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Abstract Web caching is a significantly important strategy for improving Web perfor-

mance. In this paper, we design SmartCache, a router-based system of Web page load time

reduction in home broadband access networks, which is composed of cache, SVM trainer

and classifier, and browser extension. More specifically, the browser interacts with users to

collect their experience satisfaction and prepare training dataset for SVM trainer. With the

desired features extracted from training dataset, the SVM classifier predicts the classes of

the Web objects. Then, integrated with LFU, the cache makes a cache replacement based

on SVM-LFU policy. Finally, by implementing SmartCache on a Netgear router and

Chrome browsers, we evaluate our SVM-LFU algorithm in terms of Web page load time,

SVM accuracy, and cache performance, and the experimental results illustrate that

SmartCache can greatly improve Web performance in Web page load time.

Keywords Web caching � Support vector machine � Least-Frequently-Used � Cache
replacement � Home broadband networks

1 Introduction

Nowadays, people largely rely on Internet through browsers, which provides latest news

around the world, knowledge of diverse areas, and various kinds of entertainments to ease

our modern life. To provide better Web performance, researchers measure some popular

Web sites and demonstrate that latency is the main bottleneck for Web page load time [1].

Therefore, Internet service providers and application providers are increasingly cognizant

of the importance of reducing Web page load time, even small differences in latency can

introduce significant effects on usability. Nevertheless, more and more people prefer
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surfing Internet at home, which requires higher Web performance of broadband access

networks. For most normal users at home, several seconds in latency should be acceptable,

sometimes even not perceivable, however, their satisfaction significantly drops if they have

been kept waiting for longer than a certain time of tens of seconds. Imaging that consumers

are browsing an online shopping site and it takes forever to display a product information,

most of them will simply give up and leave a bad impression towards this site. Moreover,

latency is more rigorous for international corporations, such as Google, Bing and Amazon.

Long latency considerably degrades usability, and as a consequence, it directly leads to

huge loss in their revenues [2, 3]. Nevertheless, Web proxy caching plays a key role in

improving Web performance by keeping Web objects in a proxy cache close to users,

which contributes to reduce user perceived latency, improve network bandwidth utiliza-

tion, and alleviate loads from origin servers. Therefore, how to design Web proxy caching

policies of reducing latency on routers that improve Web performance is becoming a

hotspot of research area.

There are a wide range of related works concentrated on Web proxy caching policies,

which can be categorized into conventional caching strategies and intelligent caching

strategies. For conventional caching strategies, Least-Recent-Used (LRU) [4], Least-Fre-

quently-Used (LFU) [5], Most Recently Used (MRU) [6], SIZE [7], Greedy-Dual-Size

(GDS) [8], Greedy-Dual-Size-Frequency (GDSF) [5], Hybrid [9], and Lowest Relative

Value (LRV) [10] have been deeply studied. However, these conventional strategies only

consider one factor in order to make caching decision and ignore the other factors that have

impact on the efficiency of the Web proxy caching [4, 13]. For intelligent caching

strategies, ICWCS [11, 12], NNPCR [13], NNPCR-2 [14], SVM-GDSF, C. 45-GDS, and

SVM-LRU [15], and SACS [16] have been widely investigated. For instance, Ali et al. [15]

propose new approaches that depend on the capability of SVM and C4.5 to learn from Web

proxy logs files and predict the classes of objects to be re-visited or not. Negrao et al. [16]

design semantics aware caching system that measures the distance between objects in

terms of the number of links necessary to navigate from one object to another, where when

replacement takes place, objects that are distant from the most recently accessed pages are

candidates for removal and the closest an object is to a recently accessed page, the less

likely it is to be evicted. However, these intelligent caching strategies basically focus on

Internet, not on home broadband access networks, and ignore server locations that impact

latency.

In this paper, we design SmartCache, a router-based system of Web page load time

reduction for improving Web performance in home broadband access networks, which can

learn users’ experience satisfaction and collect desired features of Web objects, and then

utilize these information to make cache replacements. SmartCache is composed of com-

ponents of cache, SVM trainer and classifier, and browser extension. More specifically, the

browser extension component interacts with users to collect their experience satisfaction

and prepare training dataset for SVM trainer component. With the features extracted from

training dataset, the SVM classifier component predicts the classes of theWeb objects either

the objects will be revisited or not. Then, the cache component makes a cache replacement,

based on the proposed Web cache SVM-LFU algorithm in cache supported by the browser

extension and SVM classification. Finally, we implement SmartCache on a Netgear router

and Chrome browsers, and evaluate our SVM-LFU caching policy in terms of Web page

load time, SVM accuracy, and cache performance. The experimental results illustrate that

SmartCache can significantly improve Web performance in Web page load time.

The main contributions of this work can be summarized as:
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• We design a router-based SmartCache for improving Web performance in home

broadband access networks, which is composed of cache, SVM trainer and classifier,

and browser extension.

• We integrate intelligent technique SVM with conventional policy LFU to provide

SVM-LFU caching strategy to extract desired features from training dataset in browser

and make cache replacements in cache.

• We implement SmartCache on a Netgear router and Chrome browsers, and evaluate

our SVM-LFU caching policy in terms of Web page load time, SVM accuracy, and

cache performance. The experimental results illustrate that SmartCache can signifi-

cantly improve Web performance in Web page load time.

The remainder of this paper is organized as follows: Sect. 2 presents some background

knowledge on Web proxy caching and related work, and Sect. 3 proposes the motivation of

our work. In Sect. 4, we elaborate the design details of SmartCache composed of cache,

SVM trainer and classifier, and browser extension. We evaluate the performance of

SmartCache in terms of Web page load time, SVM accuracy, and cache in Sect. 5 and

conclude this work in Sect. 6.

2 Background and Related Work

We begin this section by providing some background on Web proxy caching. Subse-

quently, we will look at related work that presents caching strategies in conventional and

intelligent aspects, respectively.

2.1 Web Proxy Caching

Web caching is one of the most effective and important approaches for improving the

performance of web-based systems [15], which decreases user perceived latency, reduces

network bandwidth usage, and reduces page load time from the origin servers. Typically, a

Web caching can be located in a browser, a proxy server or an origin server. More

specifically, the browser cache is located on a browser in the client machine, which stores

previous responses from Web servers and reduces the amount of information that needs to

be transmitted across the network, as information previously stored in the cache can often

be reused. At the origin server, Web pages can be stored in a server-side cache for reducing

the redundant computations and the server load. The proxy cache is located between the

client machines and an origin server, such as a router, which works on the same principle

as the browser cache, but in a much larger scale. Unlike the browser cache which deals

with only a single user, the proxy server serves hundreds or thousands of users in the same

way. When a request of Web object is received, the proxy server checks its cache: if the

object is available, the proxy server sends the object to the client; if not, or expired, the

proxy server will request the object from the origin server and send it to the client, and the

requested object will be stored in the proxy’s local cache for future requests [15, 17].

Web proxy caching has been widely utilized by computer network administrators,

technology providers, and businesses to reduce both user delays and Internet congestion

[18–20]. As Web proxy cache size is limited, a cache replacement policy is needed to

handle the cache content. If the cache is full when an object needs to be stored, the

replacement policy will determine which object is supposed to be evicted to allow space

for the new object. The optimal replacement policy aims to make the best use of available
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cache space, improve cache hit rates, and reduce loads on the origin server. The cache

replacement policy plays an extremely important role in Web proxy caching. Hence, the

design of efficient cache replacement algorithms is required to achieve highly sophisticated

caching mechanism [21–23].

There are a few factors (features) of Web objects that influence the Web caching

[21, 24]:

• Recency: objects last reference time

• Frequency: number of requests made to an object

• Size: size of the requested Web object

• Access latency of Web object

The performance of Web caching methods are normally analyzed using the metrics hit

ratio (HR) and byte hit ratio (BHR). HR is referred to as the percentage of the number of

requests that are served by the cache over the total number of requests, while BHR is

defined as the percentage of the number of bytes that correspond to the requests served by

the cache over the total number of bytes requested. A high HR indicates the availability of

the requested object in the cache most of the time, while a high BHR indicates reduced

user-perceived latency and savings in bandwidth [13, 22].

2.2 Related Work

We bifurcate related work based on the type of caching strategies—those that have dealt

with Web performance in conventional caching strategies, and those that have coped with

improving Web performance in intelligent caching strategies.

2.2.1 Conventional Caching Strategies

Some conventional caching strategies have been deeply studied, such as Least-Recent-

Used (LRU), Least-Frequently-Used (LFU), Most Recently Used (MRU), SIZE,

Greedy-Dual-Size (GDS), Greedy-Dual-Size-Frequency (GDSF), Hybrid, and Lowest

Relative Value (LRV). The authors in [4] propose the simplest and most common

cache management approach, LRU algorithm, which removes the least recently

accessed objects until there is sufficient space for the new objects. LRU is easy to

implement, efficient for uniform size objects such as the memory cache, and used in

other areas of caching, however, it does not perform well in Web caching since it does

not consider the size or the download latency of objects. In [5], the authors present

another common policy of web caching that replaces the objects with the smallest

number of accesses, LFU algorithm, which keeps more popular Web objects and evicts

rarely used ones. However, LFU suffers from the cache pollution in objects with the

large reference accounts, which are never replaced even if they are not re-accessed

again, especially if these objects are large [4, 25–27]. MRU discards, in contrast to

LRU, the most recently used web objects first [6]. The authors of [7] provide SIZE

policy, which replaces the largest objects from a cache when space is needed for a new

object, however, a cache can be polluted with small objects which will not be accessed

again. To alleviate the cache pollution, the authors in [8] suggest GDS policy as an

extension of the SIZE policy, which integrates several factors and assigns a key value

or priority for each Web object stored in the cache. When cache space becomes

occupied and new object is required to be stored in cache, the object with the lowest

key value will be removed. Since GDS ignores the frequency of the Web object, the
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authors of [5] present GDSF by integrating the frequency factor into the key value to

overcome the drawback of GDS, however, it does not take into account the predicted

accesses in the future. In [28], the authors compare these conventional caching

strategies and point out their advantages and disadvantages. The authors of [9] propose

Hybrid cache replacement algorithm that makes use of a combination of multiple

requirements such as maintaining in the cache documents from servers that take sig-

nificant time to connect to, those that need to be fetched from the slowest links, those

that have been accessed very frequently, and those that are small. In [10], the authors

provide LRV that expels the object that has the lowest utility value, where the utility

of a document is calculated adaptively on the basis of data readily available to a proxy

server. However, these conventional strategies are suitable for traditional caching like

CPU caches and virtual memory system, not efficient in Web caching area. The reason

is that they only consider one factor in order to make caching decision and ignore the

other factors that have impact on the efficiency of the Web proxy caching [4, 13].

2.2.2 Intelligent Caching Strategies

Conventional caching strategies are simple and effective, but they cannot dynamically

adapt to environment changes, which is of great importance for web caching. Therefore,

some intelligent caching strategies have been proposed recently. In [11], the authors

present an intelligent client-side Web caching scheme based on least recently used algo-

rithm and neuro-fuzzy system, which divides client-side cache into short-term and long-

term caches, where the Web objects requested in the first time are stored in short-term

cache, while the Web objects visited more than once are moved to long-term cache. The

authors of [13] provide the neural network proxy cache replacement (NNPCR) which

utilizes neural networks for replacement decisions, and in [14], the authors propose an

improved strategy of NNPCR referred to as NNPCR-2. However, the performance of back-

propagation neural network (BPNN) in NNPCR or NNPCR-2 is influenced by the optimal

selection of the network topology and its parameters that are based on trial and error. In

[29], the authors propose an integrated solution of BPNN as caching decision policy and

LRU technique as replacement policy for script data object. Since the most important

factor in Web caching such as recency is ignored in caching decision, the authors of [30]

enhance the policy using particle swarm optimization for improving neural network per-

formance. In [15], the authors present SVM-GDSF, C. 45-GDS, and SVM-LRU three

intelligent caching strategies with the help of machine learning techniques and decision

tree, which predict the probability of the re-visit of a web object and add more weight to

the object with higher re-visit probability. The authors of [17] propose intelligent naive

Bayes-based approaches for Web proxy caching. In [31], the authors present a pre-fetching

technique that uses clustering combined with SVM-LRU algorithm, a machine learning

method for Web proxy caching. The authors of [6] present new approaches that depend on

the capability of Decision Tree (DT) classifier to learn from Web proxy logs files and

predict the classes of objects to be re-visited or not. In [16], the authors design semantics

aware caching system (SACS) that measures the distance between objects in terms of the

number of links necessary to navigate from one object to another, where when replacement

takes place, objects that are distant from the most recently accessed pages are candidates

for removal and the closest an object is to a recently accessed page, the less likely it is to be

evicted.

Improving Web Performance in Home Broadband Access Networks 929

123



3 Motivation

Based on an in-depth analysis of the issue arose from a recent literature [1], we find that

non-US users normally suffer from longer page load time than US users, and the relative

improvement in delay for their HomeCaching for non-US users is less. Moreover, Apti-

mize, a web content optimization organization, providing softwares that increase Web site

performance by speeding up Web sites and intranets, further confirms the fact that the

average first view load time for US users is 7.07 s while for non-US users is 9.46 s with a

survey among Fortune 500 companies [32]. Motivated by these observations, we come up

with an intuitive idea of assigning different weights for domestic and international Web

sites, in order to achieve a shorter overall page load time.

As an example, we measure the page load time through a Web performance experiment

between US users and non-US users. We explore WebPagetest, an open source project

primarily developed and supported by Google [33], to test the first view page load time and

repeat view page load time from 4 different locations of US, India, Australia and UK, on

nine popular Web sites of CNN, Wikipedia, Facebook, Yahoo, Google, Amazon, Ebay,

MSN and YouTube with the browser of Chrome. Note that the nine Web sites tested in this

paper are the same as the ones in [1]. In the experiment, the first view page load time is

measured on the browser of Chrome with an empty cache and without cookies, while the

repeat view is conducted immediately after the first view experiment, which significantly

represents the impact of caching. We plot the average page load time of first view and

repeat view for the nine Web sites in the 4 locations in Figs. 1 and 2, respectively. As

illustrated in Figs. 1 and 2, to sum up, the page load time for non-US (India, Australia and

UK) users is much longer than that for US users. More specifically, the average page load

time of the first view for US and for non-US users is 4.40 and 6.09 s, respectively, as

demonstrated in Fig. 1, while for the repeat view, the average page load time is improved

to 2.37 s for US users and to 3.27 s for non-US users, respectively, as shown in Fig. 2.

Furthermore, we introduce a metric of relative improvement to measure the page load

time improvement between the first view and repeat view, defined in Eq. 1, where PLTfirst

denotes the page load time of the first view, and PLTrepeat indicates that of the repeat view.

Based on the above experimental data, we plot the relative improvement of page load times

for nine Web sites tested in 4 locations, in Fig. 3. As illustrated in Fig. 3, the relative

Fig. 1 First view page load time (PLT) for 9 web sites tested in 4 locations
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improvement of page load times for US users and non-US users are 41.80 and 45.09 %,

respectively. As we can see, the difference between relative improvements for US and non-

US users is small, which indicates that location information alone might not be sufficient to

significantly improve the web caching performance.

Relative Improvement ¼ PLTfirst � PLTrepeat

PLTfirst

ð1Þ

In addition, Web users normally have different viewing behaviors or habits [34]. For

instance, US residents seldom surf international Web sites while people traveling abroad

need to view a lot of non-US Web sites from their home countries. Even for a single user,

his or her viewing behavior might constantly vary with time. Therefore, user personal

viewing habits probably impact the improvement of web performance.

From the above experiments and analysis, we observe that the reason why existing

approaches have difficulty in improving web performance is probably due to lack of

detailed knowledge of user location information and user viewing habits. Therefore, it is

imperative to design a system architecture that targets to individual users and can

dynamically adapt to viewing habit varies for improving Web performance in broadband

access networks.

Fig. 2 Repeat view page load
time (PLT) for 9 web sites tested
in 4 locations

Fig. 3 Relative improvement of page load time (PLT) for 9 web sites tested in 4 locations
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4 SmartCache Design

We design SmartCache, a router-based system of Web page load time reduction for

improving Web performance in home broadband access networks (Note that we consider a

specific issue on Web performance in home broadband access networks in this paper).

SmartCache can learn users’ experience satisfaction and collect desired features of Web

objects, and then utilize these information to make cache replacements, which consists of

components of cache, SVM trainer and classifier, and browser extension, as illustrated in

Fig. 4. Note that our SmartCache system resides solely on a router and on a browser with

no reliance on a backed server, and the user communicates with it directly for retrieving

that page from cache or from server. More specifically, the browser interacts with users to

collect their experience satisfaction (such as access latency satisfaction) and prepare

training dataset for SVM trainer component. With the common features (such as the first

byte time and size of an object) extracted from training data, the SVM classifier component

makes a decision that the object will be revisited or not. Then, the cache component makes

cache replacements, based on the proposed Web cache SVM-LFU algorithm in cache

supported by the browser extension and SVM classification. In this section, we give a

detailed description of SmartCache on browser extension, SVM trainer and classifier, and

cache, respectively.

4.1 Browser Extension

We develop an extension using the Web technology JavaScript for the Chrome browser,

which can interact with each individual user to collect the personalized acceptable latency

and prepare training dataset with features of URL ID, first view PLT, repeat view PLT, first

byte time, size, and location of a Web object for SVM trainer component. When a user

Fig. 4 SmartCache system architecture
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requests a Web page, the user communicates with the browser directly for retrieving that

page from a cache or from a server.

The browser extension supports two modes: training mode and normal mode. In training

mode, the user is required to give feedback to the extension by indicating whether the

current PLT is acceptable, when browsing a Web page, and meanwhile, the corresponding

PLT with the other features as training dataset are saved in extension. If the user fails to do

that, the extension will treat the current PLT based on acceptable latency range for

common situations in Table 1. The user’s satisfaction will be sent to cache component

immediately and all the collected personalized data will be transmitted to SVM component

for training. Since frequent interactions will affect user’s experience while browsing, the

extension switches to normal node once the training is completed. In this mode, the user

can surf the Internet without any interference by the extension. Nevertheless, the users’

viewing habits may vary and they probably become unsatisfied with current performance

of SmartCache. The SmartCache provides a re-training mechanism by switching back to

training mode through feedback.

4.2 SVM Trainer and Classifier

We choose Support Vector Machine (SVM) combined with RBF kernel to differentiate

Web objects. SVM is one of the most robust and accurate methods in machine learning

algorithms, which has been successfully applied in many real-world applications, such as

Web page applications [15], activity and text classifications [36, 37], and bioinformatics

applications.

The training data for SVM are collected by the Browser extension for over one month

and are converted to the training pattern in the format of \s1; s2; . . .; s6; v[ , where

s1; . . .; s6 indicate URL ID, first view PLT, repeat view PLT, first byte time, size, and

location of a Web object, respectively, and v represents the target output of the object

request which can be Class 0 or Class 1. In SVM training, SVM is trained as follows:

prepare and normalize the dataset, consider the RBF kernel, use cross-validation to find the

best parameters C (margin softness) and c (RBF width), and use the best parameters to train

the whole training dataset [38]. In SVM classification, we simply choose first byte time,

size and location as the inputs of the SVM classifier. As a result, all the Web objects are

classified into two categories:WðgÞ ¼ 1 andWðgÞ ¼ 0, whereWðgÞ ¼ 1 indicates the load

time is not acceptable by users, and the Web object is desired to be cached, WðgÞ ¼ 0

represents the load time is acceptable, and g denotes a Web object.

Table 1 Acceptable latency
range for common situations [35]

Situation Acceptable latency range (ms)

Regular web sites 100–800

Heavy web sites 50–400

Web-based remote systems 30–300

Casual online game 200–1000

Action games 10–150

Stock exchange 5–100

Remote administration: Linux 50–500

Remote administration: Windows 50–250
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4.3 Cache

We choose Least-Frequently-Used (LFU) caching policy, which is the most common cache

management approach, and which is able to remove the least frequently used objects until

there is sufficient space for the new objects. In SmartCache, cache component resides on a

router and contains three sub-caches of DNS lookup, TCP connection and content [1]. For

the caching strategy, we integrate intelligent technique SVM with conventional policy LFU

to provide SVM-LFU caching strategy to extract desired features from training dataset in

browser and make cache replacements in cache, as illustrated in Algorithm 1. SVM-LFU

caching strategy gives a key value for each object in the cache buffer. The key value

K(g) is calculated by a ratio of frequencies of Web object g over the maximum frequency

of all Web objects plus user’s satisfaction W(g), as illustrated in Eq. 2. When a user

requests a Web page, the object with the lowest K(g) value will be removed first and the

corresponding new object will be added in cache.

Algorithm 1: The Web cache SVM-LFU algorithm

1 Initialize W (g) = 0; //“W (g)” denotes the satisfaction of users to PLT, where
“W (g) = 1” indicates that PLT is unacceptable and “W (g) = 0” indicates
acceptable.

2 for Each Web object g requested by user do
3 if g in cache then
4 Cache hit occurs;
5 Update information of g; //Classify g by SVM classifier
6 W (g) = SVM(T imeofFristByte(g), Size(g)); //“T imeofFristByte(g)”

denotes the time when the first byte of g is downloaded, and “Size(g)”
indicates the size of g.

7 K(g) = Frequency(g)
Max(Frequencies(AllofWebSites)) +W (g) //“Frequency(g)”

indicates the frequency of Web object g visited,
“Frequencies(AllofWebSites)” denotes frequencies of all Web objects
visited, “Max()” calculates the maximum frequencies of all Web objects
visited.

8 end
9 else

10 Cache miss occurs;
11 while no enough space in cache buffer for g do
12 W (g) = min(K(Q)); //“min()” indicates the minimum value of K(Q),

and “Q” denotes the Web object sets in cache
13 if K(q) ≤ min(K(Q)) then
14 Evict q and insert g into Q; //Web object “q” has the minimum

value in K(Q)
15 end
16 end
17 Fetch g into cache from origin server;
18 end
19 end

KðgÞ ¼ Frequency ðgÞ
MaxðFrequenciesðAll of; WebSitesÞÞ þWðgÞ ð2Þ

934 Y. Li et al.

123



where FrequencyðgÞ indicates the frequency of Web object g visited,

FrequenciesðAll of WebSitesÞ denotes frequencies of all Web objects visited, MaxðÞ cal-

culates the maximum frequencies of all Web objects visited, and W(g) is a binary value (0

or 1) indicated by the SVM classifier.

5 Performance Evaluation

We evaluate our SmartCache with real implementations on a router and browsers. In this

section, we first describe the experiment setup, and then evaluate the SmartCache in terms

of Web page load time, SVM accuracy, and cache performance.

5.1 Experiment Setup

In the experiments, we implement the SmartCache on a Netgear router and Chrome

browsers, where the end hosts (such as desktops, laptops, tablets) with Chrome browsers

are connected to the router. We collect data with features of the first view page load time,

repeat view page load time, first byte time, size and location of the Web site server from IP

tracker [39], by users browsing the top 100 most visited Web sites in 2014 [40]. Note that

some Web sites are not available, we can only collect data for 96 web sites (80 inside US

and 16 outside US) [41, 42].

5.2 Web Page Load Time

In this section, we compare the first view page load time and repeat view page load time for

both US and non-US Web sites. With the dataset of users browsing the the top 100 most

visited Web sites in 2014, we record the page load time and calculate the average time as

shown in Fig. 5. As illustrated in Fig. 5, the average page load time of Web sites inside US

is still shorter than that of Web sites outside US. We also compare the relative improve-

ment by Eq. 1 between the average first view page load time and average repeat view page

load time. As demonstrated in Fig. 6, the average improvements for US users and non-US

users are 54.38 and 54.80 %, respectively. The difference is smaller, which further con-

firms that location information alone will not lead to significantly improvement on caching

performance.

Fig. 5 Average page load time
for most popular web sites in
2014
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5.3 SVM Accuracy

For each Web site, users are required to assign satisfaction values as: 1 if the first view

page load time exceeds 3 s; otherwise, 0. In order to train the SVM classifier, we randomly

select 10 Web sites from US and non-US Web sites. Therefore, the training data size is 20,

and the rest 76 web sites are used to test the performance of our SVM classifier. For the

SVM classifier, we input the first byte times and page sizes of Web objects, and obtain

values: 1 if the user is not acceptable for the page load time and 0 if acceptable. The

classification results are illustrated in Fig. 7, and the accuracy of the SVM classifier is

76.32 %. Note that the SVM classifier is able to categorize the most testing Web sites

except 3 extreme Web sites for a clear view of most sites.

5.4 Caching Performance

In this section, we evaluate the cache performance in terms of comparison with other cache

strategies and relative improvements.

Fig. 6 Average relative
improvement of page load time
for most popular web sites in
2014

Fig. 7 SVM classification result
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The cache size is set to be 20. As we designed in Algorithm 1, when a cache hit occurs,

we utilize the repeat view page load time and when a cache miss occurs, we use first view

page load time. We compare our SVM-LFU replacement decision strategy with simple

LFU and LFU-Location, respectively. As for LFU-Location replacement decision strategy,

we use Eq. 3 to compute a key value K(g) for each Web site g, where LðgÞ ¼ 1 for non-US

Web sites and LðgÞ ¼ 0 for US ones. When the cache is full, the object with the smallest

K(g) will be replaced.

KðgÞ ¼ FrequencyðgÞ
MaxðFrequenciesðAll of WebSitesÞÞ þ LðgÞ ð3Þ

We plot the cache hit ratios for the three strategies in Fig. 8. As illustrated in Fig. 8, LFU

has the highest hit ratio, while LFU-Location has the least. Although LFU has the highest

hit ratio, it suffers from the cache pollution in objects with the large reference accounts

[4, 5].

We further compare the relative improvements (compared to no cache) in terms of the

average page load time. As demonstrated in Fig. 9, SVM-LFU enjoys the highest

improvement, which shows significantly higher than the second one, LFU; LFU-Location

has the least improvement, which gains almost only half of the improvement achieved by

SVM-LFU.

The above two comparisons further confirm that SmartCache is very effective to con-

sider personalized user acceptable latency, and even simple design will lead to significant

performance augment.

Fig. 8 Hit ratios for different
caching strategies

Fig. 9 Relative improvement of
average page load time after
using different caching strategies
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6 Conclusion

In this paper, we design SmartCache, a router-based system of Web page load time

reduction for improving Web performance in home broadband access networks, which can

learn users’ experience satisfaction and collect features of Web objects, and then utilize

these information to make cache replacements. SmartCache is composed of cache, SVM

trainer and classifier, and browser extension. We implement SmartCache on a Netgear

router and Chrome browser, and evaluate our SVM-LFU caching policy in terms of Web

page load time, SVM accuracy, and cache performance. The experimental evaluation

results illustrate that SmartCache can significantly improve Web performance in Web page

load time.

In the future, we would like to consider more factors to achieve better performance. For

example, when training the SVM classifier, we take the type of web sites as an extra input,

since users expect different page load time for different types of Web sites. As a result, we

can obtain more accurate results from SVM classifier.
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