At the third
and lowest density level, clusters C4 and C5 are extracted.
Also, the clusters C′1, C′2, and C′3 generated in the previous
steps are also extended to C1, C2, and C3, respectively, as
a result of lower density level

⎧
⎪⎪⎨

⎪⎪⎩

Epsi = Epsl + (i− 1)*
Epsh − Epsl

DensityLevel

MinPtsi = MinPtsl + (i− 1)*
MinPtsh −MinPtsl

DensityLevel
.

(3)

2) Two Constraints: In order to control DBSCAN to per-
form as the process shown in Fig. 8, we have to add two
constraints additionally.

a) The one process may merge the clusters generated at
previous density levels together when the current den-
sity level is low enough. Thus, we add the following
constraint.
Constraint 1: The clusters generated at previous den-
sity levels (i.e., high-density levels) cannot be partitioned
or merged into other clusters as density level decreased
(i.e., lower density levels).

For example, as shown in Fig. 8(d), clusters C′1, C′2, and C′3
are extended to C1, C2, and C3, respectively, and none of them
is partitioned or merged into other clusters. In contrast, with-
out this constraint, clusters C′1, C′2, and C′3 may be merged
together or part of one cluster is merged into another one.
Additionally, we do not forbid the extension of the clusters
generated in previous density levels, since it may result in
many meaningless small clusters.

b) At each iteration of MDL-DBSCAN, the unlabeled CPs
that satisfy current density level may be merged into
the clusters generated at previous density levels although
they can independently form a new clusters at the current
density level. Thus, we add the following constraint.
Constraint 2: The unlabeled point clusters that satisfy
the current density level (i.e., the density level, on which,
one process is clustering the CPs) should independently
form a new cluster instead of merging into the previously
generated clusters.

For example, in Fig. 8(c) cluster C′2 is extracted independently
rather than merged into C′1. Similarly, in Fig. 8(d) cluster C5 is
extracted independently rather than merged into C′3. Without
this constraint, cluster C′2 will be merged into cluster C′1, which
finally leads to that clusters C1 and C2 are merged together.
Similarly, cluster C5 will be merged into C′3, which finally
leads to that clusters C3 and C5 are merged together.

We implement the first constraint by modifying the defini-
tion of neighbors in DBSCAN as follows.

Definition 4: Given a data point p, the neighbors of p are
defined as follows.

1) If p has been labeled in last clustering process, its
neighbors contain:
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Fig. 9. CPs clustering result on a GPS dataset through DBSCAN and MDL-DBSCAN. In each subfigure, trajectories are highlighted in solid black. CPs
are shown as gray points and different shapes indicate different clusters. DBSCAN executes with (a) Eps = 0.2e−3, Minpts = 20 and (b) Eps = 0.5e−3,
Minpts = 4. (c) MDL-DBSCAN executes with lEps = 0.5e−3, lMinpts = 4, hEps = 0.2e−3, hMinpts = 20, levels = 3. Note that, here, we use coordinate
distance.

Algorithm 2 CPs Clustering Algorithm
Input: CP list CPl; HighestDensity; LowestDensity ; DensityLevel
Output: CPs with cluster label;

1: startID← 0;
2: for j from 1 to DensityLevel do
3: Compute the density threshold Densityj = (Epsj, MinPtsj);

/*handling the unlabeled points preferentially */
4: Move the unlabeled CPs to the beginning of the CPl;

/*using the DBSCAN, the neighbors definition of which has
been */
/*modified according to Definition 4, to cluster the CPs in CPl */

5: startID← DBSCAN(CPl, Epsj, MinPtsj, startID+ 1);
/* let all the CPs can be visited again */

6: Change the VisitedFlag of each CP to false;
7: end for

a) the points whose cid are same as p.cid;
b) the unlabeled points that satisfy the condition

dist( p, q) < Eps

where q denotes any one of the unlabeled points. cid
denotes the cluster ID. The function dist (p, q) is used to
measure the distance between point p and q. Eps denotes
the radius of ε-neighborhood of p.

2) If p is unlabeled, its neighbors are the unlabeled points
that satisfy the condition

dist( p, q) < Eps

where q denotes any one of the unlabeled points.
We implement the second constraint by always handling

the unlabeled points preferentially when clustering on each
density level.

The pseudocode of MDL-DBSCAN is shown in
Algorithm 2. In step 1, MDL-DBSCAN initializes the
cluster ID (lines 1). In step 2, MDL-DBSCAN calculates
a new density threshold by using (3) (lines 3). In step 3,
to comply with Constraint 2 (i.e., ensure unlabeled points
have higher priority to be visited), MDL-DBSCAN moves
the unlabeled CPs to the beginning of the CP list (line 4). In
step 4, to comply with Constraint 1, MDL-DBSCAN clusters
the CPs by employing DBSCAN, in which the neighbors of
a given point has been redefined (see Definition 4) (line 5).
In step 5, to enable all CPs can be visited again in the next
iteration, the VisitedFlag of each CP is set as false (lines 6).

The steps from 2 to 5 are performed repeatedly until the CPs
have been handled at all the density levels.

To demonstrate that MDL-DBSCAN is able to find clus-
ters with different densities, we conduct a CPs clustering
experiment on a small dataset that contains 106 movement
trajectories by using DBSCAN and MDL-DBSCAN, respec-
tively. The experimental results are illustrated in Fig. 9. We
use different shapes to denote different clusters and the CPs
in the same cluster have the same shape.

As shown in Fig. 9(a), to identify the clusters in the left part
by employing DBSCAN, the density threshold must be set as
Eps = 0.2e−3, Minpts = 20. With this threshold, the clusters
in the left part are identified but the clusters in the right part are
regarded as noise. It is because that the densities of the clusters
in left part are far lower than Eps = 0.2e−3, Minpts = 20. As
shown in Fig. 9(b), to identify the clusters in the right part
by employing DBSCAN, the density threshold must be set as
Eps = 0.5e−3, Minpts = 4. With this threshold, the clusters
in the right part are identified but the clusters in the left part
are merged together. To summarize, by employing DBSCAN
to cluster the CPs, we cannot find a density threshold that can
simultaneously identify the clusters with different densities.
However, as shown in Fig. 9(c), the clusters with different
densities are all identified by employing MDL-DBSCAN.

Finally, the center of each CP cluster is extracted as road
corner. In summary, the unique characteristic of identify-
ing clusters with different densities enables MDL-DBSCAN
to detect almost all involved road corners. What’s more,
MDL-DBSCAN has the potential of being extended to work
on other types of datasets with different cluster densities.

D. Trajectory Mapping

In our framework, the next task is to map each trajectory
onto physical roads and construct connectivity matrix (CM)
among all involved corners. Then, we can get frequent routes
by retrieving CM with a given frequency threshold.

1) Trajectory Mapping:
Definition 5: Given a CPs cluster {CP1, CP2, . . . , CPm},

CPi = (xi, yi), i = 1, 2, . . . , m. The center of this cluster,
C(x, y), is denoted as

⎧
⎪⎨

⎪⎩

x = 1

m

∑m
i=1 xi

y = 1

m

∑m
i=1 yi.

(4)
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Fig. 10. Example of trajectory mapping.

Definition 6: Given a CPs cluster {CP1, CP2, . . . , CPm},
CPi = (xi, yi), i = 1, 2, . . . , m. The radius, R, of this cluster,
is denoted as

R = max{D1, D2, . . . , Dm} (5)

where the Di, i = 1, 2, . . . , m, is denoted as

Di = dist(CPi, C) (6)

where the function dist(CPi, C) is used for measuring the
distance between points CPi and C (center of this cluster).

Definition 7: Cluster territory is defined as a circle whose
center and radius are defined as the cluster center (Definition 5)
and the cluster radius (Definition 6), respectively.

For each trajectory, the trajectory mapping procedure checks
it from its starting point to the end point. If it traverses one
cluster territory, the center of this cluster will be added into the
ordered sequence of this trajectory. Since each cluster center
corresponds to a road corner, the trajectory mapping procedure
actually transforms each original trajectory into an ordered
sequence of road corners. From the ordered sequences, we can
obtain the connectivity information among involved road cor-
ners and the number of trajectories mapped onto each physical
road segment.

An example of trajectory mapping is illustrated in Fig. 10.
Our trajectory mapping method maps trajectory T1 (high-
lighted in black solid line) as the ordered corner sequence
C3C4C7C6C2C1C5 and trajectory T2 (depicted as the gray
solid line) as the ordered corner sequence C7C6C2C1C5.

2) Connectivity Matrix Construction: Given the ordered
corner sequence of each trajectory, we construct CM to for-
mally represent the connectivity between road corners and
record the number of trajectories mapped onto each road seg-
ment. In an N × N CM, where N is the number of detected
road corners, the element CM(i, j) (i, j = 1, 2, . . . , N) denotes
the number of trajectories whose ordered corner sequences
contain CiCj. At the beginning, CM is set to an N × N zero
matrix. Then, given an ordered corner sequence S of a trajec-
tory, we increase the matrix element CM(i, j) and CM( j, i) by
1 when the corner sequence CiCj occurs in S. Note that, in our
framework, the connection between two corners is undirected.

For example, as shown in Fig. 10, there are seven corners
C1, C2, . . . , C7 and two trajectories T1 and T2. The ordered
corner sequences of T1 and T2 are C3C4C7C6C2C1C5
and C7C6C2C1C5, respectively. As shown in Fig. 11, we

Fig. 11. CM updating process. (a) Initialization of CM. (b) Updated result
after T1 has been processed. (c) Updated result after T2 has been processed.

initialize the CM as the left zero matrix. After T1 has been
processed, CM is updated to the middle matrix. The ele-
ments CM(C3, C4), CM(C4, C3), CM(C4, C7), CM(C7, C4),
CM(C7, C6), CM(C6, C7), CM(C6, C2), CM(C2, C6),

CM(C2, C1), CM(C1, C2), CM(C1, C5), and CM(C5, C1) are
increased by 1. After T2 has been processed, CM is updated
to the right matrix. The elements CM(C7, C6), CM(C6, C7),
CM(C6, C2), CM(C2, C6), CM(C2, C1), CM(C1, C2),
CM(C1, C5), and CM(C5, C1) are increased by 1.

Finally, after all the trajectories have been processed, we
can obtain frequent routes that a user has traversed for at least
F times by retrieving CM using F as the given frequency
threshold.

E. Frequent Route Evaluation Methods

We evaluate the extracted frequent routes from two aspects.
First, we measure the closeness from them to the correspond-
ing physical roads. Second, by using the manually labeled
frequent routes as ground truth, we analyze their precision
and recall.

1) Closeness to Physical Roads: How close the extracted
frequent routes are to the physical roads is an important indica-
tor to evaluate our framework. The ideal method of measuring
the distance between physical roads and extracted frequent
routes should compute the average point-to-line distance from
the sample points of physical roads to the corresponding
extracted frequent routes. However, the ideal method is infea-
sible since the numerical information of the involved roads is
not available from electronic map applications such as Google
Maps, and we can only obtain maps in the form of pic-
tures. Therefore, we employ an approximate method, which
measures the average point-to-line distance from the sam-
ple points of GPS trajectories to the corresponding frequent
routes.

Given a trajectory T, our framework first maps it to an
ordered corner sequence. We ignore the trajectory directly
when its ordered corner sequence is empty. An empty ordered
corner sequence indicates that the trajectory is isolated from
the majority and will not result in frequent route. Second, our
framework checks whether each segment in ordered corner
sequence is contained in the extracted frequent routes or not.
For example, in Fig. 12, the mapping result of trajectory T
is C6C2C1C5C4C3 and the segments C2C1, C1C5, C5C4, and
C4C3 are detected as frequent route segments (C6C2, which is
highlighted as the thick black dotted segment, is not a frequent
route segment). Third, for each frequent segment, we construct
a straight line, named scan line, which is perpendicular to the
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Fig. 12. Example of calculating the average distance from a trajectory to
the corresponding frequent route.

Fig. 13. Abstract distance function [15].

current frequent route segments (shown as the dashed-dotted
lines in Fig. 12). For each frequent route segment, we move
its scan line and calculate the Euclidean distance from each
GPS point of T to the intersection point on frequent route
segment.

Suppose: 1) the ordered corner sequence of trajectory T
contains m frequent road segments and 2) the GPS points
traversed by the scan line of the ith (i = 1, 2, . . . , m) fre-
quent segment are denoted as pij (j = 1, 2, . . . , ni, ni is the
total number of GPS points) and the corresponding intersec-
tion is denoted as foot⊥( pij). Then, the closeness C(T) from a
trajectory T to the corresponding frequent route can be
calculated as

C(T) =
m∑

i=1

ni∑

j=1

Dist
(

pij, foot⊥
(

pij
))

/
m∑

i=1

ni . (7)

For the input of our framework TS = {T1, T2, . . . , Tn}, the
total closeness TC(TS) is calculated as

TC(TS) = 1

n

n∑

t=1

C(Tt). (8)

TC(TS) is finally transformed into the distance in meters
with the aid of Google Map distance conversion tool.

2) Precision and Recall: To determine whether the
extracted frequent routes are effective, we compare the
extracted frequent routes with the manually labeled frequent
routes. For quantitative description purposes, we utilize pre-
cision and recall, which are popularly used in information
retrieval, to characterize the extracted frequent routes.

Due to the fact that the extracted frequent routes and the
manually labeled frequent routes are impossible to completely
overlap, we use an abstract distance function [15], as shown in
Fig. 13, to measure the similarity (note that, here the similarity
is just for evaluating the effectiveness of our framework).

Suppose the extracted frequent routes eFR =
{eS1, eS2, . . . , eSMe}, where eSj( j = 1, 2, . . . , Me) denotes
an extracted frequent route segment; the manually labeled
frequent routes mFR = {mS1, mS2, . . . , mSMm}, where
mSi, (i = 1, 2, . . . , Mm) denotes the manually labeled
frequent route segment. Given an eSj, we search the mSt that
satisfies the condition

d
(
eSj, mSt

)
< d

(
eSj, mSi

)
, i = 1, 2, . . . , Mm, i �= t

if d(eSj, mSt) is smaller than the given distance threshold and
the distance threshold is small enough, it is reasonable to
conclude that eSj matches with mSt (extensive experiments
demonstrate that when the threshold value is set as 0.003, the
confidence coefficient is larger than 0.98). Suppose there are
AmountmS_matched eSs are matched with eSs, we calculate the
values of precision (P) and and recall (R) using

⎧
⎪⎨

⎪⎩

P = AmountmS_matched

Me

R = AmountmS_matched

Mm
.

(9)

V. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate our
framework following the process stated in Section IV-E.

A. Experimental Setup

In the experiments, we use a real-world individual daily out-
door movement GPS dataset, which is collected from more
than 6800 individuals who lived in more than ten countries
within one year (from January 1, 2012 to December 31, 2012).
In this dataset, each individual collects his or her own GPS
data by a smartphone equipped with the software named
“Runkeeper” (http://runkeeper.com/). The GPS sampling rate
is set to one record per 4 s. For the purpose of simplicity and
visualization, we restrict our interest to the areas that contain
most of the trajectories of individual.

The frequent threshold F should be properly set depending
on the size of the dataset of individual. In this experiment, we
set it as

F = max{6, [0.02n]} (10)

where n denotes the size of a dataset.
To provide a quantitative evaluation, we pick up four trajec-

tory groups, which contain trajectories from different numbers
of individuals and have no individual overlap. For each tra-
jectory dataset of an individual, in all the four groups, we
ask three volunteers to manually label whether a road seg-
ment (a line segment between two adjacent road corners) is
a frequent route or not corresponding to the frequent thresh-
old. In particular, if one volunteer thinks the road segment is
a frequent route, it is labeled as frequent. The datasets are sum-
marized in Table II, and the first two individuals’ trajectories
in group G1 are illustrated in Fig. 14.

For comparison purposes, we use the line segment
clustering-based method as a baseline, whose basic idea is
to cluster the trajectory segments according to the similarity
between trajectory segments. The evaluation criteria we used
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Fig. 14. Visualization of results on two individual’s trajectory datasets in G1. In each subfigure, original trajectories are highlighted in black solid. (a) Extracted
frequent routes from the trajectory dataset of the first individual, where extracted frequent routes are highlighted in gray dotted. (b) Manually labeled frequent
routes on the trajectory dataset of the first individual, where manually labeled frequent routes are highlighted in gray solid. (c) Enlarged result of black dotted
rectangle region in (a). (d) Extracted frequent routes from the trajectory dataset of the second individual, where extracted frequent routes are highlighted in
gray dotted. (e) Manually labeled frequent routes on the trajectory dataset of the second individual, where manually labeled frequent routes are highlighted
in gray solid. (f) Enlarged result of black dotted rectangle region in (d).

TABLE II
DATASETS USED IN OUR EXPERIMENTS

for each group include average closeness to physical roads
(introduced in Section IV-E), average precision and recall.
Obviously, a good frequent route extraction method should
not only low average closeness to physical roads, but also
high average precision and recall.

The evaluations are conducted on a server with Intel Xeon
E5405 and 8 GB RAM.

B. Experimental Results

We first show the results of first two individuals’ trajecto-
ries of G1 in Fig. 14, where the manually labeled frequent
routes and the frequent routes extracted by our framework are
depicted.

From Fig. 14, we observe that the extracted frequent routes
are very similar to the manually labeled frequent routes.
This observation indicates that our framework is effective
in extracting frequent routes. Moreover, to illustrate that the
framework performance on average closeness to physical roads
is good enough, we enlarge the region where the roads are

TABLE III
AVERAGE CLOSENESS TO REAL ROADS COMPARISON

visually densest and measure the visually smallest distance
between physical roads by Google Map distance measuring
tool [shown in Fig. 14(c) and (f)]. Table III compares the
average closeness to physical roads of our framework to that
of the baseline method and the corresponding average visually
smallest distance between physical roads (for simplicity, we
denote it as vsd). From the table, we observe that our frame-
work achieves smaller average closeness to physical roads for
each group than that of the baseline method. It is because that
the baseline method always ignores the compact Z- or S-shape
trajectory direction changes (shown in Fig. 6), but our frame-
work does not. In addition, our framework extracts frequent
routes-based on detecting road corners, which are very close
to physical roads. Thus, our method achieves smaller average
closeness to the physical roads. Additionally, we observe that
the average closeness to physical roads of our and baseline
methods are both far less than the visually smallest dis-
tance between physical roads. It indicates that the extracted
frequent routes have sufficient resolution to be utilized by
trajectory-based applications.

Tables IV and V compare the average precision and recall
of our framework to those of the baseline method. From
the tables, we observe that our framework achieves relatively
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Fig. 15. Parameter effect on frequent routes extraction. The effect of two most important parameters: density level and fitting length is presented. (a) Average
distance to real roads as these two parameters is varied. (b) Precision ratio as these two parameters is varied. (c) Recall ratio as these two parameters is varied.

TABLE IV
AVERAGE PRECISION COMPARISON

TABLE V
AVERAGE RECALL COMPARISON

higher average precision (> 0.96 on all groups) and recall
(> 0.91 on all groups), while the baseline method achieves
relatively lower average precision (< 0.92 on all groups) and
recall (< 0.82 on all groups). Our framework outperforms
the baseline approach by 7.8% in terms of average preci-
sion and 21.9% in terms of average recall. It is because that
the baseline method uses density-based clustering algorithm
with a unique global density threshold. The algorithm cannot
detect the trajectory clusters with different densities simultane-
ously, so it fails to detect some frequent routes. In contrast, the
MDL-DBSCAN algorithm in our framework is able to detect
CP clusters with different densities and then detect all the
involved road corners traversed more than F times by an indi-
vidual. So it will decrease the possibility of missing frequent
routes.

Additionally, we have conducted the same experiments with
different parameter settings. Fig. 15 illustrates the results from
the first individual’s 498 trajectories in G1. F is set accord-
ing to formula (10). The minimum closeness to real roads
is achieved at l = 8, levels = 6; the maximum precision is
achieved at l = 7, levels = 6 or l = 8, levels = 7; the
maximum recall is achieved at l = 8, levels = 6. Since
the three performance metrics, closeness to physical roads,
precision and recall cannot be simultaneously optimized at
a certain combination of l and levels, we suggest (l = 8,
levels = 6) to be a good tradeoff setting for our framework
on the dataset. Generally speaking, the best performance is
achieved at l = [6, 9], levels = [4, 7] for all groups.

Fig. 16. Frequent routes extraction performance as different frequency
threshold F is varied.

Fig. 17. Processing time as data scale is varied.

In Section V-A, although we suggest that the frequency
threshold F is set according to formula (10), a user can set F
to different values. Fig. 16 shows the frequent routes extrac-
tion performance on the first individual’s trajectories in G1 as
frequency threshold F is varied. We can see that the precision
and recall gradually approach 1, while the closeness to real
road tends to stabilize at about 7.6 m as F is varied.

Fig. 17 demonstrates how the processing time changes with
respect to the size of trajectory set, where l is set to 8 and
levels is set to 6. From the figure, we observe that the pro-
cessing time approximately linearly increases as the trajectory
set size increases. This result indicates that, as the trajectory



WANG et al.: MINING PERSONAL FREQUENT ROUTES VIA ROAD CORNER DETECTION 457

set grows, the computation time of our framework will not
increase dramatically.

VI. CONCLUSION

Frequent routes are an important context for trajectory-based
applications. In this paper, we propose a novel framework
to extract frequent routes from personal GPS trajectories. In
our framework, we first propose a CPE method to extract
CPs, which characterize the physical roads. Second, we pro-
pose the MDL-DBSCAN clustering algorithm to locate road
corners. Instead of using a unique global density threshold,
MDL-DBSCAN uses several density thresholds to cluster the
CPs at MDL. Third, we propose a method to map all the tra-
jectories on physical roads and detect frequent routes. Finally,
we evaluate our framework on real personal GPS trajectory
datasets. The results demonstrate that our framework outper-
forms the baseline approach by 7.8% in terms of average
precision and 21.9% in terms of average recall.

In the future, we plan to extend this paper in two directions.
First, we attempt to exploit other information embedded in
GPS trajectories such as time stamps for frequent route extrac-
tion. Second, we intend to develop practical applications, such
as disorientation detection and movement trend prediction,
leveraging the techniques developed in this framework.
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