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ABSTRACT
As one of the most popular exercises, running is accom-
plished through a tight cooperation between the respiratory
and locomotor systems. Research has suggested that a proper
running rhythm – the coordination between breathing and
strides – helps improve exercise efficiency and postpone fa-
tigue. This paper presents RunBuddy – the first smartphone-
based system for continuous running rhythm monitoring.
RunBuddy is designed to be a convenient and unobtrusive
exercise feedback system, and only utilizes commodity de-
vices including smartphone and Bluetooth headset. A key
challenge in designing RunBuddy is that the sound of breath-
ing typically has very low intensity and is susceptible to in-
terference. To reliably measure running rhythm, we propose
a novel approach that integrates ambient sensing based on
accelerometer and microphone, and a physiological model
called Locomotor Respiratory Coupling (LRC), which indi-
cates possible ratios between the stride and breathing fre-
quencies. We evaluate RunBuddy through experiments in-
volving 13 subjects and 39 runs. Our results show that, by
leveraging the LRC model, RunBuddy correctly measures
the running rhythm for indoor/outdoor running 92.7% of the
time. Moreover, RunBuddy also provides detailed physiolog-
ical profile of running that can help users better understand
their running process and improve exercise self-efficacy.

Author Keywords
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ACM Classification Keywords
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INTRODUCTION
In animals and humans alike, respiration is often coupled to
locomotion in order to efficiently sustain endurance exercise
[8]. When moving about, the locomotory system is responsi-
ble for meeting the mechanical requirements. The respiratory
system supplies necessary amount of oxygen for metabolism,
and removes metabolic byproducts from the circulatory sys-
tem. These two systems are both critical to locomotion, and
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do not work independently of one another. In the case of
running, the strides can be viewed as a driver signal, and the
breaths are the dependent signal that varies based on the fre-
quency of the driver signal.

The running rhythm, which characterizes the coordination be-
tween breathing and strides, varies throughout the run de-
pending on factors such as the duration and intensity of the
exercise, and training and fitness level of the runner [3]. The
rhythm can also be improved over time by training: a more
stable rhythm has been found in both experienced runners [3,
25] and cyclists [36, 16]. Interestingly, sound-induced sta-
blization of such rhythm – listening to an external auditory
stimulus with a proper tempo during rhythmic exercise – has
been shown to result in significant reduction in oxygen con-
sumption and improvement in exercise efficiency [12].

Unfortunately, to date, there has been no convenient and
unobtrusive way of measuring running rhythm continu-
ously. Cardiopulmonary exercise testing (CPET) is a widely
adopted clinical tool to evaluate exercise capacity. It provides
an analysis of respiratory gas exchange and cardiac function
during exercise. However, CPET is usually limited to hos-
pitals and clinics, due to its complicated procedure and high
cost (about $20, 000 /unit). Recently, several wireless CPET
products have been developed. For example, Oxycon Mo-
bile [31] integrates various lightweight sensors into a vest,
which is worn by the subject during the exercise. However,
designed for short-term evaluation of professional training,
such devices are too bulky to wear for everyday use.

This paper presents RunBuddy – the first smartphone-based
system for running rhythm monitoring. RunBuddy is de-
signed to be a convenient and unobtrusive exercise feedback
system, which provides the user continuous measurement of
their running rhythm. It only utilizes commodity devices
including smartphone and bluetooth headset which is often
worn by runners to listen to music and make phone calls.
Moreover, RunBuddy provides fine-grained and continuous
measurement of the user’s running rhythm, which can im-
prove the exercise experience and help the user better under-
stand his/her exercise self-efficacy.

Specifically, RunBuddy measures the user’s running rhythm
using a physiological metric called Locomotor Respiratory
Coupling (LRC) [8] 1. Figure 1 illustrates the LRC in humans
with a stride to breath ratio of 2:1. The breath and stride
signals are simulated using sinusoid wave and pulse signal,

1We use the terms “running rhythm” and “LRC ratio” interchange-
ably hereafter.
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Figure 1. An example of LRC with a 2:1 stride to breath ratio.

respectively. The LRC ratio can be calculated as the number
of strides within each breath cycle. In general, the degree
of coordination is higher during running than during other
activities (e.g., walking and cycling) [4]. LRC is formally
defined as frequency and phase locking between two periodic
systems (i.e., locomotory and respiratory system). Horses, for
example, have an almost fixed LRC of 1:1 [8]. For humans, a
small number of low integer coupling ratios are observed [8],
which are shown in Figure 2.

In order to be convenient and unobtrusive, RunBuddy ana-
lyzes acoustic samples from the bluetooth headset worn by
the user to detect breathing. However, the sound of breathing
typically has very low intensity and is susceptible to various
interferences from the environment (e.g., music in the gym,
sound of wind or traffic). Moreover, the breathing pattern can
vary significantly among different individuals during running,
in terms of the loudness, acoustic frequency range. Lastly, in
order to preserve users’ privacy and provide real-time feed-
back, the system must process the data on the fly, and should
not store or transmit raw sound samples. Therefore, the
breath detection algorithms must be lightweight while main-
taining satisfactory measurement accuracy.

To address above challenges, we propose a novel approach
to the design of RunBuddy, which integrates ambient sensing
based on accelerometer and microphone, and a physiological
model LRC to improve the accuracy of running rhythm mon-
itoring. LRC is a quantitative measure of the running rhythm:
the coordination of locomotory and respiratory systems. Ac-
cording to the LRC theory, there exists a small number of
low-integer coupling ratios (e.g., 2:1) between the stride and
breathing frequencies [8]. RunBuddy leverages the LRC the-
ory to calibrate the running rhythm measurement. Specifi-
cally, we develop a lightweight signal processing pipeline to
detect breathing from the acoustic samples of bluetooth mi-
crophone. Due to the low sound intensity of breathing and
the impact of environment noises, the acoustic breath detec-
tion results may be highly inaccurate. To address this issue,
we detect strides through smartphone accelerometer, and cor-
relate strides, possible LRC ratios, and preliminary acoustic
breath results together to calibrate the running rhythm mea-
surement. The LRC has been found in a number of rhythmic
exercises including cycling [33], rowing [23], running [8] and
walking [21]. Therefore, the approach of RunBuddy can po-
tentially be applied to monitor various rhythmic exercises.
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Figure 2. LRC ratios observed in humans while running [38].

We believe a personal, convenient running rhythm monitor-
ing system like RunBuddy holds great potentials to improve
users’ exercise experience and self-efficacy. Many beginning
runners and people who are usually sedentary lose interest
or even get frustrated quickly because they can not catch
their breath during running, due to exercise hyperpnea [1].
By monitoring their running rhythm in real-time, the system
could potentially guide them to achieve a more comfortable
rhythm by playing music with proper tempos (e.g., by adjust-
ing the workout soundtrack) [2, 15, 5]. Moreover, the system
can also provide an analysis of users’ physiological profile,
such as the stability of LRC ratios during running, which is a
good indicator of fitness level [25].

RELATED WORK
Recently, cardiopulmonary exercise testing (CPET) has be-
come an important clinical tool to evaluate exercise capacity.
It also has been increasingly used in exercise training. It pro-
vides a fine-grained, breath-by-breath analysis of respiratory
gas exchange and cardiac function. However, CPET is usu-
ally limited to hospitals and clinics, due to its complicated
procedure and high costs (about $20, 000 /unit). Several wire-
less commercial CPET products are available on the market.
For example, Oxycon Mobile [31] integrates various sensors
along with batteries into a vest, which is worn by the subject
during the test. However, it is mainly designed to evaluate the
training of professional athletes, and not suitable for everyday
use due to the bulky size and high cost.

Several efforts have been made to develop smartphone-based
exercise monitoring systems. For example, a system for mon-
itoring the workload (a variation of heart rate) is proposed in
[37]. It leverages machine learning techniques to predict heart
rate variation from the acceleration and speed during walk-
ing. In [41], the authors present a smartphone-based system
to estimate caloric expenditure of bicyclists. They improve
the accuracy by considering multiple inputs such as GPS sig-
nal and map information. SpiroSmart, a smartphone-based
spirometer using the built-in microphone is proposed in [17].
To measure air flow and volume of a single breath, the user
has to blow air to the phone’s microphone in close proxim-
ity in a quiet environment. Therefore, it is not suitable for
continuous monitoring during exercise.

A few methods have been proposed to detect strides based
on acceleration. In [7], common stride detection algorithms
are evaluated based on large data sets from smartphone sen-
sors. A gait analyzer is proposed in [13] that can identify
gaits such as walking and running solely using acceleration.
Reliable stride detection has also been used in many other
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applications, such as systems for indoor positioning [20] and
energy expenditure monitoring [18].

In addition to the exercise monitoring systems mentioned
above, several systems have been developed to keep users
motivated and engaged during exercise, by providing real-
time information about the user’s performance. For exam-
ple, by continuously monitoring the user’s heart rate or activ-
ity level, the smartphone may provide music suggestions or
feedbacks that guide users’ steps [10, 5] or help users achieve
their target heart rate [29, 30] during exercise.

Compared with the existing exercise monitoring systems,
RunBuddy differentiates itself as the first smartphone-based
system that continually monitors user’s running rhythm. It is
designed to be a convenient and low-lost solution for every-
day use. As shown in Figure 3, RunBuddy only utilizes com-
modity devices including smartphone and bluetooth headset,
without relying on any custom hardware. In addition, Run-
Buddy is also easy-to-use and truly unobtrusive. Users only
need to wear the bluetooth headset and carry the smartphone
during running.

SYSTEM REQUIREMENTS AND CHALLENGES
RunBuddy is designed to be a convenient and unobtrusive
exercise feedback system, which provides the user continu-
ous monitoring of their running rhythm. Specifically, Run-
Buddy measures the running rhythm in terms of LRC ratio
in a time window (e.g., 10 seconds) continuously during run-
ning. Based on the measured LRC and stride frequency, Run-
Buddy can also estimate real-time breathing frequency (num-
ber of breaths per minute). However, we believe LRC is a
more desirable metric for runners since it quantifies the coor-
dination between breathing and stride. Research has shown
that LRC is a good indicator of fitness level [24].

RunBuddy is designed to meet the following requirements:
(1) Since RunBuddy operates during running, it needs to be
unobtrusive. The user should not feel any kind of uncom-
fort or added burden when using the system. (2) RunBuddy
needs to provide fine-grained and continuous measurement
of the user’s running rhythm. (3) Such measurement needs
to be robust and accurate across different users and exercise
environments. (4) The system needs to strictly protect the
users’ privacy. Since the system relies on sound recognition
for breath detection, users might have concerns about possi-
ble privacy breach, such as their conversation during running
being recorded. Therefore, the system should process data on
the fly, and only keep the exercise-related data (e.g., breath-
ing/stride frequency over time). Moreover, online processing
is also required by applications that need to provide real-time
feedback (e.g., music suggestions) to the user.

To meet these requirements, three major challenges need to be
addressed in developing RunBuddy. First, in order to make
RunBuddy convenient and unobtrusive, the system samples
and analyzes acoustic signals from the bluetooth headset
worn by the user to detect breath. However, the sound of
breathing has low intensity, making it challenging to capture.
Second, the sound of breathing can be different among differ-
ent individuals, in terms of its loudness and frequency range.

Moreover, noises from the exercise environment such as mu-
sic in the gym may also have a major impact on the accuracy
of breath detection. Lastly, RunBuddy must adopt extremely
lightweight signal processing algorithms as it needs to pro-
cess high-rate sensor stream (e.g., 16 KHz sound and 100 Hz
acceleration) in real-time.

SYSTEM OVERVIEW AND APPLICATIONS
RunBuddy aims to continuously monitor use’s running
rhythm. It requires no extra hardware except a bluetooth
headset and a smartphone. Figure 4 shows the overview of
RunBuddy, which consists of four major components: breath
detection, training, stride detection, and LRC-based correla-
tion.

The key novelty of RunBuddy lies in the integration of ambi-
ent sensing and physiological models to improve the accuracy
of running rhythm detection. Specifically, RunBuddy detects
breaths based on its unique sound features. Due to the low
sound intensity of breath and the impact of environmental
noises (e.g., music in gym and wind outdoors), the acous-
tic breath detection result may be highly inaccurate, leading
to poor accuracy in LRC ratio measurement. Leveraging the
LRC theory, RunBuddy addresses this challenge by correlat-
ing the detected breath with the more reliable and accurate
stride detection result to find the most likely LRC ratio.

The breath detection is based on sound, which is continuously
collected through the bluetooth headset worn by the user dur-
ing running. First, the raw acoustic signal is processed by a
low-pass filter, where high-frequency noises are filtered out.
Second, RunBuddy frames the filtered signal and extracts
MFCC features from each frame. It then uses the first 7 fea-
tures (12 variables in total) for breath detection. In order to
improve the accuracy of breath detection, RunBuddy requires
a straightforward one-time training to capture the sound fea-
tures of the breath from a particular user. To complete the
training, the user only needs to breathe several times. The
training sound captured by the bluetooth headset is fed into
the same low-pass filter used for breath detection. Next, the
energy spectrum of the filtered signal is calculated using FFT.
Then, the energy spectrum over time is fed to breath feature
extraction, where RunBuddy detects frames that contain the
user’s breath based the energy, and extracts their MFCC fea-
tures. These extracted features are considered as the breath
signature, which represents the unique sound features of the
user’s breath. At runtime, RunBuddy is able to detect a pos-
sible breath by calculating the similarity between extracted
MFCC features and the user’s breath signature. However, the
breath detection result at this stage may be inaccurate due to
the impact of environmental noise. As a key novelty, Run-
Buddy calibrates such preliminary breath detection results by
correlating with strides based on possible LRC ratios.

To detect strides, RunBuddy first captures motion through
sampling the built-in accelerometer. The collected accelera-
tion is first processed to obtain the vertical acceleration (with
the same direction of gravity), by projecting the raw data onto
the global coordination system. Then the vertical acceleration
is taken as the input of stride detection, where several filters
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Figure 3. A typical setting of
RunBuddy. The user is re-
quired to wear a bluetooth
headset and carry a smart-
phone while running.
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Figure 4. Overview of the RunBuddy system. RunBuddy requires a one-time training, and comprises
3 major components: breath detection, stride detection and LRC-based calibration.

are employed to enhance the performance of the detection 2.
In the LRC-based correlation, RunBuddy utilizes the detected
strides to calibrate the breath detection results. Based on the
theory of LRC, there exists a small number of low-integer
coupling ratios (e.g., 2:1) between the stride frequency and
the breathing frequency. The coupling is especially strong
during running, due to the more frequent leg movement, and
the increased intensity. RunBuddy is able to reliably measure
the running rhythm, by correlating the detected strides and
breathing based on possible LRC ratios for humans.

As running rhythm is essential in reflecting the user’s physical
state, RunBuddy has great potentials to benefit users’ exercise
experience in many scenarios. First, as suggested by previous
study [25], the ability of maintaining a stable running rhythm
can potentially be used to infer the runner’s fitness level. For
example, compared to non-runners, regular runners are able
to maintain a more stable LRC ratio during running [3, 25].
Second, based on the running rhythm, the system could po-
tentially provide real-time and personalized feedbacks such
as music suggestions to enhance users’ exercise experience.
For instance, many new runners lose interest or even get frus-
trated because they can not catch their breath during running.
By monitoring their running rhythm in real-time, the system
could help them achieve a more comfortable rhythm by play-
ing music with proper tempos (e.g., by adjusting the workout
soundtrack) [2, 15, 5]. Once feeling comfortable, new run-
ners will be more willing to engage in running.

SYSTEM DESIGN
In this section, we first describe the feature extraction used
for breath detection. Next, we explain the training process
and how we utilize training data to detect breath. Then,
our approach to recognizing stride from acceleration is de-
scribed. Lastly, we present the LRC-based correlation, where
we leverage the correlation of detected strides and breathing
to improve the accuracy of running rhythm measurement.
2Some exercise monitoring applications may already include stride
detection algorithms. In such a case, RunBuddy may directly use
the real-time output of these algorithms.

Acoustic Feature Extraction
During running, the system continuously collects acoustic
signal through the microphone at a sampling rate of 16 kHz.
Prior to feature extraction, we use a low-pass Butterworth fil-
ter of order 2 to suppress high frequency noise in the raw data.
Since the typical sound frequency of human breath falls in the
range of 500 to 3, 500 Hz, we set the cutoff frequency of the
filter at 3, 500 Hz. After pre-processing, the acoustic signal is
framed using a moving window. Each frame includes 40 ms
of acoustic signal and has 30 ms overlap with nearby frames.
For each frame, we calculate the features of mel-frequency
cepstral coefficients (MFCCs) within the frequency range of
100 to 5, 000 Hz. The energies of the first 7 MFCC channels
are used as the feature vector for breath detection.

Training for Breath Detection
A one-time training process is necessary for sound-based
breath detection. This is primarily because the sound of
breathing is different among individuals, in terms of its dura-
tion, strength and frequency range, resulting in diverse acous-
tic profiles. Therefore, it is necessary to customize the breath
detection for each user based on training. The training pro-
cess is designed to be simple and easy to follow. Before the
first time use of the system, the user is required to breath sev-
eral times in a relatively quiet environment. This ensures that
the system can capture the sound of breathing with as little
noise as possible. Moreover, the system can automatically
detect the sound of breathing. This spares the user’s effort of
manually labeling the breath events from raw data. The de-
tected breath events are then used to generate the user’s breath
signature represented by MFCC features.

Breath Detection
The goal of breath detection is to recognize acoustic frames
that contain breath. Basically, it estimates the likelihood of
a frame containing breath, by calculating the similarity be-
tween its feature vector and the training data. Specifically,
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let bv1, bv2...bvn be the feature vectors of n breath frames ex-
tracted from the training data. First, we calculate the mean
vector bv of all the breath frames as follows,

bv =

∑n
i=1 bvi

n
(1)

Then, we calculate the cosine similarity S (bvi, bv) between
bvi and bv. The calculation is given below.

S (bvi, bv) =
bvi · bv

‖ bvi ‖‖ bv ‖
(2)

The resulting cosine similarity ranges from −1 (the minimum
similarity) to 1 (the maximum similarity). The cosine similar-
ity has been widely used in information retrieval to measure
the similarity between two texts. We use cosine similarity
to measure the similarity between two vectors. Since cosine
similarity is independent of magnitudes of acoustic signals, it
is effective at capturing the characteristic of MFCC features
and robust against environmental noises. Lastly, we use the
minimum value of the similarities as the threshold T . Given
bv and threshold T from the training data, we define the like-
lihood that a frame with feature vector bv∗, which is captured
at runtime, contains breath as,

L(bv∗, bv,T ) =

 S (bv∗,bv)−T
1−T if S (bv∗, bv) > 0

0 if S (bv∗, bv) ≤ 0

where S (bv∗, bv) is the cosine similarity between bv∗ and bv.

Stride Detection
Stride detection aims to recognize strides from collected ac-
celeration data. The stride detection method adopted by Run-
Buddy is based on searching for peaks in the change of ac-
celeration during running. Although this method is similar to
several existing methods [22, 7], we include the details here
for completeness. Specifically, RunBuddy first projects the
sampled acceleration data onto global coordination system.
Then it detects strides by searching for peaks in the vertical
acceleration (the gravity direction).

By projecting acceleration onto a global coordinate system,
we don’t have to consider the phone’s orientation change in
the following processing. Moreover, the vertical acceleration
is more sensitive to the shock caused by each step. Prior to
projection, RunBuddy estimates the direction of the gravity

by averaging the acceleration along each axis within a short
time (e.g., 5 seconds) [26]. Then, it projects the acceleration
data onto global coordinate system. Let ~a be the acceleration
reading and ~g the estimated gravity. The vector representing
vertical acceleration ~v can be calculated as follows,

~v = ~a ·
~g
‖ ~g ‖

(3)

We can also get the horizontal acceleration~h = ~a−~v. Next, we
feed ‖ ~v ‖ into a series of filters to detect stride which contains
one left step and one right step. Since the phone is attached to
the user during running, our stride detection method is based
the assumption that each major peak in the ‖ ~v ‖ is caused
by one step. Therefore, detecting stride in this scenario is
essentially a peak detection problem. In order to improve the
accuracy, prior to the peak detection, we process ‖ ~v ‖ with
several filters included in the Pan-Tompkins algorithm [32,
34] to enhance the peak in the signal.

LRC-based Correlation
The basic idea behind LRC-based correlation is to improve
the accuracy of running rhythm measurement by estimating
the most likely LRC ratio based on the correlation between
detected stride and breathing. Since the motion sensor (ac-
celerometer) is attached to user’s body, the result of stride de-
tection suffers far less from the environmental noise than that
of breath detection. Specifically, there are two major factors
that affect the performance of acoustic breath detection. One
is the environmental noise, such as music in the gym, sound
of wind or traffic, and etc. Another factor is the difficulty in
detecting the breath, due to its low acoustic amplitude. There-
fore, the estimated breath described in Breath Detection can
not be directly used to calculate running rhythm.

Figure 6 shows an example of the breath detection result un-
der the noise caused by passing traffic. The result is obtained
using the algorithm described in Section Breath Detection.
We can see that noise may cause both false alarms and low
detection likelihood in breath detection. The false alarm is
usually caused by noises that have similar MFCC features
as the user’s breath signature. For example, at 2.2 seconds,
the noise causes a false alarm with high likelihood, where
there exists no actual breath event. Noise can also interfere
with the sound of actual breath. Due to the interference, the
MFCC features of the actual breath may largely deviate from
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the user’s breath signature, resulting in low detection likeli-
hood. For example, the likelihood of the 4th and 5th breaths
is only about half of that of the first three breaths.

According to the LRC theory, there exist several coupling ra-
tios between the rhythm of stride and that of breath. The fun-
damental reason for the coupling effect is because breathing
is responsible for supplying oxygen for metabolism, which
keeps generating energy for locomotion. The design of LRC-
based correlation in RunBuddy is based on two key observa-
tions. First, during running, breathing and stride frequencies
are relatively stable within a short period of time (e.g., 10
seconds). Second, there only exists a limited number of LRC
ratios in humans, and the coupling effect is stronger while
running. This is because, as the intensity of the exercise gets
higher (e.g., running), the rate of metabolism increases, re-
sulting in a more obvious coupling effect. Therefore, Run-
Buddy is able to infer the accurate running rhythm using the
most likely LRC ratio. To find the most likely LRC ratio,
RunBuddy first use detected strides to generates breath sig-
nal, referred to as simulated breath, for each possible LRC
ratio. RunBuddy then computes the correlation between the
estimated breath and the simulated breaths. The LRC ratio
that gives the highest degree of correlation is hence the mostly
likely LRC ratio that represents the running rhythm.

Figure 5 shows the overview of the correlation process.
First, we generate simulated breath signals using the de-
tected strides for all 8 possible LRC ratios shown in Figure 2.
Specifically, let Tstride be the duration of the stride cycle, and
RLRC be the ratio of stride frequency to breath frequency. The
duration of simulated breath cycle Tbreath can be calculated as
follows,

Tbreath = Tstride × RLRC; (4)

We use sinusoid signal to represent the breath. The width
of the sinusoid signal is fixed (e.g., 20 ms), regardless of the
selected LRC ratio.

After generating the breath signals associated with different
LRC ratios, we calculate the degree of correlation (DoC) be-
tween the simulated breaths and the detected breaths. Sup-
pose D = d1, d2, ..., dn represents the estimated likelihood of
breath for each frame within a short time window, G(R) =
g1, g2, ..., gm is the corresponding breath signal simulated
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to 20 seconds.

based on the strides and a particular LRC ratio R. The de-
gree of correlation for LRC ratio R is given by,

DoC(R) = max
s∈[1,Tbreath]

{D ·G(R, s)}

= max{
n∑

i=1

di × gi+s}
(5)

where s denotes the time lag of the simulated breath signal
G(R), and Tbreath is the length of the breath cycle associ-
ated with G(R). The basic idea of the degree of correlation
is based on cross-correlation, where the maximum result of
the sliding dot product reflects the similarity of the detected
breaths and simulated breaths. Figure 7 shows an example
of computing DoC(R2:1) when LRC ratio is 2:1, and G(R2:1)
is generated based on the detected strides and 2:1 LRC ratio.
We can see that the value of D ·G(R2:1) varies as the time lag
changes. And the maximum value is chosen as the DoC(R2:1).
In order to determine the most likely LRC ratio, we gener-
ate simulated breath signal for each LRC ratio (i.e., G(R1:1),
G(R2:1),..., G(R4:1)), and calculate their corresponding DoCs
(i.e., DoC(R1:1), DoC(R2:1),..., DoC(R4:1)). The LRC ratio
that gives the highest DoC is chosen as the most likely LRC
ratio representing the current running rhythm. Moreover, as
the LRC ratio defines the frequency ratio between stride and
breath, we can obtain a more accurate breathing frequency
than that derived from the estimated breath, using the most
likely LRC ratio and the stride frequency (Equation 4).

In our implementation, we use a 10-second moving window
with 50% overlap for the calibration. For example, Figure 8
shows the LRC-based correlation of two 10-second windows.
The blue sine waves shown in Figure 8(a) and (d) indicate
the simulated breaths associated with the most likely LRC
ratio. We can observe that it gives the highest DoC among all
LRC ratios (shown in Figure 8(a) and (d)). Moreover, we can
see that it is difficult to accurately identify breaths by solely
relying on the estimated breath likelihoods. Therefore, by
cross-correlating the detected breaths and simulated breaths
of different LRC ratios, we can effectively find the most likely
LRC ratio representing the running rhythm.

Note that the LRC-based calibration needs to be repeated us-
ing a 10-second moving window because runners may switch
to a different LRC ratio during running. According to our ex-
perimental result, the frequency of LRC ratio change is highly
dependent on each individual. In general, non-runners switch
more frequently than regular runners [11, 4]. Figure 9 shows
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Figure 10. The user interface of the app. (a) The screen showing the
real-time breathing and stride frequency during running. (b) The screen
showing the estimated fitness level according to the stability of running
rhythm. (c) and (d) are the screens showing the details about the running
rhythm distribution and the runner’s breathing and stride frequency.

an example of calculated DoC of all possible LRC ratios over
time, where the runner switched from LRC ratio 1:1 to 3:2
during 15 to 20 seconds. As mentioned above, RunBuddy
calibrates the breath using a moving window of 10 seconds
and 50% overlap, resulting in a DoC calculation every 5 sec-
onds. Therefore, RunBuddy can effectively detect the LRC
ratio switch during running.

IMPLEMENTATION
RunBuddy is implemented on Android 4.3. The size of the
application file is about 1 MB. While running, RunBuddy re-
quires about 20 MB RAM allocation. The displaying and pro-
cessing functions are implemented in separate threads, in or-
der to ensure timely sampling and processing as well as quick
response to user’s interaction. RunBuddy continuously sam-
ples the microphone at 16 kHz and accelerometer at 100 Hz.
The acoustic samples are framed into 100 ms frames before
detection. The detection results of breathing and stride within
a 10-second moving window with 50% overlap to measure
LRC ratio, resulting in a measurement every 5 seconds.

We have released RunBuddy as a mobile app on the Google
Play Store 3. The screen shots are shown in Figure 10. The
app is easy to use. After performing a one-time training, the
user only needs to put on the bluetooth microphone and start
the monitoring before running. During running, users are free
to carry the phone in their preferable way (e.g., inside pocket
or armband). As the app prevents the CPU from sleeping, the
user is able to turn off the screen to save battery. It allows
users to check their instant breathing and stride frequencies
during running by simply turn on the screen. After running,
the user needs to stop the monitoring to see an overall result
reflecting the fitness level calculated based on the stability of
running rhythm. For each run, the app also provides detailed
information including the distribution of running rhythm, as
well as breathing and stride frequencies over time.

3Our mobile app released on Google Play Store is branded as
“iBreath”. And the Google Play link is https://play.google.com/
store/apps/details?id=com.tian.ibreath&hl=en. A video intro-
ducing iBreath is at http://youtu.be/hZMZqt4Pae4. iBreath was
awarded the Best Mobile App Award, Third Place, at MobiCom Mo-
bile App Competition 2014. While iBreath has the identical design
with RunBuddy, it presents the user breathing frequency (number of
breaths per minute) that is derived from the measured LRC.

EVALUATION

Experimental Settings
In order to evaluate RunBuddy, we recruited 13 subjects and
collected data from 39 runs in total (526.1 minutes). Our
study along with its data collection procedure was approved
by the Institutional Review Boards (IRB) at Michigan State
University. All the subjects voluntarily agreed to help with
the data collection, and signed a consent form. In order to
collect data, each subject used a smartphone (Google Nexus 4
[28]) and a Bluetooth headset during running. We used three
different models (Jabra Wave [14], Voyager Legend [39] and
Voyager Pro HD [40]) in our experiments to investigate the
impact of different Bluetooth headsets. RunBuddy performs
similarly with different Bluetooth headsets. During data col-
lection, the acoustic data used for breath detection is collected
through the bluetooth headset, and the acceleration data used
for stride detection is collected using the phone’s built-in ac-
celerometer. The sampling frequency was empirically set to
16 kHz for the sound, and 100 Hz for the acceleration. The
collected data was stored in the phone for off-line analysis.

The ground truth for breath detection is collected by either
of the following two methods. In the first method (used for
34/39 runs), an in-line mic is attached under the subject’s nose
during running. Since the in-line mic is very close to the sub-
jects nose and mouth, the recorded breathing sound is clear
enough to be automatically labeled off-line through simple
threshold-based peak detection. In the second method (used
for 5/39 runs), we manually labeled the breath event if the
subject felt uncomfortable to wear the in-line mic under nose,
or the in-line mic accidentally fell off during running. Specif-
ically, the labeling is done by listening to the audio recorded
by the Bluetooth headset and finding the time of the beginning
of each breath event. It only involves identifying and count-
ing the instances of breathing within each detection window
(10 seconds) for running rhythm measurement. The recorded
audio clips where the breathing sound is not clear enough for
manual labeling were discarded and not used in the evalua-
tion (2 of such clips were discarded). To collect the ground
truth for stride detection, an extra smartphone was attached to
the user’s lower leg using an armband.

Table 1 shows the general information about the subjects who
participated in our experiments. In order to assess their capa-
bility of aerobic exercise, we asked the subjects to fill out a
questionnaire before the experiment, which includes several
questions such as “How many days per week do you exer-
cise?”. Based on their self-report information, we divided
the subjects into three categories as follows: Non-runner,
subjects who rarely take any forms of exercise; Occasional
runner, subjects who occasionally take short aerobic exer-
cise, but do not have a regular routine; Regular runner, sub-
jects who usually take more than 30 minutes of exercise for
at least twice a week. To assess the subjects’ body shape, we
also calculated their body mass index (BMI) based on their
weight and height. According to the standard specified by the
World Health Organization (WHO) [6], the body shape can be
classified as follows: Underweight (BMI ≤ 18.5), Normal
weight (18.5 < BMI ≤ 24.9), Overweight (25 < BMI ≤
29.9) and Obesity (BMI ≥ 30).
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category subject sex # runs (in/out) avg. duration BMI
Non-runner 1 F 1 (1/0) 6.1 min 16.9
Non-runner 2 F 1 (1/0) 5.8 min 17.9
Non-runner 3 M 2 (1/1) 5.1 min 27.5
Non-runner 4 F 3 (2/1) 5.2 min 18.3
Non-runner 5 M 1 (1/0) 8.3 min 28.4
Occasional 6 M 7 (4/3) 6.3 min 25.4
Occasional 7 M 2 (2/0) 16.1 min 27.2
Occasional 8 M 3 (3/0) 12.1 min 24.4
Occasional 9 M 3 (3/0) 14.5 min 22.1
Occasional 10 F 3 (3/0) 13.8 min 20.5
Occasional 11 M 4 (2/2) 12.9 min 23.1
Occasional 12 F 3 (3/0) 15.6 min 19.1

Regular 13 M 6 (3/3) 30.7 min 22.4
Table 1. General information about the subjects.

Prior to the experiment, each subject was instructed to run as
they normally do. We did not set a specific duration for the
run, and the subjects were asked to keep running as long as
they felt comfortable. Note that the subject is free to choose
where to place the smartphone during running. In our ex-
periments, the ways of carrying the phone include holding in
one hand, placing inside the pants’ pocket, and attaching to
the arm using sport armband. Our result shows that, regard-
less of the phone placement, RunBuddy can reliably detect
strides with an accuracy of over 99%.

Metrics
We processed the collected data using the methods described
in System Design. The metric we use to evaluate the perfor-
mance of RunBuddy is the percentage of correct measure-
ments (PCM). PCM = X% means RunBuddy correctly pro-
vides the LRC ratio measurement X% of the time during the
run. For instance, for a run about 8 minutes consisting of
100 measurement windows, 95% PCM indicates 95 measure-
ments are correct. The reason that we use PCM instead of
accuracy or error rate as the metric is because the measure-
ment of running rhythm in terms of LRC ratio is represented
by discrete values. Also, we note that in most false measure-
ments, RunBuddy produced a LRC ratio close to the ground
truth (e.g., 4:3 while the correct ratio is 3:2).

Overall Performance
In this section, we evaluate RunBuddy when the users run in
typical gyms and outdoors. Figure 11(a) shows the average
PMC for each subject based on data collected during 29 in-
door runs. The overall PMC for the indoor runs is 93.3%,
with the lowest PMC of 87.3% for subject 1, and the highest
PMC of 95.2% for subject 6. We can make two interesting
observations from the indoor result. First, RunBuddy tends
to yield lower PMC for data collected from female subjects
(subject 1, 2, 4 10 and 12). This is primarily because the
sound of breathing of females typically have lower intensity
than that of males, making it more difficult to be recognized.
Another observation is that the accuracy for all five subjects
who are non-runners (subject 1, 2, 3, 4 and 5) are below the
average PMC (93.3%). The major reason is that subjects of
lower fitness level usually take shorter and shallower breath
during running. However, it is widely recommended by pro-
fessional runners and running couches to take long and deep
breath during running, which helps to obtain enough oxygen
and prevent muscle and lung fatigue [9].
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Figure 12. A 10-second example based on real data collected outdoors,
demonstrating the impact of environment noises such as wind and traf-
fic. (a) shows the estimated breath and simulated breath with the highest
DoC. (b) is the ground truth for breath. (c) shows the time and duration
of environment noises. (d) is the detection result of stride.

Figure 11(b) shows the PMC for each subject based on data
collected during 10 outdoor runs. One key observation is that,
for all subjects except subject 6, the average PMC of outdoor
runs is higher than that of indoor runs, due to the impact of
environment noises like wind and traffic. As an exception, all
the 3 outdoor runs of subject 6 were collected in late evening
in a quite neighborhood.

Comparison With Non-LRC Method
In order to evaluate the performance benefit of using LRC
model, we compare our LRC-based approach with a simple
non-LRC method, which does not involve LRC-based cor-
relation. Basically, the non-LRC method detects the breath-
ing instances solely based on the acoustic features (described
in Section Breath Detection). As demonstrated in Figure 6,
due to the interference from various noises, it is very difficult
to reliably extract breath instances from the acoustic samples
from microphone. Therefore, in the non-LRC method, we
also consider the periodicity of breathing in a short time (e.g.,
10 seconds). Specifically, for each detection window (10 sec-
onds), we identify peaks from the breathing likelihood result.
We then find the most likely breathing frequency for this par-
ticular detection window by correlating the identified peaks
with all possible breathing frequencies from the minimum to
the maximum frequencies in humans. Lastly, the LRC ratio
is calculated using the most likely breathing frequency along
with the detected stride frequency.

The performance of non-LRC method is shown in Figure 11.
We can see that, for each subject and type of environment,
the PMC of non-LRC method is substantially lower. This
is primarily because, instead of considering the LRC model,
the non-LRC method computes breathing frequency solely
based on the acoustic features, which are susceptible to in-
terferences such as sounds of wind and traffic. We can also
observe that, the performance of non-LRC method is highly
dependant on the noise level. A higher PMC is achieved
when the data is collected in quiet gym (67.3%) or outdoor
area (67.5%), compared with the gym with music (62.6%)
and outdoors with wind and traffic (53.6%).

Impact of Environmental Noises
Next, we investigate the performance of RunBuddy in differ-
ent environments. Figure 11(c) shows the PMC in 4 different
scenarios based on all the data (39 runs). We can see that
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Figure 11. Overall performance of our approach and comparison with a simple non-LRC method. (a) shows the PCM for each subject based on data
collected on treadmill in typical gyms. (b) shows the PCM for each subject based on data collected during outdoor runs. (c) shows the overall PCM in
4 typical scenarios: (1) running on treadmill in a relatively quiet gym, (2) running on treadmill in a gym with music and nearby runners, (3) running
outdoors on a relatively quite route, (4) running outdoors by the street with traffic.

compared to outdoor running (avg. PMC 91.4%), the PMC is
higher when running on indoor treadmill (avg. PMC 93.3%).
This discrepancy is largely due to the outdoor noises, such
as wind and traffic. However, we note that the highest PMC
(95.2%) is achieved when running outdoors in a quite neigh-
borhood, even 1.7% higher than running in a quiet gym. This
is largely due to the fact that operating treadmills still produce
substantial noise. In a typical public gym setting, the PMC
drops to 92.6%, due to the raised noise level caused by nearby
runners and ambient music. When running outside, wind is
the most common environmental noise, especially when run-
ning against the wind. As the noise of wind has overlapping
frequency with the sound of breath, it can largely affect the
accuracy of breath detection.

However, in most cases, RunBuddy can still manage to ac-
curately estimate the running rhythm by leveraging the LRC-
based correlation, even in the presence of wind and traffic.
Figure 12 shows an example of how RunBuddy mitigates the
impact of environmental noises. Due to the interference of the
wind, the breath detection algorithm yields continuous high
likelihood of breath during the first 3.7 seconds. During 7.2
to 9.1 seconds, a vehicle was passing by the subject. We can
see that, in detecting the 7th and 8th breaths, the traffic noise
lowers the likelihood of breath by suppressing the sound of
breath. An interesting observation is that, even though some
of the detected breath do not match the breathes in ground
truth, the number of detected breathes is still accurate, due to
the fact that the LRC ratio remains constant and the strides
are detected accurately. Therefore, by leveraging the LRC
model, RunBuddy can largely mitigate the impact of various
outdoor noises, including wind and nearby traffic.

Runners with Different Fitness Levels
RunBuddy is designed to help improve the running experi-
ence of both regular runner and non-runners alike. As regu-
lar runners typically breathe differently from non-runners, in
terms of depth and duration, it is important to evaluate the per-
formance of RunBuddy for runners at different fitness levels.
According to the result of our initial experiment, the PMC
of LRC ratio measurement increases as the fitness level of
the subject gets higher. Specifically, the average PMC of in-
door running for non-runners, occasional runners and regular

runner are 90%, 93.6% and 94.6%, respectively. This is pri-
marily due to the fact that regular runners typically breathe
deeper and longer, resulting in more distinctive sound fea-
tures that are easier for the system to capture.

In addition to the depth and duration, the breathing of regular
runners and non-runners also differs in its coupling with the
strides. Figure 13 shows the detailed detection results of a 17-
min run from a regular runner, and an 8-min run from a non-
runner. In Figure 13(a), we can see that the subject gradually
raised his breathing and stride frequencies in the first minute.
Then, he maintained a steady stride frequency till 14:30 min-
utes. After that, he gradually reduced the speed and switched
from running to fast walking. One interesting observation is
that the subject doubled his breathing frequency for about 1
minute (around 14 minutes) at the end of the run. It is mainly
because he raised the running speed by increasing the length
of each stride. As a result, he maintained the same stride fre-
quency while increasing the breathing frequency, which can
also be reflected in Figure 13(b) as the corresponding LRC
ratio shifts to 1 : 1. Therefore, RunBuddy is able to provide
details of the dynamics in stride/breath frequencies to regu-
lar runners, which help them better understand their running
progress. It is worth mentioning that one of our subjects who
runs regularly is very enthusiastic about the running rhythm
results provided by RunBuddy. He thought the result from
RunBuddy is a valuable feedback, which could help even reg-
ular runners “push that extra little bit”.

As shown in Figure 13(c), it took the non-runner one and
a half minutes to reach a relatively steady stride frequency.
However, it can be seen that the subject kept changing the
breathing frequency. As reported by the subject, she found
it difficult to adjust her breath to her stride during running.
Actually, the shortly dropped breathing frequency at around
2:45 and 7:50 minutes reflect her effort in trying to adjust her
breath frequency. However, due to the lack of running ex-
perience and relatively low fitness level, she failed to find a
comfortable running rhythm and kept adjusting the breathing
frequency throughout the run. This also leads to a varying
LRC ratio over time. Therefore, by continuously monitoring
the running rhythm along with other information (e.g., stride),
RunBuddy has potential to guide the non-runners to find a

141

SESSION: TRACKING USER'S HEALTH



0 1 2 3 4 5 6 7 8
20

40

60

80

100

(c
)

N
o

n
−

ru
n

n
e

r
F

re
q

 (
p

e
r 

m
in

)

 

 

0 1 2 3 4 5 6 7 8
1:1
3:2
2:1
5:2
3:1

4:1

Time (min)

(d
)

N
o

n
−

ru
n

n
e

r
L

R
C

 r
a

ti
o

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
20

40

60

80

100

(a
) 

  
  

 
R

e
g

u
la

r 
R

u
n

n
e

r 
F

re
q

 (
p

e
r 

m
in

) 

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1:1

3:2

2:1

5:2

3:1

Time (min)

(b
) 

  
  

  
  

R
e

g
u

la
r 

R
u

n
n

e
r

L
R

C
 r

a
ti
o

  
  

 

 

 

1:1 4:3 3:2 5:3 2:1 5:2 3:1 4:1
0

10

20

30

40

50

60

70

80

LRC ratio

(e
) 

P
e

rc
e

n
ta

g
e

(%
)

 

 

breath freq

stride freq

breath freq (truth)

measured LRC

LRC (truth)

breath freq

stride freq

breath freq (truth)

measured LRC

LRC (truth)

non−runner

non−runner (truth)

regular runner

regular runner (truth)

Figure 13. The detection result of typical runs from a regular runner (17.2 min) and a non-runner (8.4 min). (a) and (c) show the frequency of breath
and stride for regular runner and non-runner, respectively. (b) and (d) show their LRC ratios over time. (e) shows the distributions of their LRC ratio
used during running.

Model CPU RAM Battery Cap. cpu load (avg/max) runtime (Audio) runtime (Motion) Battery Usage
Samsung Galaxy Nexus Dual Core 1.2GHz 1GB 1750 mAh 4.7%/7% 595ms/5sec 3.4ms/5sec 5% per hr

Motorola Moto G Quad Core 1.2GHz 1GB 2070 mAh 3.5%/4% 560ms/5sec 3.0ms/5sec 5% per hr
LG Nexus 4 Quad Core 1.5GHz 2GB 2100 mAh 8.2%/14% 522ms/5sec 2.8ms/5sec 5% per hr
LG Nexus 5 Quad Core 2.3GHz 2GB 2300 mAh 5.2%/8% 318ms/5sec 2.2ms/5sec 4% per hr

Table 2. The overhead of RunBuddy on different smartphones. The computational overhead is measured by the overall CPU load of RunBuddy and
the time consumed for each pipeline to process 5-second data. Power consumption is measured by the battery usage per hour.

comfortable running rhythm (e.g. play music with proper
tempo based on the analysis of the LRC measurements)

Figure 13(e) shows the percentage of each LRC ratio of the
non-runner and the regular runner. We can see that the domi-
nant LRC ratio (2:1) of the regular runner was used for around
70% of the run, whereas the non-runner used 8 different LRC
ratios, with the dominant LRC ratio 1:1 being used for only
43% of the time. This result indicates that the coupling effect
between breathing and stride of the regular runner is stronger
than that of the non-runner. This observation is consistent
with the literature of physiology [8], suggesting that tighter
coordination between limb rhythms and respiration may re-
duce the metabolic cost of a movement.

Computation Overhead and Power Consumption
In this section, we evaluate the overhead of RunBuddy im-
plemented on different Android platforms, including Galaxy
Nexus [35], Moto G [27], Nexus 4 [28] and Nexus 5 [19].
Here we focus on the the evaluation of two major pipelines,
which are, audio pipeline, including the low-pass filtering,
MFCC feature extraction and breath detection, and motion
pipeline consisting of vertical projection and stride detection
components. Specifically, we measured the runtime for each
pipeline to process 5-second data. The result is shown in
Table 2. Overall, the results show that RunBuddy takes a
small amount of processing time and CPU load because of
the lightweight design of sensing pipelines, which in turn re-
sults in a relatively low battery usage (around 5%/hour).

CONCLUSION
In this paper, we present RunBuddy – the first smartphone-
based system for continuous running rhythm monitoring. It
only utilizes commodity devices including smartphone and
bluetooth headset, and is convenient and unobtrusive to users.
RunBuddy adopts lightweight and efficient signal process-
ing algorithms for detecting breathes and strides using ac-
celerometer and microphone, respectively. It then leverages a
physiological model called Locomotor Respiratory Coupling
(LRC) to correlate the sensing results, which significantly im-
proves the performance. RunBuddy is evaluated through ex-
tensive experiments involving 13 subjects and 39 runs. Our
results show that RunBuddy can accurately measure the run-
ning rhythm in terms of LRC ratio in 92.7% of the time.
By leveraging LRC models, RunBuddy yields robust perfor-
mance even in the presence of various environmental noises.
RunBuddy is able to provide physiological details of running
(e.g., the stability of LRC ratio) that can be used to help users
to better understand the running process and improve the run-
ning experience. Moreover, the real-time running rhythm
measurement provided by RunBuddy also has great poten-
tial in helping runners better coordinate their breathing and
strides, and improve their running performance.
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