
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 6, JUNE 2015 3367

Bluesaver: A Multi-PHY Approach to
Smartphone Energy Savings

Andrew Pyles, David T. Nguyen, Xin Qi, and Gang Zhou, Senior Member, IEEE

Abstract—WiFi effectively has two extremes: low power con-
sumption and high latency, or low latency and high power con-
sumption. WiFi Power Save Mode saves energy by trading added
latency for less power consumption. Minimal latency but maxi-
mum power, on the other hand, is consumed with WiFi Active
Mode. While research has advanced in mitigating these extremes,
certain types of network traffic such as constant bitrate streaming
make the contrast unavoidable. We introduce Bluesaver, which
provides low latency and low energy by maintaining a Bluetooth
and WiFi connection simultaneously. Bluesaver is designed at the
MAC layer and is able to opportunistically select the most efficient
connection for packets while still assuring acceptable latency. We
implement Bluesaver on an Android phone and Access Point
and show that we can save more than 25% energy over existing
solutions and attain the capability of quickly adapting to changes
in network traffic.

Index Terms—Bluetooth, WiFi, smartphone, energy savings.

I. INTRODUCTION

ENERGY efficiency on smartphones is a driving factor be-
cause of limited battery life. Due to the always-connected

nature of smartphones, the efficiency of Internet access is
particularly important. Wireless networking choices for smart-
phones typically consist of either WiFi or 3G/4G networking.
When the mobile device is in a fixed location such as a home
or business, WiFi is faster and more energy efficient than 3G
networking [1]. Additionally, mobile plans typically place data
usage limits.

Although WiFi networking is more energy efficient than 3G,
considerable research has been done to make it more efficient.
The WiFi standard includes Power Save Mode (PSM) which
saves energy by sleeping during idle periods. Then periodically
the radio wakes up to detect if packets are waiting at the
Access Point (AP). While this is generally energy efficient, the
buffering of packets at the AP adds additional delay. Previous
work includes enhancing sleep periods during periods of inac-
tivity [2], [3]. While this body of work has made significant

Manuscript received July 10, 2014; revised November 6, 2014; accepted
February 12, 2015. Date of publication February 19, 2015; date of current
version June 6, 2015. This work was supported in part by the U.S. National Sci-
ence Foundation under Grants CNS-1250180 and CNS-1253506 (CAREER).
The associate editor coordinating the review of this paper and approving it for
publication was C. Ghosh.

A. Pyles is with MITRE Corporation, Bedford, MA 01730-1420 USA
(e-mail: andy.pyles@gmail.com).

D. T. Nguyen, X. Qi, and G. Zhou are with College of William and Mary,
Williamsburg, VA 23186 USA (e-mail: dnguyen@cs.wm.edu; xqi@cs.wm.edu;
gzhou@cs.wm.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2015.2404843

progress, the high power requirements for the WiFi radio
still allows room for improvements, especially for low bitrate
traffic.

WiFi is more efficient on a per-bit basis [4] than other radios
such as Bluetooth. An obvious question arises: should we not
always use WiFi? When the WiFi Radio is predominately idle,
ironically, this is also when it can be most inefficient. WiFi
drivers on smartphone’s come equipped with Adaptive PSM
[3], the ability to switch the current power mode between sleep
and active based upon the current data rate. When the WiFi
radio data rate is high enough where it triggers the Adaptive
PSM threshold, it will switch from sleep to Active Mode.
Active Mode in-turn can consume up to 20 times more energy
than Sleep mode when idle [5].

Others investigate the use of multiple radios [4], [6] to be
more energy efficient. For low bitrate traffic the low power radio
can be used, then when network traffic conditions change, the
schemes can adapt to the other radio. A major challenge to
this approach is that the act of switching between radios can
be an expensive operation. In [4], only a single radio is pow-
ered on at the same time. However, when network conditions
change, the other radio has to be powered on and configured
which can cause a delay of several seconds, consumes extra
energy each time a switch occurs and also terminates all ac-
tive sockets. A key challenge is to allow the use of multiple
radios without disrupting existing socket connections and al-
low rapid adaptation to changing conditions all while saving
energy.

In this paper we also investigate using Bluetooth and WiFi
with the goal of saving energy. In order to address existing
challenges of previous work, we focus on the ability to switch
between multiple radios without disrupting existing socket
connections and have the ability to switch between radios
immediately. We do this by implementing our solution at the
MAC layer. Recent developments in low power WiFi radios and
Bluetooth allow us to keep both radios active at the same time.
The inactive radio is kept in the low power mode.

Applications for which high network throughput is desirable
should use WiFi due to its superior speed (802.11n handles
speeds of 300 Mb/sec). But for typical smartphone Internet
traffic is high speed always necessary? According to a recent
study [7], data rates for mobile video are considerably less than
1 Mbit/sec. In fact fast data speeds may not be as common
as might be expected. Certainly for LAN applications high
throughput is expected and should be used. Internet connec-
tions, however, are magnitudes of order slower than the WiFi
router speed, throttled by [8] slower Internet routers and the
broadband connection speed.

1536-1276 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3368 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 6, JUNE 2015

Bluetooth, explained further in the background section, has a
max data speed of about 2–3 Mbit/sec and a range of between
10–50 m. Constant bitrate traffic is a special case where the
WiFi connection is over utilized. The WiFi radio has to stay
on for the duration in order to minimize latency. However
if the bitrate is also below the maximum Bluetooth speed,
then Bluetooth is more energy efficient while maintaining an
acceptable latency. For certain types of traffic Bluetooth is a
viable alternative.

Significant WiFi network traffic exists that underutilizes the
WLAN connection. Are there other alternatives that will not
impede network performance and still save energy? While WiFi
PSM is energy efficient by sleeping during idle periods, the
added latency is unacceptable for many applications. Bluetooth
is an acceptable alternative and Bluetooth devices are present
in virtually all smartphones. Although Bluetooth can handle a
much smaller data rate than WiFi, Bluetooth power consump-
tion even in its highest power state is significantly less than
WiFi in Active Mode.

To address these concerns we introduce Bluesaver: A Multi
PHY Approach to Smartphone Energy Savings. Bluesaver com-
bines Bluetooth and WiFi together both at the phone and at the
Access Point. When the phone is in range of the Bluetooth
radio on the AP it can efficiently send and receive packets
over Bluetooth. When out of range or the requirement for a
higher data rate is requested, the phone uses WiFi. Bluesaver
is implemented on a Motorola RAZR Android phone and can
save 25% energy over existing solutions.

The individual traffic patterns of smartphones are difficult
to predict. While some applications such as Skype and web-
browsing may be ideal for Bluetooth, other applications such as
Youtube clearly benefit from WiFi. If the goal is to save energy,
how can you switch between the radios with minimal impact to
the user?

To address this problem, Bluesaver provides a mechanism
to seamlessly switch between WiFi and Bluetooth without im-
pacting current applications in such a way that will save energy.
Therefore, if current network traffic can be more efficiently
transmitted over Bluetooth, then the smartphone can seamlessly
switch between WiFi and Bluetooth for best efficiency.

In summary, the contributions of our paper are as follows:

• First, we propose a novel approach that allows seamless
switching between WiFi and Bluetooth without impacting
current applications while saving energy. The method
combines the low latency, low power consumption char-
acteristics of Bluetooth with high speed, higher power
consumption characteristics of WiFi implemented at the
MAC level.

• Second, we design and implement Bluesaver, a system
that combines Bluetooth and WiFi at the phone and at the
Access Point to send and receive packets efficiently while
still assuring acceptable latency.

• Third, we evaluate our system by comparing energy con-
sumption of Bluesaver and Wifi adaptive PSM. The results
show that Bluesaver can save up to 25% energy over
existing solutions for certain types of network traffic.
Additionally, we evaluate the system’s ability to quickly

switch between Bluetooth and WiFi by demonstrating its
adaptation to fluctuations in data rates and its connection
quality adaptation.

II. BACKGROUND AND MOTIVATION

In this section we cover the background section specifically
related to the Bluesaver architecture. Since Bluesaver covers
both WiFi and Bluetooth, we give a brief overview of both WiFi
Power Save Mode (PSM) and Bluetooth. While WiFi PSM does
save energy, it has the downside of adding considerable delay.
Bluetooth has the advantage of a low power solution when low
data rates can be used. We show that combining elements from
both Bluetooth and WiFi PSM, we can potentially save more
energy while minimizing delay.

A. WiFi PSM

WiFi PSM is part of the original 802.11 spec first standard-
ized in 1999 [9]. WiFi clients connecting to an Access Point
(AP) can negotiate a low power state. In this way, the client’s
radio will remain off, while incoming packets are buffered at
the AP. Specifically, each beacon interval (typically 100 ms),
the AP broadcasts a beacon frame, and the client wakes up
to receive it. This frame includes a Traffic Indication Map
(TIM) indicating clients having at least one frame buffered
at the AP. If the client is indicated in the TIM, it downloads
the frames from the AP by sending a PS-POLL frame. Upon
receipt of a PS-POLL, the AP sends frames to the client. When
the client has downloaded all the buffered frames, it switches
to the sleep mode [10]. While this approach works well for
power saving applications, it adds an approximate 100–300 ms
of delay caused by the buffering of packets during the beacon
intervals.

Recently, there have been several alternatives to PSM. Most
deal with switching between Active Mode and PSM. Active
Mode requires the WiFi radio to remain active, requiring signif-
icantly more power. Adaptive PSM as described in [3], [11] use
an approach to adaptively switch to Active Mode based upon
the observed data rate. When the data rate drops, the WiFi radio
switches back to PSM. The “switching” occurs by sending a
NULL management frame from the client to the AP. The client
sets the power management bit according to whether active of
PSM mode is desired. If switching from PSM to active, the
buffer on the AP is first cleared using a PS-POLL management
frame, also initiated by the client.

As shown in Fig. 1, still the underlying trade-off with latency
and power remain as WiFi research challenges. The data in
the figure published in [5] shows that WiFi is suited for high
speed operations. Network traffic with moderate data transfer
speeds will either suffer high latency or consume extra power.
Therefore, it is logical to investigate the use of other means of
transmitting data that falls into this category.

B. Bluetooth

Bluetooth, in contrast to WiFi, is designed with low energy
and small distance in mind. Data rates have an upper bound

PYLES et al.: BLUESAVER: MULTI-PHY APPROACH TO SMARTPHONE ENERGY SAVINGS 3369

Fig. 1. WiFi energy latency tradeoff. Measurements reflect recently published
measurements on smartphone WiFi PSM.

between 1 Mb/sec to 3 Mb/sec with version 2.0 [12] enhanced
data rate. Additionally the range is limited to around 50 m with
the BT 4.0 specification, compared to 100 m WiFi range, while
older versions are limited to approximately 30 m. Bluetooth is
effectively used for a variety of close range applications such
as streaming audio to headsets to peer to peer data sharing
applications.

One disadvantage of sharing peer data via Bluetooth is that
the slower speed can take a significant amount of time when
large files are transmitted. In order to address this concern, the
3.0 specification has included the High Speed (HS) [13] speci-
fication. This specification allows files to be transmitted at high
speed by utilizing the high speed capabilities of a co-existing
WiFi card. The connection is established with Bluetooth and
then the file can be transmitted to the peer (which also must
support HS) via WiFi.

The 3.0 HS specification provides the capability for Blue-
tooth connections to ultimately be more energy efficient for the
transmission of large files. Additionally, when having a con-
stant stream based connection such as a Bluetooth headset for
streaming audio, it is more energy efficient to utilize Bluetooth
than the higher energy cost WiFi. WiFi is energy inefficient
when it comes to streaming audio or other applications that
require small data rates, since in such cases, WiFi is forced to
use the high speed, high power radio, which results in higher
energy consumption.

C. Motivation

In this subsection we investigate cases where WiFi alone
can use some improvement from an energy savings perspective
and look to see how prevalent such cases are. Specifically, we
examine cases where either bandwidth is limited, or streaming
applications such as video or audio are in use.

In Fig. 2, we see the bandwidth required over time as
a Youtube video is watched on a recent Motorola Android
smartphone. As can be seen, the bandwidth tends to spike and
then quickly drop off. Static video content, typically delivered
in chunks can take advantage of the speed and efficiency of a
WiFi connection. In this case, WiFi handles the bursty nature

Fig. 2. Youtube typical broadband connection.

Fig. 3. Skype audio typical broadband connection.

of static video content providers such as Youtube efficiently.
The WiFi driver is suited to quickly switch to Active Mode
and download the next available chunk of video. As can be
seen the broadband connection allows connections of up to
approximately 3 Mb/sec, and so WiFi is a good fit.

In Fig. 3 we see a different story. In this case, instead of
bursty traffic, we see the bandwidth of a constant bitrate live
streaming Skype call. Fig. 3 shows a trace of a Skype audio
call between two users. In this case, the trace shows a constant
bandwidth of slightly less than 100 Kb/sec which ends approx-
imately 2.5 minutes later. The bandwidth is high enough that
the WiFi driver will switch to Active Mode, thus minimizing
latency. However, due to the higher power requirements of the
WiFi radio, the lower bandwidth requirements of this particular
application could just as easily be fulfilled by another radio such
as Bluetooth. This wastes unnecessary energy and can use some
improvement.

Fig. 4 shows a Skype video call that was set to high quality
and again is at a constant bitrate. In this case, the bandwidth
requirements are approximately ten times higher than that of
the previous audio call, only slightly below 800 Kb/sec. Note
that since the constant bitrate never exceeds 1 Mbit/sec, the
WiFi radio again is under-utilized. Even at the highest available
video streaming rate, Bluetooth is a viable alternative for video
streaming. Bluetooth, with its lower power draw, could be
used to save energy. At the same time since the connection is
below one megabit per second, the QoS requirements are not
impacted.

3370 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 6, JUNE 2015

Fig. 4. Skype video typical broadband connection.

As we have shown, for constant bitrate network traffic, WiFi
is under utilized. In order to minimize delay, the WiFi radio
must be kept active most if not all of the time. Therefore, the
use of an alternative radio such as Bluetooth could easily be
utilized to save energy.

For video streaming at HD, the video streaming is peaked
at 1.5 Mb/sec [14], which is available for premium members
only; not available as an option for the Android client. The more
likely high quality video streaming is at 500 Kb/sec. Facetime
has been measured in [15], with results less than 400 Kb/sec.
Clearly in these cases the WiFi radio is mostly idle.

Limited Bandwidth: How realistic is the case of limited
bandwidth for WiFi connections? Clearly WiFi Wireless LAN
connections are getting anything but slower. WiFi 802.11n for
instance supports speeds up to 300 Mbit/sec. However, research
conducted recently by Dogar [8] shows that the bottleneck is
not the high-speed WiFi connection between the AP and the
client, but rather between the AP and the Internet. Therefore
it is entirely plausible to have a smartphone with a 300 Mb
connection to the AP and a 1 Mb connection to the Internet.

By finding opportunities where traffic patterns meet the cri-
teria above where Bluetooth consumes less energy than WiFi,
we can exploit these periods to save energy on smartphones.

III. BLUESAVER DESIGN

We have described the challenges facing WiFi clients. To
address these challenges, we introduce Bluesaver: Multi PHY
approach to smartphone energy savings. In this section we
describe the system architecture and discuss the design of the
Bluesaver system. Bluesaver has been designed to function at
the MAC layer. Both radios are kept on simultaneously. This
way, packets can be sent either via Bluetooth or via WiFi. To
save energy, both WiFi and Bluetooth connections are kept in a
low power state when idle to save energy.

The Bluesaver design consists of a modified WiFi AP which
also includes a Bluetooth adaptor. The client is an Android
smartphone which also includes WiFi and Bluetooth. The lab
setup is shown in Fig. 5. While our lab setup is used with a
smartphone, Bluesaver can be used with any system that has
multiple radios. Bluesaver could be easily extended to laptops
and tablets.

Fig. 5. Lab setup.

Fig. 6. Bluesaver architecture.

Architecture: The Bluesaver architecture is spread out be-
tween the client portion running on the smartphone and the
WiFi AP shown in Fig. 6. It is comprised of three main com-
ponents: The Health Monitor (HM), the Bluesaver Connection
Manager (BCM), and the Sending Decision Manager (SDM).
All of these separate components used together are responsible
for switching packets over the best available PHY interface.

The HM component is responsible for tracking the health of
each Bluetooth connection. When a Bluetooth connection with
a peer is established, the HM monitors traffic going through the
device. Specifically, for each connection the HM component
is responsible for monitoring the current data rate, connection
status, packet loss and delay. Once this information is gathered,
information can be passed onto the SDM in order to determine
through which interface the packet should be sent.

A crucial part of the HM component is the Bluetooth Avail-
ability Manager (BAM). This component is responsible for
checking the connection status of the peer. The BAM deter-
mines the health of the peer, using l2ping which is similar
to ICMP ping but instead uses Bluetooth l2cap packets. To
save energy, the BAM operates periodically, currently once per
second and only when network traffic is observed.

The bulk of the HM operation occurs within an asynchronous
timing thread that re-occurs every second. If a new packet has

PYLES et al.: BLUESAVER: MULTI-PHY APPROACH TO SMARTPHONE ENERGY SAVINGS 3371

Fig. 7. Bluesaver design.

been transmitted in the past second, that is if any network
traffic has been observed, the current connection quality and
the current data rate are updated. If the data rate exceeds the
threshold of what Bluetooth can handle (1.5 Mb/sec) then
UseBluetooth is set to false. Additionally, if the results of
the RTT observations retrieved by the BAM using l2ping
either fails (unable to connect) or shows an unacceptable
latency (greater than 100 ms), then UseBluetooth is set to
false.

The HM notifies BAM to refresh the latest health statistics
through a netlink socket. The BAM (which is running in
userspace) sends an l2cap ping to the peer only when current
traffic is detected. We use an l2cap ping operation because
Bluetooth devices have l2ping operation enabled by default as
part of the firmware. We send 4 packets and record the average
RTT (the firmware of most devices closes the socket after
4 packets). If the delay is determined to be more than 100 ms,
then we assume that the connection is unsuitable, and BAM
then sends a notification through the netlink socket. The BAM
currently only runs on the AP.

When a packet is ready to be transmitted, the SDM de-
termines which interface will be used. Fig. 7 describes the
interaction. When the host OS sends a packet, it will pass the
packet onto the driver. Bluesaver will intercept that packet and
determine which interface to use. When the packet is placed
in the transmit queue, the PHY interface to use is determined
via the UseBluetooth variable. Then the packet will be either
transmitted through the WiFi driver or through Bluetooth.

Once these parameters have been obtained, a decision is
made whether the connection is suitable for Bluetooth opera-
tion. If a threshold is crossed for either latency, packet loss or
data rate, the variable UseBluetooth is set accordingly. At this
point when an outbound packet destined for the WiFi interface
is queued in the driver transmit queue, the WiFi driver will
either transmit the packet directly if set to true, else the BCM
will transmit the packet over the Bluetooth interface. The AP is

also elaborated in Algorithm III-1. Note that we only highlight
key parts that require changes to the state-of-the-art.

Algorithm III.1: AP()

while no packet queued

do
{

wait for a packet

choose interface to transmit
set transmit flag
if UseBluetooth == true
then {//transmit via Bluetooth
else {//transmit via WiFi

The AP is responsible for checking the health of each client
through the HM component as described earlier. When a deci-
sion is ultimately made to send via a specific PHY interface,
an important consideration is to keep this decision in sync
with the client. That is, when the AP sends packets over WiFi,
the phone should also send over the same medium. In order
to accomplish this, we have a much simpler design on the
client. The client’s initial setting is set to UseBluetooth. The
AP will determine the overall health of the system using the
method previously described and the appropriate PHY will be
selected. On the client, when a packet is received on a different
interface than what is expected, the local UseBluetooth will be
set accordingly. For instance if the client is sending packets over
Bluetooth, but then receives a packet over WiFi, UseBluetooth
will be set to false. For the sake of clarity, the client is also
elaborated in Algorithm III.2. We only highlight key parts that
require changes to the state-of-the-art.

Algorithm III.2: CLIENT()

//set Bluetooth as default
UseBluetooth = true
while exists a buffered packet

do

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

download a packet
if packet received over WiFi

then

{
//switch to WiFi
UseBluetooth = false

end
{
//keep using Bluetooth
UseBluetooth = true

The Bluesaver Connection Manager (BCM) is responsible
for transmitting Bluetooth packets through the system. It does
this by opening a Bluetooth l2cap socket to the peer. When
l2cap packets are received over this socket, the packet will be
passed to the host so that the host OS cannot differentiate it
from a WiFi packet. In order to accomplish this, the Bluetooth
MAC addresses are replaced with the WiFi source and desti-
nation MAC addresses in an 802.3 header that the host OS is
expecting. When packets are transmitted over Bluetooth, they
are taken from the WiFi driver transmit queue and sent over the
l2cap socket.

On the AP, the BCM requires one Bluetooth adaptor for
a single client. A single Bluetooth adaptor can also scale to

3372 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 6, JUNE 2015

multiple clients, since our implementation requires a separate
l2cap port for each client. Depending on the traffic loads from
each client, the combined bandwidth of multiple clients could
overwhelm a single adaptor. In this case, additional Bluetooth
hardware can be used to support multiple users. Our initial
design is to dedicate a single Bluetooth adaptor to each client.
In future, we plan to extend this to make this more extensible by
extending the BCM to have multiple socket connections to the
Bluetooth adaptors on the AP. Then utilize an appropriate load
balancing scheme to determine which destination interface to
which to transmit.

By operating at the MAC layer, Bluesaver is able to quickly
adapt to adverse network connections and switch quickly be-
tween WiFi and Bluetooth.

IV. EVALUATION

We implement Bluesaver on the Motorola RAZR [16] phone.
The RAZR comes with Android version 2.3.5 and Linux ker-
nel version 2.6.35.7. The WiFi AP is implemented on a PC
equipped with Ubuntu 12.04, an ath9k WiFi driver and an ath3k
Bluetooth driver. The implementation consists of a Linux kernel
module on both the phone and the AP. The workstation is
equipped with a Qualcomm-Atheros reference design PCI card
[17] that includes both Bluetooth 4.0 and WiFi capabilities. The
Bluetooth Availability Manager (BAM) is implemented as a
user level daemon process. Further implementation details are
elaborated in the Appendix.

To evaluate the system correctly, we must show that it first
saves energy over existing solutions. Second, we must show that
Bluesaver can adaptively switch between Bluetooth and WiFi
due to changing network conditions.

This section consists of our evaluation method followed by
the energy comparison section. We conclude with an evaluation
of how Bluesaver responds to dynamic network conditions.

A. Evaluation Method

To measure the power consumption, we use the Monsoon
[18] power monitor as previously in [19], [20]. The Monsoon
bypasses the existing battery and provides power to the phone.
It measures the instantaneous voltage and current with a sample
rate of 5 kHz. We can then determine the overall system
power draw over a given time interval. In order to isolate the
power consumption specifically to the test in process, we enable
“Airplane” mode which disables all PHY interfaces. Then the
interface that is about to be tested is explicitly enabled. Ad-
ditionally, we make a best effort attempt to disable all services
and background processes running on the phone during the test.

B. Energy Comparison

To assess the energy comparison between Bluesaver and
Wifi adaptive PSM, we compare power consumption levels
between WiFi and Bluetooth first for data rate throughput
testing. Second, we compare the power consumption of video
streaming at incrementally increasing data rates between the
AP and the phone. In this section we are ultimately comparing

Fig. 8. Bluetooth vs. Adaptive PSM power consumption. Adaptive PSM
consumes between 20% more and 35% power than Bluetooth.

the power and energy consumption of Bluetooth vs. WiFi.
Although Bluesaver can handle both cases, it can really save
the most power and energy when using Bluetooth.

We measure the throughput by sending ICMP ping. By
varying the packet size and packet sending rate, we were able to
accurately measure throughput and data rate. The reason ICMP
ping was used for throughput testing, is that it is an accurate bi-
directional throughput testing tool. Since the payload size for
ping packets is identical for sending and receiving, the sending
and receiving operations are equally tested. This is especially
important for WiFi. Recall from the Background section that
when WiFi is in PSM mode, receiving packets that are queued
at the AP has an added delay of several hundred milliseconds.
ICMP ping therefore places equal weight on sending and re-
ceiving packets.

Using ICMP ping for throughput testing, we test bitrates
from 50 Kb/sec up to 1400 Kb/sec, as can be seen in Fig. 8.
We initiate the test from the phone to the AP. For the entire
bitrate range that we test, the Adaptive PSM implementation
within the WiFi driver switches to CAM for a majority of the
time resulting in extra power consumption. Clearly the WiFi
driver is performing the best it can under the circumstances.
Recall from the Background section that staying in PSM will
result in unacceptable delay, while staying in CAM results in
the higher power consumption. Within the bounds of the bitrate
range that we test, Bluetooth is more efficient than WiFi. Once
the rate exceeds 1500 Kb/sec, we start to see packet loss and
added RTT delay over the Bluetooth radio. Therefore, as part
of the Bluesaver design, when the rate exceeds 1500 Kb/sec,
we switch to WiFi to minimize delay.

As can be seen, Bluetooth consistently saves between 20%
and 35% power consumption compared to WiFi adaptive PSM.
This shows that when data rates are within this range, Bluetooth
should be used to extend the battery of smartphones.

This result also shows an interesting trend. In [5], the power
consumption of CAM mode on an Android smartphone from
2010 was measured to approximately 20 times higher than that
of PSM around 720 mW when idle. Note that with the Motorola
RAZR, which came on the market less than two years later,
we find that the WiFi driver is much more efficient, approxi-
mately 375 mW with a light load of 50 Kb/sec. The reasons

PYLES et al.: BLUESAVER: MULTI-PHY APPROACH TO SMARTPHONE ENERGY SAVINGS 3373

Fig. 9. Bluesaver vs. WiFi streaming video energy comparison. Bluesaver
saves up to 25% energy for bitrates ranging from 64 to 512 kbps.

Fig. 10. Bluesaver vs. WiFi streaming video power comparison. Bluetooth
consistently uses less power than WiFi.

for this improvement are not that clear, however, it could be
that the Adaptive PSM implementation has been improved as
well. Even with these improvements, Bluetooth is still a better
alternative with lower bitrate network traffic.

Video Streaming: According to [7], 80% of videos for smart
phone traffic use a bitrate of less than 256 kbps. In order
to evaluate the energy efficiency of Bluetooth, we setup a
streaming server located on the same LAN as the AP. We set the
video streaming server VLC to stream via RTSP and streaming
at video bitrates from 64 kbps to 512 kbps. We measure the total
energy consumed and compare to Adaptive PSM.

We install a popular RTSP streaming application called
MoboPlayer on the phone. This application is capable of
playing back RTSP stream over the Internet. We measure the
average power consumption during the test and measure the
total time taken to play back the entire video at the various
bitrates. This particular application requires time to buffer the
video stream before it is played back. Figs. 9 and 10 show the
results of this test. In Fig. 10, it is quite clear that Bluetooth
consumes much less power than WiFi in all tests.

Since we are using the RTSP protocol for streaming, there
are several seconds of buffering that occurs before the stream
actually begins playing. In this case, WiFi clearly has the
advantage due to its superior speed. Therefore, the Bluetooth

Fig. 11. Rate adaptation: Bluesaver switches from Bluetooth to WiFi while
sequentially downloading a 10 MB file followed by a 100 MB file without
interrupting the download.

energy results, shown in Fig. 9 reflect a more modest en-
ergy savings ranging from 25% for video codec streaming at
64 kbps to 13.5% at 512 kbps. This shows that even if a
streaming protocol requires extra time for buffering, Bluetooth
is still a better solution for streaming video.

C. Network Adaptation

In this subsections we demonstrate that Bluesaver has the
ability to quickly switch between Bluetooth and WiFi. A key
characteristic of the Bluesaver architecture is to nimbly switch
between radio types with minimal delay. In order to thoroughly
test this aspect of Bluesaver design, we test two key compo-
nents. How quickly does Bluesaver adapt to fluctuations in data
rates. Second, we address connection quality adaptation. That
is, how quickly and how does Bluesaver adapt when the phone
is outside of the useful range of Bluetooth and still within the
useful range of WiFi.

Data Rate Adaptation: We measure the responsiveness, or
how quickly the system can detect changes in data rate and
respond accordingly. When the AP first starts to send packets
to the phone, the data rate spikes above the Bluetooth data rate
threshold of 1.5 Mbit. When the data rate exceeds the threshold,
the AP will switch from Bluetooth to WiFi. When the phone
detects that packets are received on the WiFi interface, it will
disable Bluetooth and transmit packets over WiFi. When the
data rate again drops below the threshold, it again switches back
to Bluetooth.

We place a 10 MB and 100 MB file on a web server running
on the same subnet as the AP. We then proceed to download
the file using an http client on the phone. This is the worst
case energy-wise for Bluetooth because the high WLAN speeds
available over WiFi make Bluetooth inefficient. Fig. 11 shows
the results of this test. We first download a 10 MB file, then
wait a few seconds and download the same 10 MB file again.
A few seconds later, we download the 100 MB file. As soon as
the first download starts, Bluesaver rate adaptation detects that
the download speed exceeds what Bluetooth can handle. At that
point, it switches to WiFi. The packets are received over WiFi to
quickly download the file. When the file is done downloading,
the connection falls back to Bluetooth to save energy.

3374 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 6, JUNE 2015

Fig. 12. Room layout showing lab environment for connection adaptation
evaluation.

Fig. 13. Connection adaptation: Bluesaver switches from Bluetooth to WiFi
when Bluetooth connection issues are detected. A constant ping from the server
to the phone was done for the duration of the test. When the switch to WiFi
occurs at around 30 seconds, the ping test is unaffected.

We note that during the test, the WiFi driver did switch
between CAM and PSM during the download as noted in the
figure. It is not clear why the WiFi driver switched to PSM
during the middle of the transfer. However, this explains the
dips shown in the download of the 10 MB files and shown
especially clearly in the 100 MB file. Additionally, due to
limitations (or a configuration error) of the AP software, we
were unable to exceed speeds of 10 Mb/sec.

Connection Adaptation: We measure how quickly Bluesaver
can adapt to changes in the network environment. To perform
this test, we setup a Bluesaver enabled AP in a building de-
scribed in Fig. 12. We initially setup WiFi only and walked from
within one meter of the AP to points A, B,C,D, then A,B,C,D
again. After which we proceeded back to the AP. The total
distance from the AP to point D is about 10 meters. During
the duration of the test we setup an ICMP ping running on the
AP that will record the RTT time.

The results of this test are shown in Fig. 13. The WiFi results
show that around time 50 and 100 s the phone experienced
extreme packet loss and was unable to respond for several
seconds. Tracking down the root cause of packet loss is chal-
lenging, but most likely this is the result of a combination of
the fact that the phone was rapidly moving and the multiple
obstructions between the phone and the AP.

The same test was then performed with Bluesaver enabled. In
this case, the Bluetooth Availability Manager running on the AP
sent a steady l2ping to the phone during the duration of the test.
At 30 seconds into the test, the BAM was unable to connect to
the phone over Bluetooth. Immediately, the HCM was notified

over the netlink socket and it started sending packets over
WiFi for the duration of the test until the phone got back into
Bluetooth range of the AP again. The phone then detected that
packets were retrieved over WiFi and in turn started sending
packets over WiFi as well.

The result is that at 30 seconds into the test, there is no
perceptible difference in the RTT measurement. This shows
that Bluesaver can switch between radios without adding any
additional delay. After 30 seconds into the test, we see severe
WiFi related packet loss similar to the WiFi only test which in
this case is unavoidable.

We have shown that Bluesaver can adapt to fluctuating data
rates and adverse network connection issues. Furthermore,
Bluesaver is able to save energy when using low data rate
applications by as much as 25% over existing solutions.

V. DISCUSSION

In this section, we discuss potential limitations of the Blue-
saver system and other related matters that may concern readers.

When a packet is ready to be transmitted, Bluesaver deter-
mines the network interface to send through. The decision is
made based on the recent history of the network traffic. While
this is true that Bluesaver may not always provide optimal
energy savings due to varying network quality, the system
utilizes a simple yet energy efficient moving average based
on previously measured network quality parameters. Certainly,
there is no way to predict the future, but by sampling over the
past several seconds we can determine with high confidence
whether it is appropriate to switch to another interface.

Bluesaver utilizes l2ping to determine the health of the
connection. This is a standard approach to test the commu-
nication quality with a Bluetooth device. It provides timing
information on how long it takes to send and receive packets
of a certain size. The only required parameter is the address
of the Bluetooth device to ping. While it is true that this
introduces additional energy overhead, the l2ping packets are
very small (44 bytes), and the amount of the energy required
is minuscule. Moreover, the system sends an l2ping to the peer
only when current traffic is detected, which means the l2ping
energy overhead occurs only when data is being transmitted.

Bluesaver requires an AP to have a Bluetooth radio, which
adds to the hardware complexity and the cost of the AP.
However, thanks to the recent advancements in the radio tech-
nology, it is now possible to add the Bluetooth capability to
an AP through adapters in a simple and affordable way (from
$10.95 [21]).

The proposed scheme does not add any modification at the
physical layer, therefore it cannot be a potential source of
any Bluetooth/WiFi glitch or cross-interference. Bluetooth and
WiFi are enabled simultaneously on many devices, and the
two interfaces are naturally designed so that there is a minimal
probability of radio collisions.

As discussed in Section III (10th paragraph), the client
utilizes a simple mechanism to identify the AP’s radio in use via
the UseBluetooth variable. The client assumes that the AP uses
Bluetooth by default, and the UseBluetooth variable is set to
true. When a packet sent from the AP is received on a different

PYLES et al.: BLUESAVER: MULTI-PHY APPROACH TO SMARTPHONE ENERGY SAVINGS 3375

interface than what is expected, the client’s local UseBluetooth
will be set accordingly. For instance, if the client is sending
packets over Bluetooth, but then receives a packet over WiFi,
UseBluetooth will be set to false.

Section III (4th and 7th paragraph) elaborates switching cri-
teria, where in addition to the data rate, Bluesaver also considers
the connection status, packet loss, and delay. Specifically, the
Health Monitor gathers the mentioned information, and passes
onto the Sending Decision Manager in order to determine
through which interface a packet should be sent. For instance, if
the delay is determined to be more than 100 ms, then the system
assumes that the connection is unsuitable.

This work proposes to switch between the WiFi and Blue-
tooth interface to save power consumption. It may be also
interesting to investigate opportunities of increasing data rate
through the simultaneous use of both interfaces. We believe that
it may be faster, but probably not as fast as some other standards
such as 802.11ac approved in January 2014 [22]. This is out of
the scope of our work that primarily focuses on power saving
opportunities. We reserve this therefore for future work.

The fact that the proposed solution requires that smartphones
have Bluetooth presents no serious limitation. According to
[23], the market for smartphones is forecast to reach almost
700 million units by 2015, with Bluetooth technology incor-
porated in all such phones.

VI. RELATED WORK

Although there is a significant body of work focused on
mobile energy efficiency, we focus primarily on those closely
related to Bluesaver.

Multiple PHY: We found a few papers that focus on com-
bining multiple radios for best efficiency. ZiFi [24] and Blue-
Fi [25] use low power radios to detect the presence of WiFi
access points. Coolspots [4] uses a combination of Bluetooth
and WiFi to save energy. However, only one radio is active at
the same time causing serious delay and dropped connections
when switching between radios. BlueStreaming [26] also uses
WiFi and Bluetooth. Both radios are on at the same time with
2 separate IP addresses. This is a serious limitation, since ap-
plications have to be specifically designed to bind to one of the
IP addresses. Bluesaver uses both WiFi and Bluetooth but it ap-
plies a completely different approach. Since it is implemented
at the MAC level, it is able to seamlessly switch between radios
without impacting applications. Ylitalo et al. [27] present an
interface selection mechanism for multihomed mobile hosts.
However, the decision-making process depends on user-defined
preferences, which makes it impractical to ordinary users and
inefficient for energy saving purposes. Friedman et al. [28],
[29] provide a study on power and throughput tradeoffs of
WiFi, Bluetooth, and other interfaces in smartphones, but do
not go beyond offering theoretical analysis and insights for
phone developers. SwitchR [30] devises a multi-client switch-
ing policy enabling communication among clients within a
multi-radio environment. However, the work does not go far
beyond providing the framework and policies. Moreover, its
architecture requires a Bluetooth gateway, a device that func-
tions as a Bluetooth AP, which presents additional complexity

to deployment. Corvaja [31] conducts a theoretical analysis
and simulation of the QoS performance under different traffic
and network density conditions for handoffs from Bluetooth to
WiFi. Our work proposes a practical approach to smartphone
energy saving through conscious switching between the WiFi
and Bluetooth interface. The system is implemented on an
Android-based smartphone and a Linux-based access point.

Client Modifications: Numerous client side research exists
addressing the problem of making the client more energy
efficient. Micro power management [2] predicts and utilizes
microsecond sleep periods to save energy. While others [3], [32]
focus on application specific traffic shaping based upon priority
or sensitivity to delay; traffic not sensitive to delay or given a
low priority is forcibly sent through PSM. Others [5] examine
application specific idle periods to save energy by switching
to PSM during idle periods. PSM-throttling [33] uses traffic
shaping to streamline TCP traffic for PSM efficiency. E-Milli
[34] uses a downclocking scheme which reduces the voltage
to the WiFi driver during idle listening times. Bluesaver is
complementary to these approaches; client side enhancements
can be extended with the use of multiple radios.

Infrastructure Modifications: Others have modified the
wireless infrastructure to be more efficient. Napman [11] uses
a fair energy-aware scheduling algorithm to increase WiFi effi-
ciency. Sleepwell [35] reduces client collisions with the use of
multiple APs staggered at different time intervals while Catnap
[8] exploits the difference between WLAN and WAN speeds.
Others [36] explore the use of proxies to reduce client-side
polling. All of these approaches save energy by streamlining
the wireless traffic to and from the client. These approaches
are complimentary to Bluesaver; any enhancements in the
infrastructure to make WiFi more efficient will also enhance
Bluesaver.

Bluetooth and WiFi Standards: Bluetooth low energy
(BLE), also known as Bluetooth Smart, is a Bluetooth tech-
nology designed by the Bluetooth Special Interest Group, and
merged into the main Bluetooth standard in 2010 as part of the
Core Version 4.0. [37]. BLE 4.0 provides reduced power con-
sumption while maintaining a similar communication range.
Additionally, the version is already supported in a number
of devices, including the Motorola RAZR phone used in our
experiments (see full list of supported devices at [38]). BLE 4.0
and our proposed solution are therefore mutually inclusive. Fi-
nally, the RAZR device is also shipped with WiFi 802.11 b/g/n
that supports scheduled APSD (S-APSD) and unscheduled
APSD (U-APSD), also known as WiFi Multimedia (WMM)
[39]. This technology increases the efficiency and flexibility
of data transmission. Specifically, the client device can doze
between packets to save power, while the access point buffers
down-link frames. The client chooses the time to wake up and
receive data packets to maximize power conservation without
sacrificing Quality of Service. Clearly, this is complementary
to Bluesaver.

VII. CONCLUSIONS AND FUTURE WORK

Smartphones suffer from the dilemma that network traffic to
and from the device either has excessive latency and low power

3376 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 6, JUNE 2015

consumption or low latency with high power consumption. To
address this problem, we have presented Bluesaver, a novel
approach that combines the low latency, low power consump-
tion characteristics of Bluetooth with high speed, higher power
consumption characteristics of WiFi implemented at the MAC
level. We have demonstrated that Bluesaver is able to adapt
to changing network conditions by routing network traffic be-
tween different PHY interfaces. Finally, we have demonstrated
that we can save up to 25% energy over existing solutions for
certain types of network traffic.

In future work, we plan to extend the Bluesaver platform to
better support multiple clients. As we described in the Design
section, our current solution is to pair a single client with a
dedicated Bluetooth adaptor. In future, we plan to extend this
approach to use a load balancing algorithm to more efficiently
support multiple clients.

APPENDIX A
IMPLEMENTATION DETAILS

In this section, we discuss implementation details of the
Bluesaver system and its key challenges.

One of the challenges faced with the implementation is that
the smartphone comes with a locked bootloader. This makes it
nearly impossible to modify the kernel. Therefore, all of our
modifications had to be done within the confines of a kernel
module. Due to this limitation, we were unable to access health
related statistics from the Linux kernel from the Bluetooth
device because the symbols were not exported. Also due to
differences in the Linux kernel between the AP and the phone,
the Bluetooth kernel API’s were slightly different.

The BCM component requires modification to the WiFi
drivers on both the phone and AP. When a packet is about to
be transmitted over WiFi in the driver, we modify the transmit
portion of the WiFi driver to check if the packet should be sent
over Bluetooth. If so, the packet is placed in a transmit queue
and transmitted over the l2cap socket. The receive functionality
on the driver is not modified.

Phone Challenges: Another subtle difference between the
Android implementation and the AP is the issue of wakelocks.
The Android kernel supports the concept of entering a deeper
sleep when a wakelock is not held. When packets are trans-
mitted or received, we hold a wakelock. Each time a packet is
received we set a flag. We have a timer that runs every second.
If a packet is received during that time window, we hold a
wakelock for one second. In this way, the maximum amount
of time we hold a wakelock is one second when idle.

The client component is implemented with a queue data
structure. When new outbound packets need to be transmitted,
they are inserted into the transmit queue. A separate thread is
run periodically whenever the queue length has at least one
packet in it.

Bluetooth Availability Manager: The BAM is a userlevel
process that is responsible for determining the status of the
Bluetooth connection. Every 500 ms the BAM sends a BT
heartbeat packet to its peer. If a heartbeat packet is not received
within one second then the connection is bad. This could be
caused from the phone being outside of the range of Bluetooth.

The connection status is then transmitted to the Health Monitor
via a netlink socket.

BAM uses a select() loop to respond to incoming packets.
In order to precisely send packets at a given interval, we use
the Linux timerfd() system call. However, Android’s bionic libc
does not support this particular system call. Therefore, we had
to explicitly add support for this system call with system().

Bluetooth Notes: We made the best effort to obtain the high-
est Bluetooth throughput possible. Recall from the Background
section, that Bluetooth supports up-to 3 Mbit/sec. In our tests,
we were able to achieve 1.7 Mbit/sec, which is close to the
theoretical maximum of 2.1 Mbit/sec. We used l2 cap based
sockets with default options for the implementation.

REFERENCES

[1] A. Rahmati and L. Zhong, “Context for wireless: Context-sensitive
energy-efficient wireless data transfer,” in Proc. ACM MobiSys, 2007,
pp. 165–178.

[2] J. Liu and L. Zhong, “Micro power management of active 802.11 inter-
faces,” in Proc. ACM MobiSys, 2008, pp. 146–159.

[3] A. Pyles, X. Qi, G. Zhou, M. Keally, and X. Liu, “SAPSM: Smart adaptive
802.11 PSM for Smartphones,” in Proc. ACM UbiComp, 2012, pp. 11–20.

[4] T. Pering, Y. Agarwal, R. Gupta, and R. Want, “Coolspots: Reducing
the power consumption of wireless mobile devices with multiple radio
interfaces,” in Proc. ACM MobiSys, 2006, pp. 220–232.

[5] A. Pyles, Z. Ren, G. Zhou, and X. Liu, “SiFi: exploiting VoIP silence for
WiFi energy savings in smart phones,” in Proc. ACM UbiComp, 2011,
pp. 325–334.

[6] Y. Liu, F. Li, L. Guo, Y. Guo, and S. Chen, “Bluestreaming: Towards
power-efficient Internet P2P streaming on mobile devices,” in Proc. ACM
MM, 2011, pp. 193–202.

[7] J. Erman, A. Gerber, K. Ramakrishnan, S. Sen, and O. Spatscheck, “Over
the top video: The gorilla in cellular networks,” in Proc. ACM IMC, 2011,
pp. 127–136.

[8] F. R. Dogar, P. Steenkiste, and K. Papagiannaki, “Catnap: Exploiting high
bandwidth wireless interfaces to save energy for mobile devices,” in Proc.
ACM MobiSys, 2010, pp. 107–122.

[9] IEEE 802.11, Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specification, aNSI/IEEE Std. 802.11dcf, 1999.

[10] G. Peng, G. Zhou, D. T. Nguyen, and X. Qi, “All or none? The dilemma
of handling WiFi broadcast traffic in smartphone suspend mode,” in Proc.
IEEE INFOCOM, 2015.

[11] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu, “NAPman: Network-
assisted power management for WiFi devices,” in Proc. ACM MobiSys,
2010, pp. 91–106.

[12] Bluetooth SIG Std. Core Version 2.0 + EDR specification, 2009 Bluetooth
Core Version 2.0 + EDR, Bluetooth SIG Std. Core Version 2.0 + EDR
specification, 2009.

[13] Bluetooth SIG Std. Core Version 3.0 + HS specification, 2009 Bluetooth
Core Version 3.0 + HS, Bluetooth SIG Std. Core Version 3.0 + HS
specification, 2009.

[14] How much bandwidth does Skype need? 2012. [Online]. Available:
https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-
skype-need

[15] iPhone FaceTime bandwidth gets measured, 2010. [Online]. Avail-
able: http://www.digitalsociety.org/2010/08/iphone-facetime-bandwidth-
gets-measured/

[16] Motorola RAZR, 2012. [Online]. Available: http.motorola.com
[17] Qualcomm-Atheros WB225 Reference Design, 2012. [Online]. Available:

http://www.qca.qualcomm.com/media/product/product_106_file1.pdf
[18] Monsoon Solutions, 2011. [Online]. Available: http://www.msoon.com/

LabEquipment/PowerMonitor
[19] D. T. Nguyen et al., “Storage-aware smartphone energy savings,” in Proc.

ACM UbiComp, 2013, pp. 677–686.
[20] D. T. Nguyen, “Evaluating impact of storage on smartphone energy effi-

ciency,” in Proc. ACM UbiComp, 2013, pp. 319–324.
[21] “Bluetooth 4.0 USB module (v2.1 Back-Compatible),” Peabody, MA,

USA, 2014.
[22] IEEE, IEEE 802.11ac, 2014. [Online]. Available: http://goo.gl/H9xU4Y
[23] A. West, “Smartphone, the key for Bluetooth low energy technology,”

Bluetooth, Kirkland, WA, USA, 2014.

PYLES et al.: BLUESAVER: MULTI-PHY APPROACH TO SMARTPHONE ENERGY SAVINGS 3377

[24] R. Zhou, Y. Xiong, G. Xing, M. L. Sun, and J. Ma, “ZiFi: Wireless LAN
discovery via ZigBee interference signatures,” in Proc. ACM MobiCom,
2010, pp. 49–60.

[25] G. Ananthanarayanan and I. Stoica, “Blue-Fi: Enhancing Wi-Fi
performance using Bluetooth signals,” in Proc. ACM MobiSys, 2009,
pp. 249–262.

[26] R. C. Shah, L. Nachman, and C.-Y. Wan, “On the performance of Blue-
tooth and IEEE 802.15.4 radios in a body area network,” in Proc. 3rd Int.
Conf. BodyNets, 2008, p. 25.

[27] J. Ylitalo, T. Jokikyyny, T. Kauppinen, A. J. Tuominen, and J. Laine,
“Dynamic network interface selection in multihomed mobile hosts,” in
Proc. IEEE HICSS, 2003, p. 315.

[28] R. Friedman, A. Kogan, and Y. Krivolapov, “On power and through-
put tradeoffs of WiFi and Bluetooth in smartphones,” in Proc. IEEE
INFOCOM, 2011, pp. 1363–1376.

[29] R. Friedman and A. Kogan, Efficient Power Utilization in Multi-radio
Wireless Ad Hoc Networks. Berlin, Germany: Springer-Verlag, 2009.

[30] Y. Agarwal, T. Pering, R. Want, and R. Gupta, “SwitchR: Reducing sys-
tem power consumption in a multi-client, multi-radio environment,” in
Proc. ISWC, 2008, pp. 99–102.

[31] R. Corvaja, “QoS analysis in overlay Bluetooth–WiFi networks with
profile-based vertical handover,” IEEE Trans. Mobile Comput., vol. 5,
no. 12, pp. 1679–1690, Dec. 2006.

[32] M. Anand, E. B. Nightingale, and J. Flinn, “Self-tuning wireless network
power management,” in Proc. ACM MobiCom, 2003, pp. 176–189.

[33] E. Tan, L. Guo, S. Chen, and X. Zhang, “PSM-throttling: Minimizing
energy consumption for bulk data communications in WLANs,” in Proc.
IEEE ICNP, 2007, pp. 123–132.

[34] X. Zhang and K. G. Shin, “E-MiLi: Energy minimizing idle listening in
wireless networks,” in Proc. ACM MobiCom, 2011, pp. 205–216.

[35] J. Manweiler and R. Choudhury, “Avoiding the rush hours: WiFi
energy management via traffic isolation,” in Proc. ACM MobiSys, 2011,
pp. 253–266.

[36] T. Armstrong, O. Trescases, C. Amza, and E. de Lara, “Efficient and
transparent dynamic content updates for mobile clients,” in Proc. ACM
MobiSys, 2006, pp. 56–68.

[37] B. S. I. Group, Adopted Bluetooth Core Specifications, 2014. [Online].
Available: http://goo.gl/MpJJb6

[38] B. S. I. Group, Bluetooth Smart Ready products, 2014. [Online]. Avail-
able: http://goo.gl/lK2VFH

[39] IEEE, IEEE 802.11e-2005, 2014. [Online]. Available: http://goo.gl/
vLGpkI

Andrew Pyles received the Ph.D. degree in com-
puter science from the College of William and Mary,
Williamsburg, VA, USA, in 2013. He is currently a
Cyber Security Researcher at MITRE Corporation,
Bedford, MA, USA. His current research interests
include wireless networking, smartphones, and cyber
security.

David T. Nguyen received the B.S. degree from
Charles University, Prague, Czech Republic, in 2007
and the M.S. degree from Suffolk University, Boston,
MA, USA, in 2010. He is currently working toward
the Ph.D. degree in computer science with the Col-
lege of William and Mary (W&M), Williamsburg,
VA, USA. He is working with Dr. G. Zhou. Before
joining W&M, he was a Lecturer in Boston for two
years. His research interests include mobile comput-
ing, ubiquitous computing, and wireless networking.

Xin Qi received the B.Sc. degree in computer
science from Nanjing University, Nanjing, China,
in 2007 and the M.E. degree from LIAMA,
Beijing, China, a joint laboratory between the Chi-
nese Academy of Sciences and INRIA, in 2010. He
is currently working toward the Ph.D. degree with
the Department of Computer Science, College of
William and Mary, Williamsburg, VA, USA. His re-
search interests are mainly in ubiquitous computing
and mobile systems.

Gang Zhou (S’06–M’07–SM’13) received the Ph.D.
degree from the University of Virginia, in 2007,
under Professor John A. Stankovic. He is currently
an Associate Professor in the Computer Science
Department, College of William and Mary. He has
published more than 60 papers in the areas of sensor
networks, ubiquitous computing, mobile computing,
and wireless networks. The total citations of his
papers are more than 4300 according to Google
Scholar, among which the MobiSys04 paper has
been cited more than 780 times. He also has 13

papers, each of which has been cited more than 100 times since 2004. He is
an Editor of IEEE INTERNET OF THINGS. He is also an Editor of Elsevier
Computer Networks Journal. He has served as an NSF, NIH, and GENI pro-
posal review panelist multiple times. He received an award for his outstanding
service to the IEEE Instrumentation and Measurement Society in 2008, the
Best Paper Award at IEEE ICNP 2010, and the NSF CAREER Award in 2013.
Dr. Zhou is a Senior Member of the Association for Computing Machinery.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

